1
0
mirror of https://github.com/facebookincubator/mvfst.git synced 2025-11-24 04:01:07 +03:00
Files
mvfst/quic/common/test/TestUtils.cpp
Yang Chi 405dde4fde Handling Acks in descending order of the packet number
Summary:
We erase packets from outstandingPackets list during ack handling.
Currently we handle acks in ascending order of the acked packet number, then
erase() the acked packet. Each erase() call only erase one packet, and it can
potentally make std::deque to move a few elements following the erased one.

This diff changes it to handle acks in descending order, and also erase acked
packets in continuous groups. This reduces erase() calls, and also reduces the
possibility that std::deque needs to move following elements in the erase().

Reviewed By: mjoras

Differential Revision: D17579683

fbshipit-source-id: 8bc11f6a7875beb70dc46c497857ab694df7b6a5
2019-10-07 16:44:43 -07:00

664 lines
21 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*
*/
#include <quic/common/test/TestUtils.h>
#include <fizz/crypto/test/TestUtil.h>
#include <fizz/protocol/clock/test/Mocks.h>
#include <fizz/protocol/test/Mocks.h>
#include <quic/api/QuicTransportFunctions.h>
#include <quic/codec/DefaultConnectionIdAlgo.h>
#include <quic/handshake/QuicFizzFactory.h>
#include <quic/handshake/test/Mocks.h>
#include <quic/server/handshake/StatelessResetGenerator.h>
namespace quic {
namespace test {
std::function<MockClock::time_point()> MockClock::mockNow;
const RegularQuicWritePacket& writeQuicPacket(
QuicServerConnectionState& conn,
ConnectionId srcConnId,
ConnectionId dstConnId,
folly::test::MockAsyncUDPSocket& sock,
QuicStreamState& stream,
const folly::IOBuf& data,
bool eof) {
auto version = conn.version.value_or(*conn.originalVersion);
auto aead = createNoOpAead();
auto headerCipher = createNoOpHeaderCipher();
writeDataToQuicStream(stream, data.clone(), eof);
writeQuicDataToSocket(
sock,
conn,
srcConnId,
dstConnId,
*aead,
*headerCipher,
version,
conn.transportSettings.writeConnectionDataPacketsLimit);
CHECK(
conn.outstandingPackets.rend() !=
getLastOutstandingPacket(conn, PacketNumberSpace::AppData));
return getLastOutstandingPacket(conn, PacketNumberSpace::AppData)->packet;
}
PacketNum rstStreamAndSendPacket(
QuicServerConnectionState& conn,
folly::AsyncUDPSocket& sock,
QuicStreamState& stream,
ApplicationErrorCode errorCode) {
auto aead = createNoOpAead();
auto headerCipher = createNoOpHeaderCipher();
auto version = conn.version.value_or(*conn.originalVersion);
invokeStreamSendStateMachine(
conn, stream, StreamEvents::SendReset(errorCode));
writeQuicDataToSocket(
sock,
conn,
*conn.clientConnectionId,
*conn.serverConnectionId,
*aead,
*headerCipher,
version,
conn.transportSettings.writeConnectionDataPacketsLimit);
for (const auto& packet : conn.outstandingPackets) {
for (const auto& frame : all_frames<RstStreamFrame>(packet.packet.frames)) {
if (frame.streamId == stream.id) {
return packet.packet.header.getPacketSequenceNum();
}
}
}
CHECK(false) << "no packet with reset stream";
// some compilers are weird.
return 0;
}
RegularQuicPacketBuilder::Packet createAckPacket(
QuicConnectionStateBase& dstConn,
PacketNum pn,
IntervalSet<PacketNum>& acks,
PacketNumberSpace pnSpace,
const Aead* aead) {
// This function sends ACK to dstConn
auto srcConnId =
(dstConn.nodeType == QuicNodeType::Client ? *dstConn.serverConnectionId
: *dstConn.clientConnectionId);
auto dstConnId =
(dstConn.nodeType == QuicNodeType::Client ? *dstConn.clientConnectionId
: *dstConn.serverConnectionId);
folly::Optional<PacketHeader> header;
if (pnSpace == PacketNumberSpace::Initial) {
header = LongHeader(
LongHeader::Types::Initial,
srcConnId,
dstConnId,
pn,
QuicVersion::MVFST);
} else if (pnSpace == PacketNumberSpace::Handshake) {
header = LongHeader(
LongHeader::Types::Handshake,
srcConnId,
dstConnId,
pn,
QuicVersion::MVFST);
} else {
header = ShortHeader(ProtectionType::KeyPhaseZero, dstConnId, pn);
}
RegularQuicPacketBuilder builder(
dstConn.udpSendPacketLen,
std::move(*header),
getAckState(dstConn, pnSpace).largestAckedByPeer);
if (aead) {
builder.setCipherOverhead(aead->getCipherOverhead());
}
DCHECK(builder.canBuildPacket());
AckFrameMetaData ackData(
acks, 0us, dstConn.transportSettings.ackDelayExponent);
writeAckFrame(ackData, builder);
return std::move(builder).buildPacket();
}
std::shared_ptr<fizz::SelfCert> readCert() {
auto certificate = fizz::test::getCert(fizz::test::kP256Certificate);
auto privKey = fizz::test::getPrivateKey(fizz::test::kP256Key);
std::vector<folly::ssl::X509UniquePtr> certs;
certs.emplace_back(std::move(certificate));
return std::make_shared<fizz::SelfCertImpl<fizz::KeyType::P256>>(
std::move(privKey), std::move(certs));
}
std::shared_ptr<fizz::server::FizzServerContext> createServerCtx() {
auto cert = readCert();
auto certManager = std::make_unique<fizz::server::CertManager>();
certManager->addCert(std::move(cert), true);
auto serverCtx = std::make_shared<fizz::server::FizzServerContext>();
serverCtx->setFactory(std::make_shared<QuicFizzFactory>());
serverCtx->setCertManager(std::move(certManager));
serverCtx->setOmitEarlyRecordLayer(true);
serverCtx->setClock(std::make_shared<fizz::test::MockClock>());
return serverCtx;
}
class AcceptingTicketCipher : public fizz::server::TicketCipher {
public:
~AcceptingTicketCipher() override = default;
folly::Future<folly::Optional<
std::pair<std::unique_ptr<folly::IOBuf>, std::chrono::seconds>>>
encrypt(fizz::server::ResumptionState) const override {
// Fake handshake, no need todo anything here.
return std::make_pair(folly::IOBuf::create(0), 2s);
}
void setPsk(const QuicCachedPsk& cachedPsk) {
cachedPsk_ = cachedPsk;
}
fizz::server::ResumptionState createResumptionState() const {
fizz::server::ResumptionState resState;
resState.version = cachedPsk_.cachedPsk.version;
resState.cipher = cachedPsk_.cachedPsk.cipher;
resState.resumptionSecret =
folly::IOBuf::copyBuffer(cachedPsk_.cachedPsk.secret);
resState.serverCert = cachedPsk_.cachedPsk.serverCert;
resState.alpn = cachedPsk_.cachedPsk.alpn;
resState.ticketAgeAdd = 0;
resState.ticketIssueTime = std::chrono::system_clock::time_point();
resState.handshakeTime = std::chrono::system_clock::time_point();
auto version = cachedPsk_.transportParams.negotiatedVersion;
AppToken appToken;
appToken.transportParams = createTicketTransportParameters(
kDefaultIdleTimeout.count(),
kDefaultUDPReadBufferSize,
kDefaultConnectionWindowSize,
kDefaultStreamWindowSize,
kDefaultStreamWindowSize,
kDefaultStreamWindowSize,
std::numeric_limits<uint32_t>::max(),
std::numeric_limits<uint32_t>::max());
appToken.version = version;
resState.appToken = encodeAppToken(appToken);
return resState;
}
folly::Future<
std::pair<fizz::PskType, folly::Optional<fizz::server::ResumptionState>>>
decrypt(
std::unique_ptr<folly::IOBuf>,
const fizz::server::State* /*state*/ = nullptr) const override {
return std::make_pair(fizz::PskType::Resumption, createResumptionState());
}
private:
QuicCachedPsk cachedPsk_;
};
void setupZeroRttOnServerCtx(
fizz::server::FizzServerContext& serverCtx,
const QuicCachedPsk& cachedPsk) {
serverCtx.setEarlyDataSettings(
true,
fizz::server::ClockSkewTolerance{-100000ms, 100000ms},
std::make_shared<fizz::server::AllowAllReplayReplayCache>());
auto ticketCipher = std::make_shared<AcceptingTicketCipher>();
ticketCipher->setPsk(cachedPsk);
serverCtx.setTicketCipher(ticketCipher);
}
QuicCachedPsk setupZeroRttOnClientCtx(
fizz::client::FizzClientContext& clientCtx,
std::string hostname,
QuicVersion version) {
clientCtx.setSendEarlyData(true);
QuicCachedPsk quicCachedPsk;
auto& psk = quicCachedPsk.cachedPsk;
psk.psk = std::string("psk");
psk.secret = std::string("secret");
psk.type = fizz::PskType::Resumption;
psk.version = clientCtx.getSupportedVersions()[0];
psk.cipher = clientCtx.getSupportedCiphers()[0];
psk.group = clientCtx.getSupportedGroups()[0];
auto mockCert = std::make_shared<fizz::test::MockCert>();
ON_CALL(*mockCert, getIdentity()).WillByDefault(Return(hostname));
psk.serverCert = mockCert;
psk.alpn = clientCtx.getSupportedAlpns()[0];
psk.ticketAgeAdd = 1;
psk.ticketIssueTime = std::chrono::system_clock::time_point();
psk.ticketExpirationTime =
std::chrono::system_clock::time_point(std::chrono::minutes(100));
psk.ticketHandshakeTime = std::chrono::system_clock::time_point();
psk.maxEarlyDataSize = 2;
quicCachedPsk.transportParams.negotiatedVersion = version;
quicCachedPsk.transportParams.idleTimeout = kDefaultIdleTimeout.count();
quicCachedPsk.transportParams.maxRecvPacketSize = kDefaultUDPReadBufferSize;
quicCachedPsk.transportParams.initialMaxData = kDefaultConnectionWindowSize;
quicCachedPsk.transportParams.initialMaxStreamDataBidiLocal =
kDefaultStreamWindowSize;
quicCachedPsk.transportParams.initialMaxStreamDataBidiRemote =
kDefaultStreamWindowSize;
quicCachedPsk.transportParams.initialMaxStreamDataUni =
kDefaultStreamWindowSize;
quicCachedPsk.transportParams.initialMaxStreamsBidi =
std::numeric_limits<uint32_t>::max();
quicCachedPsk.transportParams.initialMaxStreamsUni =
std::numeric_limits<uint32_t>::max();
return quicCachedPsk;
}
void setupCtxWithTestCert(fizz::server::FizzServerContext& ctx) {
auto cert = readCert();
auto certManager = std::make_unique<fizz::server::CertManager>();
certManager->addCert(std::move(cert), true);
ctx.setCertManager(std::move(certManager));
}
template <class T>
std::unique_ptr<T> createNoOpAeadImpl() {
// Fake that the handshake has already occured
auto aead = std::make_unique<NiceMock<T>>();
ON_CALL(*aead, _encrypt(_, _, _))
.WillByDefault(Invoke([&](auto& buf, auto, auto) {
if (buf) {
return buf->clone();
} else {
return folly::IOBuf::create(0);
}
}));
// Fake that the handshake has already occured and fix the keys.
ON_CALL(*aead, _decrypt(_, _, _))
.WillByDefault(
Invoke([&](auto& buf, auto, auto) { return buf->clone(); }));
ON_CALL(*aead, _tryDecrypt(_, _, _))
.WillByDefault(
Invoke([&](auto& buf, auto, auto) { return buf->clone(); }));
ON_CALL(*aead, getCipherOverhead()).WillByDefault(Return(0));
return aead;
}
std::unique_ptr<MockAead> createNoOpAead() {
return createNoOpAeadImpl<MockAead>();
}
std::unique_ptr<PacketNumberCipher> createNoOpHeaderCipher() {
auto headerCipher = std::make_unique<NiceMock<MockPacketNumberCipher>>();
ON_CALL(*headerCipher, mask(_)).WillByDefault(Return(HeaderProtectionMask{}));
ON_CALL(*headerCipher, keyLength()).WillByDefault(Return(16));
return headerCipher;
}
RegularQuicPacketBuilder::Packet createStreamPacket(
ConnectionId srcConnId,
ConnectionId dstConnId,
PacketNum packetNum,
StreamId streamId,
folly::IOBuf& data,
uint8_t cipherOverhead,
PacketNum largestAcked,
folly::Optional<std::pair<LongHeader::Types, QuicVersion>>
longHeaderOverride,
bool eof,
folly::Optional<ProtectionType> shortHeaderOverride,
uint64_t offset,
uint64_t packetSizeLimit) {
std::unique_ptr<RegularQuicPacketBuilder> builder;
if (longHeaderOverride) {
LongHeader header(
longHeaderOverride->first,
srcConnId,
dstConnId,
packetNum,
longHeaderOverride->second);
builder.reset(new RegularQuicPacketBuilder(
packetSizeLimit, std::move(header), largestAcked));
} else {
ProtectionType protectionType = ProtectionType::KeyPhaseZero;
if (shortHeaderOverride) {
protectionType = *shortHeaderOverride;
}
ShortHeader header(protectionType, dstConnId, packetNum);
builder.reset(new RegularQuicPacketBuilder(
packetSizeLimit, std::move(header), largestAcked));
}
builder->setCipherOverhead(cipherOverhead);
writeStreamFrameHeader(
*builder,
streamId,
offset,
data.computeChainDataLength(),
data.computeChainDataLength(),
eof);
writeStreamFrameData(*builder, data.clone(), data.computeChainDataLength());
return std::move(*builder).buildPacket();
}
RegularQuicPacketBuilder::Packet createInitialCryptoPacket(
ConnectionId srcConnId,
ConnectionId dstConnId,
PacketNum packetNum,
QuicVersion version,
folly::IOBuf& data,
const Aead& aead,
PacketNum largestAcked,
uint64_t offset) {
LongHeader header(
LongHeader::Types::Initial, srcConnId, dstConnId, packetNum, version);
RegularQuicPacketBuilder builder(
kDefaultUDPSendPacketLen, std::move(header), largestAcked);
builder.setCipherOverhead(aead.getCipherOverhead());
writeCryptoFrame(offset, data.clone(), builder);
return std::move(builder).buildPacket();
}
RegularQuicPacketBuilder::Packet createCryptoPacket(
ConnectionId srcConnId,
ConnectionId dstConnId,
PacketNum packetNum,
QuicVersion version,
ProtectionType protectionType,
folly::IOBuf& data,
const Aead& aead,
PacketNum largestAcked,
uint64_t offset,
uint64_t packetSizeLimit) {
folly::Optional<PacketHeader> header;
switch (protectionType) {
case ProtectionType::Initial:
header = LongHeader(
LongHeader::Types::Initial, srcConnId, dstConnId, packetNum, version);
break;
case ProtectionType::Handshake:
header = LongHeader(
LongHeader::Types::Handshake,
srcConnId,
dstConnId,
packetNum,
version);
break;
case ProtectionType::ZeroRtt:
header = LongHeader(
LongHeader::Types::ZeroRtt, srcConnId, dstConnId, packetNum, version);
break;
case ProtectionType::KeyPhaseOne:
case ProtectionType::KeyPhaseZero:
header = ShortHeader(protectionType, dstConnId, packetNum);
break;
}
RegularQuicPacketBuilder builder(
packetSizeLimit, std::move(*header), largestAcked);
builder.setCipherOverhead(aead.getCipherOverhead());
writeCryptoFrame(offset, data.clone(), builder);
return std::move(builder).buildPacket();
}
Buf packetToBuf(const RegularQuicPacketBuilder::Packet& packet) {
auto packetBuf = packet.header->clone();
if (packet.body) {
packetBuf->prependChain(packet.body->clone());
}
return packetBuf;
}
Buf packetToBufCleartext(
const RegularQuicPacketBuilder::Packet& packet,
const Aead& cleartextCipher,
const PacketNumberCipher& headerCipher,
PacketNum packetNum) {
VLOG(10) << __func__ << " packet header: "
<< folly::hexlify(packet.header->clone()->moveToFbString());
auto packetBuf = packet.header->clone();
Buf body;
if (packet.body) {
body = packet.body->clone();
}
auto headerForm = packet.packet.header.getHeaderForm();
auto encryptedBody =
cleartextCipher.encrypt(std::move(body), packet.header.get(), packetNum);
encryptPacketHeader(headerForm, *packet.header, *encryptedBody, headerCipher);
packetBuf->prependChain(std::move(encryptedBody));
return packetBuf;
}
uint64_t computeExpectedDelay(
std::chrono::microseconds ackDelay,
uint8_t ackDelayExponent) {
uint64_t divide = uint64_t(ackDelay.count()) >> ackDelayExponent;
return divide << ackDelayExponent;
}
ConnectionId getTestConnectionId(uint16_t hostId) {
ServerConnectionIdParams params(hostId, 0, 0);
DefaultConnectionIdAlgo connIdAlgo;
auto connId = connIdAlgo.encodeConnectionId(params);
connId.data()[3] = 3;
connId.data()[4] = 4;
connId.data()[5] = 5;
connId.data()[6] = 6;
connId.data()[7] = 7;
return connId;
}
class TestCertificateVerifier : public fizz::CertificateVerifier {
public:
~TestCertificateVerifier() override = default;
void verify(const std::vector<std::shared_ptr<const fizz::PeerCert>>&)
const override {
return;
}
std::vector<fizz::Extension> getCertificateRequestExtensions()
const override {
return std::vector<fizz::Extension>();
}
};
std::unique_ptr<fizz::CertificateVerifier> createTestCertificateVerifier() {
return std::make_unique<TestCertificateVerifier>();
}
ProtectionType encryptionLevelToProtectionType(
fizz::EncryptionLevel encryptionLevel) {
switch (encryptionLevel) {
case fizz::EncryptionLevel::Plaintext:
return ProtectionType::Initial;
case fizz::EncryptionLevel::Handshake:
// TODO: change this in draft-14
return ProtectionType::Initial;
case fizz::EncryptionLevel::EarlyData:
return ProtectionType::ZeroRtt;
case fizz::EncryptionLevel::AppTraffic:
return ProtectionType::KeyPhaseZero;
}
folly::assume_unreachable();
}
void updateAckState(
QuicConnectionStateBase& conn,
PacketNumberSpace pnSpace,
PacketNum packetNum,
bool pkHasRetransmittableData,
bool pkHasCryptoData,
TimePoint receivedTime) {
bool outOfOrder = updateLargestReceivedPacketNum(
getAckState(conn, pnSpace), packetNum, receivedTime);
updateAckSendStateOnRecvPacket(
conn,
getAckState(conn, pnSpace),
outOfOrder,
pkHasRetransmittableData,
pkHasCryptoData);
}
std::unique_ptr<folly::IOBuf> buildRandomInputData(size_t length) {
auto buf = folly::IOBuf::create(length);
buf->append(length);
folly::Random::secureRandom(buf->writableData(), buf->length());
return buf;
}
void addAckStatesWithCurrentTimestamps(
AckState& ackState,
PacketNum start,
PacketNum end) {
ackState.acks.insert(start, end);
ackState.largestRecvdPacketTime = Clock::now();
}
OutstandingPacket makeTestingWritePacket(
PacketNum desiredPacketSeqNum,
size_t desiredSize,
uint64_t totalBytesSent,
bool pureAck,
TimePoint sentTime) {
LongHeader longHeader(
LongHeader::Types::ZeroRtt,
getTestConnectionId(1),
getTestConnectionId(),
desiredPacketSeqNum,
QuicVersion::MVFST);
RegularQuicWritePacket packet(std::move(longHeader));
return OutstandingPacket(
packet, sentTime, desiredSize, false, pureAck, totalBytesSent);
}
CongestionController::AckEvent makeAck(
PacketNum seq,
uint64_t ackedSize,
TimePoint ackedTime,
TimePoint sentTime) {
CHECK(sentTime < ackedTime);
RegularQuicWritePacket packet(
ShortHeader(ProtectionType::KeyPhaseZero, getTestConnectionId(), seq));
CongestionController::AckEvent ack;
ack.ackedBytes = ackedSize;
ack.ackTime = ackedTime;
ack.largestAckedPacket = seq;
ack.ackedPackets.emplace_back(
std::move(packet), sentTime, ackedSize, false, false, ackedSize);
return ack;
}
folly::IOBufQueue bufToQueue(Buf buf) {
folly::IOBufQueue queue{folly::IOBufQueue::cacheChainLength()};
buf->coalesce();
queue.append(std::move(buf));
return queue;
}
StatelessResetToken generateStatelessResetToken() {
StatelessResetSecret secret;
folly::Random::secureRandom(secret.data(), secret.size());
folly::SocketAddress address("1.2.3.4", 8080);
StatelessResetGenerator generator(secret, address.getFullyQualified());
return generator.generateToken(ConnectionId({0x14, 0x35, 0x22, 0x11}));
}
std::array<uint8_t, kStatelessResetTokenSecretLength> getRandSecret() {
std::array<uint8_t, kStatelessResetTokenSecretLength> secret;
folly::Random::secureRandom(secret.data(), secret.size());
return secret;
}
RegularQuicWritePacket createNewPacket(
PacketNum packetNum,
PacketNumberSpace pnSpace) {
switch (pnSpace) {
case PacketNumberSpace::Initial:
return RegularQuicWritePacket(LongHeader(
LongHeader::Types::Initial,
getTestConnectionId(1),
getTestConnectionId(2),
packetNum,
QuicVersion::QUIC_DRAFT));
case PacketNumberSpace::Handshake:
return RegularQuicWritePacket(LongHeader(
LongHeader::Types::Handshake,
getTestConnectionId(0),
getTestConnectionId(4),
packetNum,
QuicVersion::QUIC_DRAFT));
case PacketNumberSpace::AppData:
return RegularQuicWritePacket(ShortHeader(
ProtectionType::KeyPhaseOne, getTestConnectionId(), packetNum));
}
folly::assume_unreachable();
}
std::vector<QuicVersion> versionList(
std::initializer_list<QuicVersionType> types) {
std::vector<QuicVersion> versions;
for (auto type : types) {
versions.push_back(static_cast<QuicVersion>(type));
}
return versions;
}
RegularQuicWritePacket createRegularQuicWritePacket(
StreamId streamId,
uint64_t offset,
uint64_t len,
bool fin) {
auto regularWritePacket = createNewPacket(10, PacketNumberSpace::Initial);
WriteStreamFrame frame(streamId, offset, len, fin);
regularWritePacket.frames.emplace_back(frame);
return regularWritePacket;
}
VersionNegotiationPacket createVersionNegotiationPacket() {
auto versions = {QuicVersion::VERSION_NEGOTIATION, QuicVersion::MVFST};
auto packet = VersionNegotiationPacketBuilder(
getTestConnectionId(0), getTestConnectionId(1), versions)
.buildPacket()
.first;
return packet;
}
RegularQuicWritePacket createPacketWithAckFrames() {
RegularQuicWritePacket packet =
createNewPacket(100, PacketNumberSpace::Initial);
WriteAckFrame ackFrame;
ackFrame.ackDelay = 111us;
ackFrame.ackBlocks.insert(900, 1000);
ackFrame.ackBlocks.insert(500, 700);
packet.frames.emplace_back(std::move(ackFrame));
return packet;
}
RegularQuicWritePacket createPacketWithPaddingFrames() {
RegularQuicWritePacket packet =
createNewPacket(100, PacketNumberSpace::Initial);
for (int i = 0; i < 20; ++i) {
PaddingFrame paddingFrame;
packet.frames.emplace_back(paddingFrame);
}
return packet;
}
std::vector<int> getQLogEventIndices(
QLogEventType type,
const std::shared_ptr<FileQLogger>& q) {
std::vector<int> indices;
for (uint64_t i = 0; i < q->logs.size(); ++i) {
if (q->logs[i]->eventType == type) {
indices.push_back(i);
}
}
return indices;
}
} // namespace test
} // namespace quic