1
0
mirror of https://github.com/facebookincubator/mvfst.git synced 2025-11-09 10:00:57 +03:00
Files
mvfst/quic/state/QuicStateFunctions.cpp
Sharad Jaiswal (Eng) 328c78d0e2 Add received packets timestamps to AckState
Summary:
Store timestamps/packet numbers of recently received packets in AckState.

 - The maximum number of packets stored is controlled by kMaxReceivedPktsTimestampsStored.
- The packet number of entries in the deque is guarenteed to increase
   monotonically because an entry is only added for a received packet
  if the packet number is greater than the packet number of the last
  element in the deque (e.g., entries are not added for packets that
  arrive out of order relative to previously received packets).

Reviewed By: bschlinker

Differential Revision: D37799023

fbshipit-source-id: 3b6bf2ba8ea15219a87bbdc2724fe23eebe66b70
2022-11-15 20:14:57 -08:00

370 lines
14 KiB
C++

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <quic/state/QuicStateFunctions.h>
#include <quic/state/QuicStreamFunctions.h>
#include <quic/common/TimeUtil.h>
namespace {
std::deque<quic::OutstandingPacket>::reverse_iterator
getPreviousOutstandingPacket(
quic::QuicConnectionStateBase& conn,
quic::PacketNumberSpace packetNumberSpace,
std::deque<quic::OutstandingPacket>::reverse_iterator from) {
return std::find_if(
from, conn.outstandings.packets.rend(), [=](const auto& op) {
return !op.declaredLost &&
packetNumberSpace == op.packet.header.getPacketNumberSpace();
});
}
std::deque<quic::OutstandingPacket>::reverse_iterator
getPreviousOutstandingPacketIncludingLost(
quic::QuicConnectionStateBase& conn,
quic::PacketNumberSpace packetNumberSpace,
std::deque<quic::OutstandingPacket>::reverse_iterator from) {
return std::find_if(
from, conn.outstandings.packets.rend(), [=](const auto& op) {
return packetNumberSpace == op.packet.header.getPacketNumberSpace();
});
}
} // namespace
namespace quic {
void updateRtt(
QuicConnectionStateBase& conn,
const std::chrono::microseconds rttSample,
const std::chrono::microseconds ackDelay) {
// update mrtt
//
// mrtt ignores ack delay. This is the same in the current recovery draft
// section A.6.
conn.lossState.mrtt = timeMin(conn.lossState.mrtt, rttSample);
// update mrttNoAckDelay
//
// keep a version of mrtt formed from rtt samples with ACK delay removed
if (rttSample >= ackDelay) {
const auto rttSampleNoAckDelay =
std::chrono::ceil<std::chrono::microseconds>(rttSample - ackDelay);
conn.lossState.maybeMrttNoAckDelay = (conn.lossState.maybeMrttNoAckDelay)
? std::min(*conn.lossState.maybeMrttNoAckDelay, rttSampleNoAckDelay)
: rttSampleNoAckDelay;
}
// update lrtt and lrttAckDelay
conn.lossState.lrtt = rttSample;
conn.lossState.maybeLrtt = rttSample;
conn.lossState.maybeLrttAckDelay = ackDelay;
// update maxAckDelay
conn.lossState.maxAckDelay = timeMax(conn.lossState.maxAckDelay, ackDelay);
// determine the adjusted RTT sample we will use for srtt calculations
//
// do NOT subtract the acknowledgment delay from the RTT sample if the
// resulting value is smaller than the min_rtt; this limits underestimation
// of the smoothed_rtt due to a misreporting peer.
//
// if this is the first RTT sample, then it is also the minRTT and ACK delay
// will not be subtracted
const auto adjustedRtt =
((rttSample > ackDelay) && (rttSample > conn.lossState.mrtt + ackDelay))
? rttSample - ackDelay
: rttSample;
if (conn.lossState.srtt == 0us) {
conn.lossState.srtt = adjustedRtt;
conn.lossState.rttvar = adjustedRtt / 2;
} else {
conn.lossState.rttvar = conn.lossState.rttvar * (kRttBeta - 1) / kRttBeta +
(conn.lossState.srtt > adjustedRtt
? conn.lossState.srtt - adjustedRtt
: adjustedRtt - conn.lossState.srtt) /
kRttBeta;
conn.lossState.srtt = conn.lossState.srtt * (kRttAlpha - 1) / kRttAlpha +
adjustedRtt / kRttAlpha;
}
// inform qlog
if (conn.qLogger) {
conn.qLogger->addMetricUpdate(
rttSample, conn.lossState.mrtt, conn.lossState.srtt, ackDelay);
}
}
void updateAckSendStateOnRecvPacket(
QuicConnectionStateBase& conn,
AckState& ackState,
uint64_t distanceFromExpectedPacketNum,
bool pktHasRetransmittableData,
bool pktHasCryptoData,
bool initPktNumSpace) {
DCHECK(!pktHasCryptoData || pktHasRetransmittableData);
auto thresh = kNonRtxRxPacketsPendingBeforeAck;
if (pktHasRetransmittableData || ackState.numRxPacketsRecvd) {
if (ackState.tolerance.hasValue()) {
thresh = ackState.tolerance.value();
} else {
thresh = ackState.largestRecvdPacketNum.value_or(0) >
conn.transportSettings.rxPacketsBeforeAckInitThreshold
? conn.transportSettings.rxPacketsBeforeAckAfterInit
: conn.transportSettings.rxPacketsBeforeAckBeforeInit;
}
}
bool exceedsReorderThreshold =
distanceFromExpectedPacketNum > ackState.reorderThreshold;
if (pktHasRetransmittableData) {
bool skipCryptoAck =
conn.nodeType == QuicNodeType::Server && initPktNumSpace;
if ((pktHasCryptoData && !skipCryptoAck) || exceedsReorderThreshold ||
++ackState.numRxPacketsRecvd + ackState.numNonRxPacketsRecvd >=
thresh) {
VLOG(10) << conn
<< " ack immediately because packet threshold pktHasCryptoData="
<< pktHasCryptoData << " pktHasRetransmittableData="
<< static_cast<int>(pktHasRetransmittableData)
<< " numRxPacketsRecvd="
<< static_cast<int>(ackState.numRxPacketsRecvd)
<< " numNonRxPacketsRecvd="
<< static_cast<int>(ackState.numNonRxPacketsRecvd);
conn.pendingEvents.scheduleAckTimeout = false;
ackState.needsToSendAckImmediately = true;
} else if (!ackState.needsToSendAckImmediately) {
VLOG(10) << conn << " scheduling ack timeout pktHasCryptoData="
<< pktHasCryptoData << " pktHasRetransmittableData="
<< static_cast<int>(pktHasRetransmittableData)
<< " numRxPacketsRecvd="
<< static_cast<int>(ackState.numRxPacketsRecvd)
<< " numNonRxPacketsRecvd="
<< static_cast<int>(ackState.numNonRxPacketsRecvd);
conn.pendingEvents.scheduleAckTimeout = true;
}
} else if (
++ackState.numNonRxPacketsRecvd + ackState.numRxPacketsRecvd >= thresh) {
VLOG(10)
<< conn
<< " ack immediately because exceeds nonrx threshold numNonRxPacketsRecvd="
<< static_cast<int>(ackState.numNonRxPacketsRecvd)
<< " numRxPacketsRecvd="
<< static_cast<int>(ackState.numRxPacketsRecvd);
conn.pendingEvents.scheduleAckTimeout = false;
ackState.needsToSendAckImmediately = true;
}
if (ackState.needsToSendAckImmediately) {
ackState.numRxPacketsRecvd = 0;
ackState.numNonRxPacketsRecvd = 0;
}
}
void updateAckStateOnAckTimeout(QuicConnectionStateBase& conn) {
VLOG(10) << conn << " ack immediately due to ack timeout";
conn.ackStates.appDataAckState.needsToSendAckImmediately = true;
conn.ackStates.appDataAckState.numRxPacketsRecvd = 0;
conn.ackStates.appDataAckState.numNonRxPacketsRecvd = 0;
conn.pendingEvents.scheduleAckTimeout = false;
}
void updateAckSendStateOnSentPacketWithAcks(
QuicConnectionStateBase& conn,
AckState& ackState,
PacketNum largestAckScheduled) {
VLOG(10) << conn << " unset ack immediately due to sending packet with acks";
conn.pendingEvents.scheduleAckTimeout = false;
ackState.needsToSendAckImmediately = false;
// When we send an ack we're most likely going to ack the largest received
// packet, so reset the counters for numRxPacketsRecvd and
// numNonRxPacketsRecvd. Since our ack threshold is quite small, we make the
// critical assumtion here that that all the needed acks can fit into one
// packet if needed. If this is not the case, then some packets may not get
// acked as a result and the receiver might retransmit them.
ackState.numRxPacketsRecvd = 0;
ackState.numNonRxPacketsRecvd = 0;
ackState.largestAckScheduled = largestAckScheduled;
}
bool isConnectionPaced(const QuicConnectionStateBase& conn) noexcept {
return (
conn.transportSettings.pacingEnabled && conn.canBePaced && conn.pacer);
}
AckState& getAckState(
QuicConnectionStateBase& conn,
PacketNumberSpace pnSpace) noexcept {
switch (pnSpace) {
case PacketNumberSpace::Initial:
return conn.ackStates.initialAckState;
case PacketNumberSpace::Handshake:
return conn.ackStates.handshakeAckState;
case PacketNumberSpace::AppData:
return conn.ackStates.appDataAckState;
}
folly::assume_unreachable();
}
const AckState& getAckState(
const QuicConnectionStateBase& conn,
PacketNumberSpace pnSpace) noexcept {
switch (pnSpace) {
case PacketNumberSpace::Initial:
return conn.ackStates.initialAckState;
case PacketNumberSpace::Handshake:
return conn.ackStates.handshakeAckState;
case PacketNumberSpace::AppData:
return conn.ackStates.appDataAckState;
}
folly::assume_unreachable();
}
AckStateVersion currentAckStateVersion(
const QuicConnectionStateBase& conn) noexcept {
return AckStateVersion(
conn.ackStates.initialAckState.acks.insertVersion(),
conn.ackStates.handshakeAckState.acks.insertVersion(),
conn.ackStates.appDataAckState.acks.insertVersion());
}
PacketNum getNextPacketNum(
const QuicConnectionStateBase& conn,
PacketNumberSpace pnSpace) noexcept {
return getAckState(conn, pnSpace).nextPacketNum;
}
void increaseNextPacketNum(
QuicConnectionStateBase& conn,
PacketNumberSpace pnSpace) noexcept {
getAckState(conn, pnSpace).nextPacketNum++;
if (getAckState(conn, pnSpace).nextPacketNum == kMaxPacketNumber - 1) {
conn.pendingEvents.closeTransport = true;
}
}
std::deque<OutstandingPacket>::iterator getFirstOutstandingPacket(
QuicConnectionStateBase& conn,
PacketNumberSpace packetNumberSpace) {
return getNextOutstandingPacket(
conn, packetNumberSpace, conn.outstandings.packets.begin());
}
std::deque<OutstandingPacket>::reverse_iterator getLastOutstandingPacket(
QuicConnectionStateBase& conn,
PacketNumberSpace packetNumberSpace) {
return getPreviousOutstandingPacket(
conn, packetNumberSpace, conn.outstandings.packets.rbegin());
}
std::deque<OutstandingPacket>::reverse_iterator
getLastOutstandingPacketIncludingLost(
QuicConnectionStateBase& conn,
PacketNumberSpace packetNumberSpace) {
return getPreviousOutstandingPacketIncludingLost(
conn, packetNumberSpace, conn.outstandings.packets.rbegin());
}
std::deque<OutstandingPacket>::iterator getNextOutstandingPacket(
QuicConnectionStateBase& conn,
PacketNumberSpace packetNumberSpace,
std::deque<OutstandingPacket>::iterator from) {
return std::find_if(
from, conn.outstandings.packets.end(), [=](const auto& op) {
return !op.declaredLost &&
packetNumberSpace == op.packet.header.getPacketNumberSpace();
});
}
bool hasReceivedPacketsAtLastCloseSent(
const QuicConnectionStateBase& conn) noexcept {
return conn.ackStates.initialAckState.largestReceivedAtLastCloseSent ||
conn.ackStates.handshakeAckState.largestReceivedAtLastCloseSent ||
conn.ackStates.appDataAckState.largestReceivedAtLastCloseSent;
}
bool hasNotReceivedNewPacketsSinceLastCloseSent(
const QuicConnectionStateBase& conn) noexcept {
DCHECK(
!conn.ackStates.initialAckState.largestReceivedAtLastCloseSent ||
*conn.ackStates.initialAckState.largestReceivedAtLastCloseSent <=
*conn.ackStates.initialAckState.largestRecvdPacketNum);
DCHECK(
!conn.ackStates.handshakeAckState.largestReceivedAtLastCloseSent ||
*conn.ackStates.handshakeAckState.largestReceivedAtLastCloseSent <=
*conn.ackStates.handshakeAckState.largestRecvdPacketNum);
DCHECK(
!conn.ackStates.appDataAckState.largestReceivedAtLastCloseSent ||
*conn.ackStates.appDataAckState.largestReceivedAtLastCloseSent <=
*conn.ackStates.appDataAckState.largestRecvdPacketNum);
return conn.ackStates.initialAckState.largestReceivedAtLastCloseSent ==
conn.ackStates.initialAckState.largestRecvdPacketNum &&
conn.ackStates.handshakeAckState.largestReceivedAtLastCloseSent ==
conn.ackStates.handshakeAckState.largestRecvdPacketNum &&
conn.ackStates.appDataAckState.largestReceivedAtLastCloseSent ==
conn.ackStates.appDataAckState.largestRecvdPacketNum;
}
void updateLargestReceivedPacketsAtLastCloseSent(
QuicConnectionStateBase& conn) noexcept {
conn.ackStates.initialAckState.largestReceivedAtLastCloseSent =
conn.ackStates.initialAckState.largestRecvdPacketNum;
conn.ackStates.handshakeAckState.largestReceivedAtLastCloseSent =
conn.ackStates.handshakeAckState.largestRecvdPacketNum;
conn.ackStates.appDataAckState.largestReceivedAtLastCloseSent =
conn.ackStates.appDataAckState.largestRecvdPacketNum;
}
bool hasReceivedPackets(const QuicConnectionStateBase& conn) noexcept {
return conn.ackStates.initialAckState.largestRecvdPacketNum ||
conn.ackStates.handshakeAckState.largestRecvdPacketNum ||
conn.ackStates.appDataAckState.largestRecvdPacketNum;
}
folly::Optional<TimePoint>& getLossTime(
QuicConnectionStateBase& conn,
PacketNumberSpace pnSpace) noexcept {
return conn.lossState.lossTimes[pnSpace];
}
bool canSetLossTimerForAppData(const QuicConnectionStateBase& conn) noexcept {
return conn.oneRttWriteCipher != nullptr;
}
std::pair<folly::Optional<TimePoint>, PacketNumberSpace> earliestLossTimer(
const QuicConnectionStateBase& conn) noexcept {
bool considerAppData = canSetLossTimerForAppData(conn);
return earliestTimeAndSpace(conn.lossState.lossTimes, considerAppData);
}
std::pair<folly::Optional<TimePoint>, PacketNumberSpace> earliestTimeAndSpace(
const EnumArray<PacketNumberSpace, folly::Optional<TimePoint>>& times,
bool considerAppData) noexcept {
std::pair<folly::Optional<TimePoint>, PacketNumberSpace> res = {
folly::none, PacketNumberSpace::Initial};
for (PacketNumberSpace pns : times.keys()) {
if (!times[pns]) {
continue;
}
if (pns == PacketNumberSpace::AppData && !considerAppData) {
continue;
}
if (!res.first || *res.first > *times[pns]) {
res.first = times[pns];
res.second = pns;
}
}
return res;
}
uint64_t maximumConnectionIdsToIssue(const QuicConnectionStateBase& conn) {
// Return a min of what peer supports and hardcoded max limit.
const uint64_t maximumIdsToIssue =
std::min(conn.peerActiveConnectionIdLimit, kMaxActiveConnectionIdLimit);
return maximumIdsToIssue;
}
} // namespace quic