1
0
mirror of https://github.com/facebookincubator/mvfst.git synced 2025-11-10 21:22:20 +03:00
Files
mvfst/quic/state/test/QuicStateFunctionsTest.cpp
Yang Chi 42b2617e44 Handle lossTime before crypto timer in Quic
Summary:
Currently we handle crypto timer before loss timer. And currently loss
time is for AppData only since for the other two Packet Number spaces, crypto
timer will take care of it. This diff extends loss times to 3 loss times, and
handle them before handle crypto timer. The rational here is that loss time is
shorter than crypto timer, so this will make retransmission during crypto
handshake more aggressive. For app data, this diff doesn't change anything.

Reviewed By: sharma95

Differential Revision: D15552405

fbshipit-source-id: bd5c24b0622c72325ffdea36d0802d4939bae854
2019-06-17 18:07:28 -07:00

560 lines
21 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*
*/
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <quic/common/test/TestUtils.h>
#include <quic/server/state/ServerStateMachine.h>
#include <quic/state/QuicStateFunctions.h>
#include <quic/state/test/Mocks.h>
using namespace folly;
using namespace testing;
namespace quic {
namespace test {
bool verifyToAckImmediately(
const QuicConnectionStateBase& conn,
const AckState& ackState) {
return !conn.pendingEvents.scheduleAckTimeout &&
ackState.needsToSendAckImmediately && ackState.numRxPacketsRecvd == 0 &&
ackState.numNonRxPacketsRecvd == 0;
}
bool verifyToScheduleAckTimeout(const QuicConnectionStateBase& conn) {
return conn.pendingEvents.scheduleAckTimeout;
}
RegularQuicWritePacket makeTestShortPacket() {
ShortHeader header(
ProtectionType::KeyPhaseZero, getTestConnectionId(), 2 /* packetNum */);
RegularQuicWritePacket packet(std::move(header));
return packet;
}
RegularQuicWritePacket makeTestLongPacket(LongHeader::Types type) {
LongHeader header(
type,
getTestConnectionId(0),
getTestConnectionId(1),
2 /* packetNum */,
QuicVersion::QUIC_DRAFT);
RegularQuicWritePacket packet(std::move(header));
return packet;
}
class UpdateLargestReceivedPacketNumTest
: public TestWithParam<PacketNumberSpace> {};
TEST_P(UpdateLargestReceivedPacketNumTest, ReceiveNew) {
QuicServerConnectionState conn;
getAckState(conn, GetParam()).largestReceivedPacketNum = 100;
auto currentLargestReceived =
*getAckState(conn, GetParam()).largestReceivedPacketNum;
PacketNum newReceived = currentLargestReceived + 1;
updateLargestReceivedPacketNum(
getAckState(conn, GetParam()), newReceived, Clock::now());
EXPECT_GT(
*getAckState(conn, GetParam()).largestReceivedPacketNum,
currentLargestReceived);
}
TEST_P(UpdateLargestReceivedPacketNumTest, ReceiveOld) {
QuicServerConnectionState conn;
getAckState(conn, GetParam()).largestReceivedPacketNum = 100;
auto currentLargestReceived =
*getAckState(conn, GetParam()).largestReceivedPacketNum;
PacketNum newReceived = currentLargestReceived - 1;
updateLargestReceivedPacketNum(
getAckState(conn, GetParam()), newReceived, Clock::now());
EXPECT_EQ(
*getAckState(conn, GetParam()).largestReceivedPacketNum,
currentLargestReceived);
}
INSTANTIATE_TEST_CASE_P(
UpdateLargestReceivedPacketNumTests,
UpdateLargestReceivedPacketNumTest,
Values(
PacketNumberSpace::Initial,
PacketNumberSpace::Handshake,
PacketNumberSpace::AppData));
class UpdateAckStateTest : public TestWithParam<PacketNumberSpace> {};
TEST_P(UpdateAckStateTest, TestUpdateAckState) {
QuicServerConnectionState conn;
PacketNum nextPacketNum = 0;
auto& ackState = getAckState(conn, GetParam());
updateAckState(conn, GetParam(), nextPacketNum++, true, false, Clock::now());
EXPECT_EQ(ackState.acks.size(), 1);
EXPECT_EQ(ackState.acks.front().start, 0);
EXPECT_EQ(ackState.acks.front().end, 0);
EXPECT_FALSE(ackState.needsToSendAckImmediately);
EXPECT_EQ(ackState.numRxPacketsRecvd, 1);
EXPECT_TRUE(conn.pendingEvents.scheduleAckTimeout);
conn.pendingEvents.scheduleAckTimeout = false;
updateAckState(conn, GetParam(), nextPacketNum++, true, false, Clock::now());
EXPECT_EQ(ackState.acks.size(), 1);
EXPECT_EQ(ackState.acks.front().start, 0);
EXPECT_EQ(ackState.acks.front().end, 1);
EXPECT_FALSE(ackState.needsToSendAckImmediately);
EXPECT_EQ(ackState.numRxPacketsRecvd, 2);
EXPECT_TRUE(conn.pendingEvents.scheduleAckTimeout);
// Have a gap for next packet
nextPacketNum += 2;
conn.pendingEvents.scheduleAckTimeout = false;
updateAckState(conn, GetParam(), nextPacketNum++, true, false, Clock::now());
EXPECT_EQ(ackState.acks.size(), 2);
EXPECT_EQ(ackState.acks.front().start, 0);
EXPECT_EQ(ackState.acks.front().end, 1);
EXPECT_EQ(ackState.acks.back().start, 4);
EXPECT_EQ(ackState.acks.back().end, 4);
EXPECT_TRUE(ackState.needsToSendAckImmediately);
EXPECT_EQ(0, ackState.numRxPacketsRecvd);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
ackState.needsToSendAckImmediately = false;
conn.pendingEvents.scheduleAckTimeout = false;
// Reaching retx limit
for (uint8_t i = 0; i < kRxPacketsPendingBeforeAckThresh - 1; ++i) {
updateAckState(
conn, GetParam(), nextPacketNum++, true, false, Clock::now());
EXPECT_FALSE(ackState.needsToSendAckImmediately);
EXPECT_TRUE(conn.pendingEvents.scheduleAckTimeout);
EXPECT_EQ(ackState.numRxPacketsRecvd, i + 1);
}
// Hit the limit
updateAckState(conn, GetParam(), nextPacketNum++, true, false, Clock::now());
// Should send ack immediately once we have kRxPacketsPendingBeforeAckThresh
// retransmittable packets
EXPECT_TRUE(ackState.needsToSendAckImmediately);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
ackState.needsToSendAckImmediately = false;
conn.pendingEvents.scheduleAckTimeout = false;
// Nonrx limit
for (uint64_t i = 0; i < kNonRxPacketsPendingBeforeAckThresh; ++i) {
EXPECT_FALSE(ackState.needsToSendAckImmediately);
EXPECT_EQ(ackState.numNonRxPacketsRecvd, i);
updateAckState(
conn, GetParam(), nextPacketNum++, false, false, Clock::now());
}
// Should send ack immediately once we have
// kNonRxPacketsPendingBeforeAckThresh non retransmittable packets
EXPECT_TRUE(ackState.needsToSendAckImmediately);
// Non-rx packets don't turn on Ack timer:
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
ackState.needsToSendAckImmediately = false;
// Crypto always triggers immediately ack:
updateAckState(conn, GetParam(), nextPacketNum++, true, true, Clock::now());
EXPECT_TRUE(ackState.needsToSendAckImmediately);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
}
TEST_F(UpdateAckStateTest, UpdateAckStateOnAckTimeout) {
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& initialAckState = getAckState(conn, PacketNumberSpace::Initial);
auto& handshakeAckState = getAckState(conn, PacketNumberSpace::Handshake);
auto& appDataAckState = getAckState(conn, PacketNumberSpace::AppData);
initialAckState.numRxPacketsRecvd = 1;
handshakeAckState.numRxPacketsRecvd = 2;
appDataAckState.numRxPacketsRecvd = 3;
initialAckState.numNonRxPacketsRecvd = 4;
handshakeAckState.numNonRxPacketsRecvd = 5;
appDataAckState.numNonRxPacketsRecvd = 6;
updateAckStateOnAckTimeout(conn);
EXPECT_TRUE(appDataAckState.needsToSendAckImmediately);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
EXPECT_EQ(0, appDataAckState.numRxPacketsRecvd);
EXPECT_EQ(0, appDataAckState.numNonRxPacketsRecvd);
EXPECT_FALSE(initialAckState.needsToSendAckImmediately);
EXPECT_EQ(1, initialAckState.numRxPacketsRecvd);
EXPECT_EQ(4, initialAckState.numNonRxPacketsRecvd);
EXPECT_FALSE(handshakeAckState.needsToSendAckImmediately);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
EXPECT_EQ(2, handshakeAckState.numRxPacketsRecvd);
EXPECT_EQ(5, handshakeAckState.numNonRxPacketsRecvd);
}
TEST_P(UpdateAckStateTest, UpdateAckSendStateOnRecvPacketsCrypto) {
// Crypto always leads to immediate ack
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
updateAckSendStateOnRecvPacket(conn, ackState, false, true, true);
EXPECT_TRUE(verifyToAckImmediately(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(UpdateAckStateTest, UpdateAckSendStateOnRecvPacketsRxLimit) {
// Retx packets reach thresh
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
for (size_t i = 0; i < kRxPacketsPendingBeforeAckThresh - 1; i++) {
updateAckSendStateOnRecvPacket(conn, ackState, false, true, false);
EXPECT_FALSE(verifyToAckImmediately(conn, ackState));
EXPECT_TRUE(verifyToScheduleAckTimeout(conn));
}
updateAckSendStateOnRecvPacket(conn, ackState, false, true, false);
EXPECT_TRUE(verifyToAckImmediately(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
// Ack one more, we will start counting again
updateAckSendStateOnRecvPacket(conn, ackState, false, true, false);
EXPECT_FALSE(verifyToAckImmediately(conn, ackState));
EXPECT_TRUE(verifyToScheduleAckTimeout(conn));
}
TEST_P(UpdateAckStateTest, UpdateAckSendStateOnRecvPacketsNonRxLimit) {
// Non-rx packets reach thresh
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
for (size_t i = 0; i < kNonRxPacketsPendingBeforeAckThresh - 1; i++) {
updateAckSendStateOnRecvPacket(conn, ackState, false, false, false);
EXPECT_FALSE(verifyToAckImmediately(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
updateAckSendStateOnRecvPacket(conn, ackState, false, false, false);
EXPECT_TRUE(verifyToAckImmediately(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
// Ack one more, we will start counting again
updateAckSendStateOnRecvPacket(conn, ackState, false, false, false);
EXPECT_FALSE(verifyToAckImmediately(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(
UpdateAckStateTest,
UpdateAckSendStateOnRecvPacketsNonRxLimitWithRxPackets) {
// Non-rx packets reach thresh
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
// use 1 rx packet
updateAckSendStateOnRecvPacket(conn, ackState, false, true, false);
for (size_t i = 0; i < kRxPacketsPendingBeforeAckThresh - 2; i++) {
updateAckSendStateOnRecvPacket(conn, ackState, false, false, false);
EXPECT_FALSE(verifyToAckImmediately(conn, ackState));
EXPECT_TRUE(verifyToScheduleAckTimeout(conn));
}
updateAckSendStateOnRecvPacket(conn, ackState, false, false, false);
EXPECT_TRUE(verifyToAckImmediately(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
// Ack one more, we will start counting again
updateAckSendStateOnRecvPacket(conn, ackState, false, false, false);
EXPECT_FALSE(verifyToAckImmediately(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(UpdateAckStateTest, UpdateAckSendStateOnRecvPacketsRxAndNonRxMixed) {
// Rx and non-rx mixed together. We should still just need
// kRxPacketsPendingBeforeAckThresh to trigger an ack
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
for (size_t i = 0; i < kRxPacketsPendingBeforeAckThresh - 1; i++) {
bool isRetransmittable = i % 2;
updateAckSendStateOnRecvPacket(
conn, ackState, false, isRetransmittable, false);
EXPECT_FALSE(verifyToAckImmediately(conn, ackState));
EXPECT_EQ(i >= 1, verifyToScheduleAckTimeout(conn));
}
updateAckSendStateOnRecvPacket(conn, ackState, false, true, false);
EXPECT_TRUE(verifyToAckImmediately(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
// Ack one more, we will start counting again
updateAckSendStateOnRecvPacket(conn, ackState, false, true, false);
EXPECT_FALSE(verifyToAckImmediately(conn, ackState));
EXPECT_TRUE(verifyToScheduleAckTimeout(conn));
}
TEST_P(UpdateAckStateTest, UpdateAckSendStateOnRecvPacketsRxOutOfOrder) {
// Retransmittable & out of order: ack immediately
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
updateAckSendStateOnRecvPacket(conn, ackState, true, true, false);
EXPECT_TRUE(verifyToAckImmediately(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(UpdateAckStateTest, UpdateAckSendStateOnRecvPacketsNonRxOutOfOrder) {
// Non-retransmittable & out of order: not ack immediately
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
updateAckSendStateOnRecvPacket(conn, ackState, true, false, false);
EXPECT_FALSE(verifyToAckImmediately(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
INSTANTIATE_TEST_CASE_P(
UpdateAckStateTests,
UpdateAckStateTest,
Values(
PacketNumberSpace::Initial,
PacketNumberSpace::Handshake,
PacketNumberSpace::AppData));
class QuicStateFunctionsTest : public TestWithParam<PacketNumberSpace> {};
TEST_F(QuicStateFunctionsTest, RttCalculationNoAckDelay) {
QuicServerConnectionState conn;
auto rttSample = 1100us;
updateRtt(conn, rttSample, 0us);
EXPECT_EQ(1100, conn.lossState.srtt.count());
EXPECT_EQ(1100 / 2, conn.lossState.rttvar.count());
EXPECT_EQ(0us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationWithAckDelay) {
QuicServerConnectionState conn;
auto rttSample = 1000us;
updateRtt(conn, rttSample, 300us);
EXPECT_EQ(1000, conn.lossState.srtt.count());
EXPECT_EQ(500, conn.lossState.rttvar.count());
EXPECT_EQ(300us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationWithMrttAckDelay) {
QuicServerConnectionState conn;
conn.lossState.mrtt = 100us;
auto rttSample = 1000us;
updateRtt(conn, rttSample, 300us);
EXPECT_EQ(700, conn.lossState.srtt.count());
EXPECT_EQ(350, conn.lossState.rttvar.count());
EXPECT_EQ(300us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, TestInvokeStreamStateMachineConnectionError) {
QuicServerConnectionState conn;
QuicStreamState stream(1, conn);
RstStreamFrame rst(1, GenericApplicationErrorCode::UNKNOWN, 100);
stream.finalReadOffset = 1024;
EXPECT_THROW(
invokeStreamReceiveStateMachine(conn, stream, std::move(rst)),
QuicTransportException);
// This doesn't change the send state machine implicitly anymore
bool matches = matchesStates<StreamSendStateData, StreamSendStates::Open>(
stream.send.state);
EXPECT_TRUE(matches);
}
TEST_F(QuicStateFunctionsTest, InvokeResetDoesNotSendFlowControl) {
QuicServerConnectionState conn;
QuicStreamState stream(1, conn);
RstStreamFrame rst(1, GenericApplicationErrorCode::UNKNOWN, 90);
// this would normally trigger a flow control update.
stream.flowControlState.advertisedMaxOffset = 100;
stream.flowControlState.windowSize = 100;
conn.flowControlState.advertisedMaxOffset = 100;
conn.flowControlState.windowSize = 100;
invokeStreamReceiveStateMachine(conn, stream, std::move(rst));
bool matches =
matchesStates<StreamReceiveStateData, StreamReceiveStates::Closed>(
stream.recv.state);
EXPECT_TRUE(matches);
EXPECT_FALSE(conn.streamManager->hasWindowUpdates());
EXPECT_TRUE(conn.pendingEvents.connWindowUpdate);
}
TEST_F(QuicStateFunctionsTest, TestInvokeStreamStateMachineStreamError) {
// We isolate invalid events on streams to affect only the streams. Is that
// a good idea? We'll find out.
QuicServerConnectionState conn;
QuicStreamState stream(1, conn);
RstStreamFrame rst(1, GenericApplicationErrorCode::UNKNOWN, 100);
try {
invokeStreamSendStateMachine(conn, stream, StreamEvents::RstAck(rst));
ADD_FAILURE();
} catch (QuicTransportException& ex) {
EXPECT_EQ(ex.errorCode(), TransportErrorCode::STREAM_STATE_ERROR);
}
bool matches = matchesStates<StreamSendStateData, StreamSendStates::Open>(
stream.send.state);
EXPECT_TRUE(matches);
}
TEST_F(QuicStateFunctionsTest, UpdateMinRtt) {
QuicServerConnectionState conn;
// First rtt sample, will be assign to both srtt and mrtt
auto rttSample = 100us;
updateRtt(conn, rttSample, 0us);
EXPECT_EQ(100us, conn.lossState.lrtt);
EXPECT_EQ(conn.lossState.lrtt, conn.lossState.mrtt);
EXPECT_EQ(conn.lossState.lrtt, conn.lossState.srtt);
auto oldMrtt = conn.lossState.mrtt;
// Slower packet
rttSample = 550us;
updateRtt(conn, rttSample, 0us);
EXPECT_EQ(oldMrtt, conn.lossState.mrtt);
// Faster packet
rttSample = 20us;
updateRtt(conn, rttSample, 0us);
EXPECT_EQ(20us, conn.lossState.mrtt);
}
TEST_F(QuicStateFunctionsTest, UpdateMaxAckDelay) {
QuicServerConnectionState conn;
EXPECT_EQ(0us, conn.lossState.maxAckDelay);
auto rttSample = 100us;
// update maxAckDelay
updateRtt(conn, rttSample, 30us);
EXPECT_EQ(30us, conn.lossState.maxAckDelay);
// smaller ackDelay
updateRtt(conn, rttSample, 3us);
EXPECT_EQ(30us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, IsConnectionPaced) {
QuicConnectionStateBase state(QuicNodeType::Client);
EXPECT_FALSE(isConnectionPaced(state));
state.canBePaced = true;
EXPECT_FALSE(isConnectionPaced(state));
state.transportSettings.pacingEnabled = true;
EXPECT_FALSE(isConnectionPaced(state));
auto mockCongestionController = std::make_unique<MockCongestionController>();
auto rawCongestionController = mockCongestionController.get();
state.congestionController = std::move(mockCongestionController);
EXPECT_CALL(*rawCongestionController, canBePaced()).WillOnce(Return(false));
EXPECT_FALSE(isConnectionPaced(state));
EXPECT_CALL(*rawCongestionController, canBePaced()).WillOnce(Return(true));
EXPECT_TRUE(isConnectionPaced(state));
}
TEST_F(QuicStateFunctionsTest, GetOutstandingPackets) {
QuicConnectionStateBase conn(QuicNodeType::Client);
conn.outstandingPackets.emplace_back(
makeTestLongPacket(LongHeader::Types::Initial),
Clock::now(),
135,
false,
false,
0);
conn.outstandingPackets.emplace_back(
makeTestLongPacket(LongHeader::Types::Handshake),
Clock::now(),
1217,
false,
false,
0);
conn.outstandingPackets.emplace_back(
makeTestShortPacket(), Clock::now(), 5556, false, false, 0);
conn.outstandingPackets.emplace_back(
makeTestLongPacket(LongHeader::Types::Initial),
Clock::now(),
56,
false,
false,
0);
conn.outstandingPackets.emplace_back(
makeTestShortPacket(), Clock::now(), 6665, false, false, 0);
EXPECT_EQ(
135,
getFirstOutstandingPacket(conn, PacketNumberSpace::Initial)->encodedSize);
EXPECT_EQ(
56,
getLastOutstandingPacket(conn, PacketNumberSpace::Initial)->encodedSize);
EXPECT_EQ(
1217,
getFirstOutstandingPacket(conn, PacketNumberSpace::Handshake)
->encodedSize);
EXPECT_EQ(
1217,
getFirstOutstandingPacket(conn, PacketNumberSpace::Handshake)
->encodedSize);
EXPECT_EQ(
5556,
getFirstOutstandingPacket(conn, PacketNumberSpace::AppData)->encodedSize);
EXPECT_EQ(
6665,
getLastOutstandingPacket(conn, PacketNumberSpace::AppData)->encodedSize);
}
TEST_F(QuicStateFunctionsTest, UpdateLargestReceivePacketsAtLatCloseSent) {
QuicConnectionStateBase conn(QuicNodeType::Client);
EXPECT_FALSE(conn.ackStates.initialAckState.largestReceivedAtLastCloseSent);
EXPECT_FALSE(conn.ackStates.handshakeAckState.largestReceivedAtLastCloseSent);
EXPECT_FALSE(conn.ackStates.appDataAckState.largestReceivedAtLastCloseSent);
conn.ackStates.initialAckState.largestReceivedPacketNum = 123;
conn.ackStates.handshakeAckState.largestReceivedPacketNum = 654;
conn.ackStates.appDataAckState.largestReceivedPacketNum = 789;
updateLargestReceivedPacketsAtLastCloseSent(conn);
EXPECT_EQ(
123, *conn.ackStates.initialAckState.largestReceivedAtLastCloseSent);
EXPECT_EQ(
654, *conn.ackStates.handshakeAckState.largestReceivedAtLastCloseSent);
EXPECT_EQ(
789, *conn.ackStates.appDataAckState.largestReceivedAtLastCloseSent);
}
TEST_P(QuicStateFunctionsTest, HasReceivedPackets) {
QuicConnectionStateBase conn(QuicNodeType::Server);
EXPECT_FALSE(hasReceivedPackets(conn));
getAckState(conn, GetParam()).largestReceivedPacketNum = 123;
EXPECT_TRUE(hasReceivedPackets(conn));
}
TEST_P(QuicStateFunctionsTest, HasReceivedPacketsAtLastCloseSent) {
QuicConnectionStateBase conn(QuicNodeType::Server);
EXPECT_FALSE(hasReceivedPacketsAtLastCloseSent(conn));
getAckState(conn, GetParam()).largestReceivedAtLastCloseSent = 1;
EXPECT_TRUE(hasReceivedPacketsAtLastCloseSent(conn));
}
TEST_P(QuicStateFunctionsTest, HasNotReceivedNewPacketsSinceLastClose) {
QuicConnectionStateBase conn(QuicNodeType::Server);
EXPECT_TRUE(hasNotReceivedNewPacketsSinceLastCloseSent(conn));
getAckState(conn, GetParam()).largestReceivedPacketNum = 1;
EXPECT_FALSE(hasNotReceivedNewPacketsSinceLastCloseSent(conn));
getAckState(conn, GetParam()).largestReceivedAtLastCloseSent = 1;
EXPECT_TRUE(hasReceivedPacketsAtLastCloseSent(conn));
}
TEST_F(QuicStateFunctionsTest, EarliestLossTimer) {
QuicConnectionStateBase conn(QuicNodeType::Server);
EXPECT_FALSE(earliestLossTimer(conn).first.hasValue());
auto currentTime = Clock::now();
conn.lossState.initialLossTime = currentTime;
EXPECT_EQ(PacketNumberSpace::Initial, earliestLossTimer(conn).second);
EXPECT_EQ(currentTime, earliestLossTimer(conn).first.value());
conn.lossState.appDataLossTime = currentTime - 1s;
EXPECT_EQ(PacketNumberSpace::AppData, earliestLossTimer(conn).second);
EXPECT_EQ(currentTime - 1s, earliestLossTimer(conn).first.value());
conn.lossState.handshakeLossTime = currentTime + 1s;
EXPECT_EQ(PacketNumberSpace::AppData, earliestLossTimer(conn).second);
EXPECT_EQ(currentTime - 1s, earliestLossTimer(conn).first.value());
conn.lossState.appDataLossTime= currentTime + 1s;
EXPECT_EQ(PacketNumberSpace::Initial, earliestLossTimer(conn).second);
EXPECT_EQ(currentTime, earliestLossTimer(conn).first.value());
}
INSTANTIATE_TEST_CASE_P(
QuicStateFunctionsTests,
QuicStateFunctionsTest,
Values(
PacketNumberSpace::Initial,
PacketNumberSpace::Handshake,
PacketNumberSpace::AppData));
} // namespace test
} // namespace quic