1
0
mirror of https://github.com/facebookincubator/mvfst.git synced 2025-11-09 10:00:57 +03:00
Files
mvfst/quic/server/QuicServerWorker.cpp
Adel Abouchaev 2325259aad Resolve static analysis complain about use-after-move.
Summary: Although there is no flaw in this code, the static analysis does not see that the remaining variable controls the flow path and considers the use of the data after move a failure.

Reviewed By: mjoras

Differential Revision: D37321326

fbshipit-source-id: 54c147f4e9840bd7e5c7a6122495be66044c7708
2022-06-22 14:03:15 -07:00

1476 lines
51 KiB
C++

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <fmt/format.h>
#include <folly/chrono/Conv.h>
#include <folly/io/Cursor.h>
#include <folly/io/SocketOptionMap.h>
#include <folly/system/ThreadId.h>
#include <quic/QuicConstants.h>
#include <quic/common/SocketUtil.h>
#include <quic/common/Timers.h>
#include <atomic>
#ifdef FOLLY_HAVE_MSG_ERRQUEUE
#include <linux/net_tstamp.h>
#else
#define SOF_TIMESTAMPING_SOFTWARE 0
#endif
#include <folly/Conv.h>
#include <quic/congestion_control/Bbr.h>
#include <quic/congestion_control/Copa.h>
#include <quic/fizz/handshake/FizzRetryIntegrityTagGenerator.h>
#include <quic/server/AcceptObserver.h>
#include <quic/server/CCPReader.h>
#include <quic/server/QuicServerWorker.h>
#include <quic/server/handshake/StatelessResetGenerator.h>
#include <quic/server/handshake/TokenGenerator.h>
#include <quic/server/third-party/siphash.h>
#include <quic/state/QuicConnectionStats.h>
// This hook is invoked by mvfst for every UDP socket it creates.
#if FOLLY_HAVE_WEAK_SYMBOLS
extern "C" FOLLY_ATTR_WEAK void mvfst_hook_on_socket_create(int fd);
#else
static void (*mvfst_hook_on_socket_create)(int fd) = nullptr;
#endif
namespace quic {
std::atomic_int globalUnfinishedHandshakes{0};
QuicServerWorker::QuicServerWorker(
std::shared_ptr<QuicServerWorker::WorkerCallback> callback,
bool setEventCallback)
: callback_(callback),
setEventCallback_(setEventCallback),
takeoverPktHandler_(this),
observerList_(this) {
ccpReader_ = std::make_unique<CCPReader>();
pending0RttData_.setPruneHook(
[&](auto, auto) { QUIC_STATS(statsCallback_, onZeroRttBufferedPruned); });
}
folly::EventBase* QuicServerWorker::getEventBase() const {
return evb_.get();
}
void QuicServerWorker::setSocket(
std::unique_ptr<folly::AsyncUDPSocket> socket) {
socket_ = std::move(socket);
evb_ = folly::Executor::KeepAlive(socket_->getEventBase());
}
void QuicServerWorker::bind(
const folly::SocketAddress& address,
folly::AsyncUDPSocket::BindOptions bindOptions) {
DCHECK(!supportedVersions_.empty());
CHECK(socket_);
if (setEventCallback_) {
socket_->setEventCallback(this);
}
// TODO this totally doesn't work, we can't apply socket options before
// bind, since bind creates the fd.
if (socketOptions_) {
applySocketOptions(
*socket_.get(),
*socketOptions_,
address.getFamily(),
folly::SocketOptionKey::ApplyPos::PRE_BIND);
}
socket_->bind(address, bindOptions);
if (socketOptions_) {
applySocketOptions(
*socket_.get(),
*socketOptions_,
address.getFamily(),
folly::SocketOptionKey::ApplyPos::POST_BIND);
}
socket_->setDFAndTurnOffPMTU();
if (transportSettings_.numGROBuffers_ > kDefaultNumGROBuffers) {
socket_->setGRO(true);
auto ret = socket_->getGRO();
if (ret > 0) {
numGROBuffers_ = (transportSettings_.numGROBuffers_ < kMaxNumGROBuffers)
? transportSettings_.numGROBuffers_
: kMaxNumGROBuffers;
}
}
socket_->setTimestamping(SOF_TIMESTAMPING_SOFTWARE);
}
void QuicServerWorker::applyAllSocketOptions() {
CHECK(socket_);
if (socketOptions_) {
applySocketOptions(
*socket_.get(),
*socketOptions_,
getAddress().getFamily(),
folly::SocketOptionKey::ApplyPos::PRE_BIND);
applySocketOptions(
*socket_.get(),
*socketOptions_,
getAddress().getFamily(),
folly::SocketOptionKey::ApplyPos::POST_BIND);
}
}
void QuicServerWorker::setTransportSettingsOverrideFn(
TransportSettingsOverrideFn fn) {
transportSettingsOverrideFn_ = std::move(fn);
}
void QuicServerWorker::setTransportStatsCallback(
std::unique_ptr<QuicTransportStatsCallback> statsCallback) noexcept {
CHECK(statsCallback);
statsCallback_ = std::move(statsCallback);
}
QuicTransportStatsCallback* QuicServerWorker::getTransportStatsCallback()
const noexcept {
return statsCallback_.get();
}
void QuicServerWorker::setConnectionIdAlgo(
std::unique_ptr<ConnectionIdAlgo> connIdAlgo) noexcept {
CHECK(connIdAlgo);
connIdAlgo_ = std::move(connIdAlgo);
}
void QuicServerWorker::setCongestionControllerFactory(
std::shared_ptr<CongestionControllerFactory> ccFactory) {
CHECK(ccFactory);
ccFactory_ = ccFactory;
}
void QuicServerWorker::setRateLimiter(
std::unique_ptr<RateLimiter> rateLimiter) {
newConnRateLimiter_ = std::move(rateLimiter);
}
void QuicServerWorker::setUnfinishedHandshakeLimit(
std::function<int()> limitFn) {
unfinishedHandshakeLimitFn_ = std::move(limitFn);
}
void QuicServerWorker::start() {
CHECK(socket_);
if (!pacingTimer_) {
pacingTimer_ = TimerHighRes::newTimer(
evb_.get(), transportSettings_.pacingTimerTickInterval);
}
socket_->resumeRead(this);
VLOG(10) << fmt::format(
"Registered read on worker={}, thread={}, processId={}",
fmt::ptr(this),
folly::getCurrentThreadID(),
(int)processId_);
}
void QuicServerWorker::pauseRead() {
CHECK(socket_);
socket_->pauseRead();
}
int QuicServerWorker::getFD() {
CHECK(socket_);
return socket_->getNetworkSocket().toFd();
}
const folly::SocketAddress& QuicServerWorker::getAddress() const {
CHECK(socket_);
return socket_->address();
}
void QuicServerWorker::getReadBuffer(void** buf, size_t* len) noexcept {
readBuffer_ = folly::IOBuf::createCombined(
transportSettings_.maxRecvPacketSize * numGROBuffers_);
*buf = readBuffer_->writableData();
*len = transportSettings_.maxRecvPacketSize * numGROBuffers_;
}
// Returns true if we either drop the packet or send a version
// negotiation packet to the client. Returns false if there's
// no need for version negotiation.
bool QuicServerWorker::maybeSendVersionNegotiationPacketOrDrop(
const folly::SocketAddress& client,
bool isInitial,
LongHeaderInvariant& invariant,
size_t datagramLen) {
folly::Optional<std::pair<VersionNegotiationPacket, Buf>>
versionNegotiationPacket;
if (isInitial && datagramLen < kMinInitialPacketSize) {
VLOG(3) << "Dropping initial packet due to invalid size";
QUIC_STATS(
statsCallback_, onPacketDropped, PacketDropReason::INVALID_PACKET);
return true;
}
isInitial =
isInitial && invariant.version != QuicVersion::VERSION_NEGOTIATION;
if (rejectNewConnections_() && isInitial) {
VersionNegotiationPacketBuilder builder(
invariant.dstConnId,
invariant.srcConnId,
std::vector<QuicVersion>{QuicVersion::MVFST_INVALID});
versionNegotiationPacket =
folly::make_optional(std::move(builder).buildPacket());
}
if (!versionNegotiationPacket) {
bool negotiationNeeded = std::find(
supportedVersions_.begin(),
supportedVersions_.end(),
invariant.version) == supportedVersions_.end();
if (negotiationNeeded && !isInitial) {
VLOG(3) << "Dropping non-initial packet due to invalid version";
QUIC_STATS(
statsCallback_, onPacketDropped, PacketDropReason::INVALID_PACKET);
return true;
}
if (negotiationNeeded) {
VersionNegotiationPacketBuilder builder(
invariant.dstConnId, invariant.srcConnId, supportedVersions_);
versionNegotiationPacket =
folly::make_optional(std::move(builder).buildPacket());
}
}
if (versionNegotiationPacket) {
VLOG(4) << "Version negotiation sent to client=" << client;
auto len = versionNegotiationPacket->second->computeChainDataLength();
QUIC_STATS(statsCallback_, onWrite, len);
QUIC_STATS(statsCallback_, onPacketProcessed);
QUIC_STATS(statsCallback_, onPacketSent);
socket_->write(client, versionNegotiationPacket->second);
return true;
}
return false;
}
void QuicServerWorker::onDataAvailable(
const folly::SocketAddress& client,
size_t len,
bool truncated,
OnDataAvailableParams params) noexcept {
auto packetReceiveTime = Clock::now();
auto originalPacketReceiveTime = packetReceiveTime;
if (params.ts) {
// This is the software system time from the datagram.
auto packetNowDuration =
folly::to<std::chrono::microseconds>(params.ts.value()[0]);
auto wallNowDuration =
std::chrono::duration_cast<std::chrono::microseconds>(
std::chrono::system_clock::now().time_since_epoch());
auto durationSincePacketNow = wallNowDuration - packetNowDuration;
if (packetNowDuration != 0us && durationSincePacketNow > 0us) {
packetReceiveTime -= durationSincePacketNow;
}
}
// System time can move backwards, so we want to make sure that the receive
// time we are using is monotonic relative to itself.
if (packetReceiveTime < largestPacketReceiveTime_) {
packetReceiveTime = originalPacketReceiveTime;
}
largestPacketReceiveTime_ =
std::max(largestPacketReceiveTime_, packetReceiveTime);
VLOG(10) << fmt::format(
"Worker={}, Received data on thread={}, processId={}",
fmt::ptr(this),
folly::getCurrentThreadID(),
(int)processId_);
// Move readBuffer_ first so that we can get rid
// of it immediately so that if we return early,
// we've flushed it.
Buf data = std::move(readBuffer_);
if (params.gro <= 0) {
if (truncated) {
// This is an error, drop the packet.
return;
}
data->append(len);
QUIC_STATS(statsCallback_, onPacketReceived);
QUIC_STATS(statsCallback_, onRead, len);
handleNetworkData(client, std::move(data), packetReceiveTime);
} else {
// if we receive a truncated packet
// we still need to consider the prev valid ones
// AsyncUDPSocket::handleRead() sets the len to be the
// buffer size in case the data is truncated
if (truncated) {
len -= len % params.gro;
}
data->append(len);
QUIC_STATS(statsCallback_, onPacketReceived);
QUIC_STATS(statsCallback_, onRead, len);
size_t remaining = len;
size_t offset = 0;
while (remaining) {
if (static_cast<int>(remaining) <= params.gro) {
// do not clone the last packet
// start at offset, use all the remaining data
data->trimStart(offset);
DCHECK_EQ(data->length(), remaining);
handleNetworkData(client, std::move(data), packetReceiveTime);
break;
}
auto tmp = data->cloneOne();
// start at offset
tmp->trimStart(offset);
// the actual len is len - offset now
// leave params.gro_ bytes
tmp->trimEnd(len - offset - params.gro);
DCHECK_EQ(tmp->length(), params.gro);
offset += params.gro;
remaining -= params.gro;
handleNetworkData(client, std::move(tmp), packetReceiveTime);
}
}
}
void QuicServerWorker::handleNetworkData(
const folly::SocketAddress& client,
Buf data,
const TimePoint& packetReceiveTime,
bool isForwardedData) noexcept {
try {
if (shutdown_) {
VLOG(4) << "Packet received after shutdown, dropping";
QUIC_STATS(
statsCallback_, onPacketDropped, PacketDropReason::SERVER_SHUTDOWN);
return;
}
if (isBlockListedSrcPort_(client.getPort())) {
VLOG(4) << "Dropping packet with blocklisted src port: "
<< client.getPort();
QUIC_STATS(
statsCallback_, onPacketDropped, PacketDropReason::INVALID_SRC_PORT);
return;
}
if (!callback_) {
VLOG(0) << "Worker callback is null. Dropping packet.";
QUIC_STATS(
statsCallback_,
onPacketDropped,
PacketDropReason::WORKER_NOT_INITIALIZED);
return;
}
folly::io::Cursor cursor(data.get());
if (!cursor.canAdvance(sizeof(uint8_t))) {
VLOG(4) << "Dropping packet too small";
QUIC_STATS(
statsCallback_, onPacketDropped, PacketDropReason::INVALID_PACKET);
return;
}
uint8_t initialByte = cursor.readBE<uint8_t>();
HeaderForm headerForm = getHeaderForm(initialByte);
if (headerForm == HeaderForm::Short) {
folly::Expected<ShortHeaderInvariant, TransportErrorCode>
parsedShortHeader = parseShortHeaderInvariants(initialByte, cursor);
if (!parsedShortHeader) {
if (!tryHandlingAsHealthCheck(client, *data)) {
QUIC_STATS(
statsCallback_, onPacketDropped, PacketDropReason::PARSE_ERROR);
VLOG(6) << "Failed to parse short header";
}
return;
}
RoutingData routingData(
headerForm,
false, /* isInitial */
false, /* is0Rtt */
false, /* isUsingClientConnId */
std::move(parsedShortHeader->destinationConnId),
folly::none);
return forwardNetworkData(
client,
std::move(routingData),
NetworkData(std::move(data), packetReceiveTime),
folly::none, /* quicVersion */
isForwardedData);
}
folly::Expected<ParsedLongHeaderInvariant, TransportErrorCode>
parsedLongHeader = parseLongHeaderInvariant(initialByte, cursor);
if (!parsedLongHeader) {
if (!tryHandlingAsHealthCheck(client, *data)) {
QUIC_STATS(
statsCallback_, onPacketDropped, PacketDropReason::PARSE_ERROR);
VLOG(6) << "Failed to parse long header";
}
return;
}
// TODO: check version before looking at type
LongHeader::Types longHeaderType = parseLongHeaderType(initialByte);
bool isInitial = longHeaderType == LongHeader::Types::Initial;
bool is0Rtt = longHeaderType == LongHeader::Types::ZeroRtt;
bool isUsingClientConnId = isInitial || is0Rtt;
if (isInitial) {
// This stats gets updated even if the client initial will be dropped.
QUIC_STATS(
statsCallback_,
onClientInitialReceived,
parsedLongHeader->invariant.version);
}
if (maybeSendVersionNegotiationPacketOrDrop(
client,
isInitial,
parsedLongHeader->invariant,
data->computeChainDataLength())) {
return;
}
if (!isUsingClientConnId &&
parsedLongHeader->invariant.dstConnId.size() <
kMinSelfConnectionIdV1Size) {
// drop packet if connId is present but is not valid.
VLOG(3) << "Dropping packet due to invalid connectionId";
QUIC_STATS(
statsCallback_, onPacketDropped, PacketDropReason::INVALID_PACKET);
return;
}
RoutingData routingData(
headerForm,
isInitial,
is0Rtt,
isUsingClientConnId,
std::move(parsedLongHeader->invariant.dstConnId),
std::move(parsedLongHeader->invariant.srcConnId));
return forwardNetworkData(
client,
std::move(routingData),
NetworkData(std::move(data), packetReceiveTime),
parsedLongHeader->invariant.version,
isForwardedData);
} catch (const std::exception& ex) {
// Drop the packet.
QUIC_STATS(statsCallback_, onPacketDropped, PacketDropReason::PARSE_ERROR);
VLOG(6) << "Failed to parse packet header " << ex.what();
}
}
void QuicServerWorker::eventRecvmsgCallback(MsgHdr* msgHdr, int res) {
auto bytesRead = res;
auto& msg = msgHdr->data_;
if (bytesRead > 0) {
OnDataAvailableParams params;
#ifdef FOLLY_HAVE_MSG_ERRQUEUE
if (msgHdr->data_.msg_control) {
folly::AsyncUDPSocket::fromMsg(params, msg);
}
#endif
bool truncated = false;
if ((size_t)bytesRead > msgHdr->len_) {
truncated = true;
bytesRead = ssize_t(msgHdr->len_);
}
readBuffer_ = std::move(msgHdr->ioBuf_);
folly::SocketAddress addr;
addr.setFromSockaddr(
reinterpret_cast<sockaddr*>(msg.msg_name), msg.msg_namelen);
onDataAvailable(addr, bytesRead, truncated, params);
}
msgHdr_.reset(msgHdr);
}
bool QuicServerWorker::tryHandlingAsHealthCheck(
const folly::SocketAddress& client,
const folly::IOBuf& data) {
// If we cannot parse the long header then it is not a QUIC invariant
// packet, so just drop it after checking whether it could be a health
// check.
if (!healthCheckToken_) {
return false;
}
folly::IOBufEqualTo eq;
// TODO: make this constant time, the token might be secret, but we're
// current assuming it's not.
if (eq(*healthCheckToken_.value(), data)) {
// say that we are OK. The response is much smaller than the
// request, so we are not creating an amplification vector. Also
// ignore the error code.
VLOG(4) << "Health check request, response=OK";
socket_->write(client, folly::IOBuf::copyBuffer("OK"));
return true;
}
return false;
}
void QuicServerWorker::forwardNetworkData(
const folly::SocketAddress& client,
RoutingData&& routingData,
NetworkData&& networkData,
folly::Optional<QuicVersion> quicVersion,
bool isForwardedData) {
// if it's not Client initial or ZeroRtt, AND if the connectionId version
// mismatches: foward if pktForwarding is enabled else dropPacket
if (!routingData.isUsingClientConnId &&
!connIdAlgo_->canParse(routingData.destinationConnId)) {
if (packetForwardingEnabled_ && !isForwardedData) {
VLOG(3) << fmt::format(
"Forwarding packet with unknown connId version from client={} to another process, routingInfo={}",
client.describe(),
logRoutingInfo(routingData.destinationConnId));
auto recvTime = networkData.receiveTimePoint;
takeoverPktHandler_.forwardPacketToAnotherServer(
client, std::move(networkData).moveAllData(), recvTime);
QUIC_STATS(statsCallback_, onPacketForwarded);
return;
} else {
VLOG(3) << fmt::format(
"Dropping packet due to unknown connectionId version, routingInfo={}",
logRoutingInfo(routingData.destinationConnId));
QUIC_STATS(
statsCallback_,
onPacketDropped,
PacketDropReason::CONNECTION_NOT_FOUND);
}
return;
}
callback_->routeDataToWorker(
client,
std::move(routingData),
std::move(networkData),
std::move(quicVersion),
isForwardedData);
}
void QuicServerWorker::setPacingTimer(
TimerHighRes::SharedPtr pacingTimer) noexcept {
pacingTimer_ = std::move(pacingTimer);
}
void QuicServerWorker::dispatchPacketData(
const folly::SocketAddress& client,
RoutingData&& routingData,
NetworkData&& networkData,
folly::Optional<QuicVersion> quicVersion,
bool isForwardedData) noexcept {
DCHECK(socket_);
QuicServerTransport::Ptr transport;
bool dropPacket = false;
auto cit = connectionIdMap_.find(routingData.destinationConnId);
if (cit != connectionIdMap_.end()) {
transport = cit->second;
VLOG(10) << "Found existing connection for CID="
<< routingData.destinationConnId.hex() << " " << *transport;
} else if (routingData.headerForm != HeaderForm::Long) {
// Drop the packet if the header form is not long
VLOG(3) << fmt::format(
"Dropping non-long header packet with no connid match"
" headerForm={}, routingInfo={}",
static_cast<typename std::underlying_type<HeaderForm>::type>(
routingData.headerForm),
logRoutingInfo(routingData.destinationConnId));
// Try forwarding the packet to the old server (if it is enabled)
dropPacket = true;
}
bool cannotMakeTransport = false;
if (!dropPacket && !transport) {
// For LongHeader packets without existing associated connection, try to
// route with destinationConnId chosen by the peer and IP address of the
// peer.
CHECK(transportFactory_);
auto source = std::make_pair(client, routingData.destinationConnId);
auto sit = sourceAddressMap_.find(source);
if (sit == sourceAddressMap_.end()) {
// If it's a 0RTT packet and we have no CID, we probably lost the initial
// and want to buffer it for a while.
if (routingData.is0Rtt) {
auto itr = pending0RttData_.find(routingData.destinationConnId);
if (itr == pending0RttData_.end()) {
itr =
pending0RttData_.insert(routingData.destinationConnId, {}).first;
}
auto& vec = itr->second;
if (vec.size() != vec.max_size()) {
vec.emplace_back(std::move(networkData));
QUIC_STATS(statsCallback_, onZeroRttBuffered);
}
return;
} else if (!routingData.isInitial) {
VLOG(3) << fmt::format(
"Dropping packet from client={}, routingInfo={}",
client.describe(),
logRoutingInfo(routingData.destinationConnId));
dropPacket = true;
} else {
VLOG(4) << fmt::format(
"Creating new connection for client={}, routingInfo={}",
client.describe(),
logRoutingInfo(routingData.destinationConnId));
// This could be a new connection, add it in the map
// verify that the initial packet is at least min initial bytes
// to avoid amplification attacks.
if (networkData.totalData < kMinInitialPacketSize) {
// Don't even attempt to forward the packet, just drop it.
VLOG(3) << "Dropping small initial packet from client=" << client;
QUIC_STATS(
statsCallback_,
onPacketDropped,
PacketDropReason::INVALID_PACKET);
return;
}
// If there is a token present, decrypt it (could be either a retry
// token or a new token)
folly::io::Cursor cursor(networkData.packets.front().get());
auto maybeEncryptedToken = maybeGetEncryptedToken(cursor);
bool hasTokenSecret = transportSettings_.retryTokenSecret.hasValue();
// If the retryTokenSecret is not set, just skip evaluating validity of
// token and assume true
auto isValidRetryToken = !hasTokenSecret ||
(maybeEncryptedToken &&
validRetryToken(
*maybeEncryptedToken,
routingData.destinationConnId,
client.getIPAddress()));
auto isValidNewToken = !hasTokenSecret ||
(maybeEncryptedToken &&
validNewToken(*maybeEncryptedToken, client.getIPAddress()));
if (isValidNewToken) {
QUIC_STATS(statsCallback_, onNewTokenReceived);
} else if (maybeEncryptedToken && !isValidRetryToken) {
// Failed to decrypt the token as either a new or retry token
QUIC_STATS(statsCallback_, onTokenDecryptFailure);
}
// If rate-limiting is configured and there is no retry token,
// send a retry packet back to the client
if (!isValidRetryToken &&
((newConnRateLimiter_ &&
newConnRateLimiter_->check(networkData.receiveTimePoint)) ||
(unfinishedHandshakeLimitFn_.has_value() &&
globalUnfinishedHandshakes >=
(*unfinishedHandshakeLimitFn_)()))) {
if (hasTokenSecret) {
sendRetryPacket(
client,
routingData.destinationConnId,
routingData.sourceConnId.value_or(
ConnectionId(std::vector<uint8_t>())));
QUIC_STATS(statsCallback_, onConnectionRateLimited);
return;
} else {
VLOG(4)
<< "Not sending retry packet since retry token secret is not set";
}
}
// Check that we have a proper quic version before creating transport.
CHECK(quicVersion.has_value())
<< "no QUIC version supplied for transport creation";
// create 'accepting' transport
auto sock = makeSocket(getEventBase());
auto trans = transportFactory_->make(
getEventBase(), std::move(sock), client, quicVersion.value(), ctx_);
if (!trans) {
dropPacket = true;
cannotMakeTransport = true;
} else {
globalUnfinishedHandshakes++;
CHECK(trans);
if (transportSettings_.dataPathType ==
DataPathType::ContinuousMemory &&
bufAccessor_) {
trans->setBufAccessor(bufAccessor_.get());
}
trans->setPacingTimer(pacingTimer_);
trans->setRoutingCallback(this);
trans->setHandshakeFinishedCallback(this);
trans->setSupportedVersions(supportedVersions_);
trans->setOriginalPeerAddress(client);
if (isValidNewToken) {
trans->verifiedClientAddress();
}
#ifdef CCP_ENABLED
trans->setCcpDatapath(getCcpReader()->getDatapath());
#endif
trans->setCongestionControllerFactory(ccFactory_);
if (statsCallback_) {
trans->setTransportStatsCallback(statsCallback_.get());
}
auto overridenTransportSettings = transportSettingsOverrideFn_
? transportSettingsOverrideFn_(
transportSettings_, client.getIPAddress())
: folly::none;
if (overridenTransportSettings) {
if (overridenTransportSettings->dataPathType !=
transportSettings_.dataPathType) {
// It's too complex to support that.
LOG(ERROR)
<< "Overriding DataPathType isn't supported. Requested datapath="
<< (overridenTransportSettings->dataPathType ==
DataPathType::ContinuousMemory
? "ContinuousMemory"
: "ChainedMemory");
}
trans->setTransportSettings(*overridenTransportSettings);
} else {
trans->setTransportSettings(transportSettings_);
}
trans->setConnectionIdAlgo(connIdAlgo_.get());
trans->setServerConnectionIdRejector(this);
if (routingData.sourceConnId) {
trans->setClientConnectionId(*routingData.sourceConnId);
}
trans->setClientChosenDestConnectionId(routingData.destinationConnId);
// parameters to create server chosen connection id
ServerConnectionIdParams serverConnIdParams(
cidVersion_,
hostId_,
static_cast<uint8_t>(processId_),
workerId_);
trans->setServerConnectionIdParams(std::move(serverConnIdParams));
trans->accept();
auto result = sourceAddressMap_.emplace(std::make_pair(
std::make_pair(client, routingData.destinationConnId), trans));
if (!result.second) {
LOG(ERROR) << fmt::format(
"Routing entry already exists for client={}, routingInfo={}",
client.describe(),
logRoutingInfo(routingData.destinationConnId));
dropPacket = true;
} else {
for (const auto& observer : observerList_.getAll()) {
observer->accept(trans.get());
}
}
transport = trans;
}
}
} else {
transport = sit->second;
VLOG(4) << "Found existing connection for client=" << client << " "
<< *transport;
}
}
if (!dropPacket) {
DCHECK(transport->getEventBase()->isInEventBaseThread());
transport->onNetworkData(client, std::move(networkData));
// If we had pending 0RTT data for this DCID, process it.
if (routingData.isInitial && !pending0RttData_.empty()) {
auto itr = pending0RttData_.find(routingData.destinationConnId);
if (itr != pending0RttData_.end()) {
for (auto& data : itr->second) {
transport->onNetworkData(client, std::move(data));
}
pending0RttData_.erase(itr);
}
}
return;
}
if (cannotMakeTransport) {
VLOG(3)
<< "Dropping packet due to transport factory did not make transport";
QUIC_STATS(
statsCallback_,
onPacketDropped,
PacketDropReason::CANNOT_MAKE_TRANSPORT);
return;
}
if (!connIdAlgo_->canParse(routingData.destinationConnId)) {
VLOG(3) << "Dropping packet with bad DCID, routingInfo="
<< logRoutingInfo(routingData.destinationConnId);
QUIC_STATS(statsCallback_, onPacketDropped, PacketDropReason::PARSE_ERROR);
// TODO do we need to reset?
return;
}
auto connIdParam =
connIdAlgo_->parseConnectionId(routingData.destinationConnId);
if (connIdParam.hasError()) {
VLOG(3) << fmt::format(
"Dropping packet due to DCID parsing error={}, , errorCode={}, routingInfo={}",
connIdParam.error().what(),
folly::to<std::string>(connIdParam.error().errorCode()),
logRoutingInfo(routingData.destinationConnId));
QUIC_STATS(statsCallback_, onPacketDropped, PacketDropReason::PARSE_ERROR);
// TODO do we need to reset?
return;
}
if (connIdParam->hostId != hostId_) {
VLOG_EVERY_N(2, 100) << fmt::format(
"Dropping packet routed to wrong host, from client={}, routingInfo={},",
client.describe(),
logRoutingInfo(routingData.destinationConnId));
QUIC_STATS(
statsCallback_,
onPacketDropped,
PacketDropReason::ROUTING_ERROR_WRONG_HOST);
return sendResetPacket(
routingData.headerForm,
client,
networkData,
routingData.destinationConnId);
}
if (!packetForwardingEnabled_ || isForwardedData) {
QUIC_STATS(
statsCallback_,
onPacketDropped,
PacketDropReason::CONNECTION_NOT_FOUND);
return sendResetPacket(
routingData.headerForm,
client,
networkData,
routingData.destinationConnId);
}
// There's no existing connection for the packet's CID or the client's
// addr, and doesn't belong to the old server. Send a Reset.
if (connIdParam->processId == static_cast<uint8_t>(processId_)) {
QUIC_STATS(
statsCallback_,
onPacketDropped,
PacketDropReason::CONNECTION_NOT_FOUND);
return sendResetPacket(
routingData.headerForm,
client,
networkData,
routingData.destinationConnId);
}
// Optimistically route to another server
// if the packet type is not Initial and if there is not any connection
// associated with the given packet
VLOG(4) << fmt::format(
"Forwarding packet from client={} to another process, routingInfo={}",
client.describe(),
logRoutingInfo(routingData.destinationConnId));
auto recvTime = networkData.receiveTimePoint;
takeoverPktHandler_.forwardPacketToAnotherServer(
client, std::move(networkData).moveAllData(), recvTime);
QUIC_STATS(statsCallback_, onPacketForwarded);
}
void QuicServerWorker::sendResetPacket(
const HeaderForm& headerForm,
const folly::SocketAddress& client,
const NetworkData& networkData,
const ConnectionId& connId) {
if (headerForm != HeaderForm::Short) {
// Only send resets in response to short header packets.
return;
}
auto packetSize = networkData.totalData;
auto resetSize = std::min<uint16_t>(packetSize, kDefaultMaxUDPPayload);
// Per the spec, less than 43 we should respond with packet size - 1.
if (packetSize < 43) {
resetSize = std::max<uint16_t>(packetSize - 1, kMinStatelessPacketSize);
} else {
resetSize = std::max<uint16_t>(
folly::Random::secureRand32() % resetSize, kMinStatelessPacketSize);
}
CHECK(transportSettings_.statelessResetTokenSecret.has_value());
StatelessResetGenerator generator(
*transportSettings_.statelessResetTokenSecret,
getAddress().getFullyQualified());
StatelessResetToken token = generator.generateToken(connId);
StatelessResetPacketBuilder builder(resetSize, token);
auto resetData = std::move(builder).buildPacket();
auto resetDataLen = resetData->computeChainDataLength();
socket_->write(client, std::move(resetData));
QUIC_STATS(statsCallback_, onWrite, resetDataLen);
QUIC_STATS(statsCallback_, onPacketSent);
QUIC_STATS(statsCallback_, onStatelessReset);
}
folly::Optional<std::string> QuicServerWorker::maybeGetEncryptedToken(
folly::io::Cursor& cursor) {
// Move cursor to the byte right after the initial byte
if (!cursor.canAdvance(1)) {
return folly::none;
}
auto initialByte = cursor.readBE<uint8_t>();
// We already know this is an initial packet, which uses a long header
auto parsedLongHeader = parseLongHeader(initialByte, cursor);
if (!parsedLongHeader || !parsedLongHeader->parsedLongHeader.has_value()) {
return folly::none;
}
auto header = parsedLongHeader->parsedLongHeader.value().header;
if (!header.hasToken()) {
return folly::none;
}
return header.getToken();
}
/**
* Helper method to calculate the delta between nowInMs and the time the token
* was issued. This delta is compared against the max lifetime of the token
* (e.g. 1 day for new tokens and 5 min for retry tokens) to determine
* validity.
*/
bool checkTokenAge(uint64_t tokenIssuedMs, uint64_t kTokenValidMs) {
uint64_t nowInMs = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::system_clock::now().time_since_epoch())
.count();
// Retry timestamps can also come from the future as the system clock can
// move both forwards and backwards due to it being synchronized by NTP
auto tokenAgeMs = nowInMs > tokenIssuedMs ? nowInMs - tokenIssuedMs
: tokenIssuedMs - nowInMs;
return tokenAgeMs <= kTokenValidMs;
}
bool QuicServerWorker::validRetryToken(
std::string& encryptedToken,
const ConnectionId& dstConnId,
const folly::IPAddress& clientIp) {
CHECK(transportSettings_.retryTokenSecret.hasValue());
TokenGenerator tokenGenerator(transportSettings_.retryTokenSecret.value());
// Create a psuedo token to generate the assoc data.
RetryToken token(dstConnId, clientIp, 0);
auto maybeDecryptedRetryTokenMs = tokenGenerator.decryptToken(
folly::IOBuf::copyBuffer(encryptedToken), token.genAeadAssocData());
return maybeDecryptedRetryTokenMs &&
checkTokenAge(maybeDecryptedRetryTokenMs, kMaxRetryTokenValidMs);
}
bool QuicServerWorker::validNewToken(
std::string& encryptedToken,
const folly::IPAddress& clientIp) {
CHECK(transportSettings_.retryTokenSecret.hasValue());
TokenGenerator tokenGenerator(transportSettings_.retryTokenSecret.value());
// Create a psuedo token to generate the assoc data.
NewToken token(clientIp);
auto maybeDecryptedNewTokenMs = tokenGenerator.decryptToken(
folly::IOBuf::copyBuffer(encryptedToken), token.genAeadAssocData());
return maybeDecryptedNewTokenMs &&
checkTokenAge(maybeDecryptedNewTokenMs, kMaxNewTokenValidMs);
}
void QuicServerWorker::sendRetryPacket(
const folly::SocketAddress& client,
const ConnectionId& dstConnId,
const ConnectionId& srcConnId) {
// Create the encrypted retry token
TokenGenerator generator(transportSettings_.retryTokenSecret.value());
// RetryToken defaults to currentTimeInMs
RetryToken retryToken(dstConnId, client.getIPAddress(), client.getPort());
auto encryptedToken = generator.encryptToken(retryToken);
CHECK(encryptedToken.has_value());
std::string encryptedTokenStr =
encryptedToken.value()->moveToFbString().toStdString();
// Create the integrity tag
// For the tag to be correctly validated by the client, the initalByte
// needs to match the initialByte in the retry packet
uint8_t initialByte = kHeaderFormMask | LongHeader::kFixedBitMask |
(static_cast<uint8_t>(LongHeader::Types::Retry)
<< LongHeader::kTypeShift);
// Flip the src conn ID and dst conn ID as per section 7.3 of QUIC draft
// for both pseudo retry builder and the actual retry packet builder
PseudoRetryPacketBuilder pseudoBuilder(
initialByte,
dstConnId, /* src conn id */
srcConnId, /* dst conn id */
dstConnId, /* orginal dst conn id */
QuicVersion::MVFST_INVALID,
folly::IOBuf::copyBuffer(encryptedTokenStr));
Buf pseudoRetryPacketBuf = std::move(pseudoBuilder).buildPacket();
FizzRetryIntegrityTagGenerator fizzRetryIntegrityTagGenerator;
auto integrityTag = fizzRetryIntegrityTagGenerator.getRetryIntegrityTag(
QuicVersion::MVFST_INVALID, pseudoRetryPacketBuf.get());
// Create the actual retry packet
RetryPacketBuilder builder(
dstConnId, /* src conn id */
srcConnId, /* dst conn id */
QuicVersion::MVFST_INVALID,
std::move(encryptedTokenStr),
std::move(integrityTag));
auto retryData = std::move(builder).buildPacket();
auto retryDataLen = retryData->computeChainDataLength();
socket_->write(client, retryData);
QUIC_STATS(statsCallback_, onWrite, retryDataLen);
QUIC_STATS(statsCallback_, onPacketSent);
}
void QuicServerWorker::allowBeingTakenOver(
std::unique_ptr<folly::AsyncUDPSocket> socket,
const folly::SocketAddress& address) {
DCHECK(!takeoverCB_);
// We instantiate and bind the TakeoverHandlerCallback to the given address.
// It is reset at shutdownAllConnections (i.e. only when the process dies).
takeoverCB_ = std::make_unique<TakeoverHandlerCallback>(
this, takeoverPktHandler_, transportSettings_, std::move(socket));
takeoverCB_->bind(address);
}
const folly::SocketAddress& QuicServerWorker::overrideTakeoverHandlerAddress(
std::unique_ptr<folly::AsyncUDPSocket> socket,
const folly::SocketAddress& address) {
CHECK(takeoverCB_);
takeoverCB_->rebind(std::move(socket), address);
return takeoverCB_->getAddress();
}
void QuicServerWorker::startPacketForwarding(
const folly::SocketAddress& destAddr) {
packetForwardingEnabled_ = true;
takeoverPktHandler_.setDestination(destAddr);
}
void QuicServerWorker::stopPacketForwarding() {
packetForwardingEnabled_ = false;
takeoverPktHandler_.stop();
}
void QuicServerWorker::onReadError(
const folly::AsyncSocketException& ex) noexcept {
VLOG(4) << "QuicServer readerr: " << ex.what();
if (!callback_) {
VLOG(0) << "Worker callback is null. Ignoring worker error.";
return;
}
callback_->handleWorkerError(LocalErrorCode::INTERNAL_ERROR);
}
void QuicServerWorker::onReadClosed() noexcept {
shutdownAllConnections(LocalErrorCode::SHUTTING_DOWN);
}
int QuicServerWorker::getTakeoverHandlerSocketFD() {
CHECK(takeoverCB_);
return takeoverCB_->getSocketFD();
}
TakeoverProtocolVersion QuicServerWorker::getTakeoverProtocolVersion()
const noexcept {
return takeoverPktHandler_.getTakeoverProtocolVersion();
}
void QuicServerWorker::setProcessId(enum ProcessId id) noexcept {
processId_ = id;
}
ProcessId QuicServerWorker::getProcessId() const noexcept {
return processId_;
}
void QuicServerWorker::setWorkerId(uint8_t id) noexcept {
workerId_ = id;
}
uint8_t QuicServerWorker::getWorkerId() const noexcept {
return workerId_;
}
void QuicServerWorker::setHostId(uint32_t hostId) noexcept {
hostId_ = hostId;
}
void QuicServerWorker::setConnectionIdVersion(
ConnectionIdVersion cidVersion) noexcept {
cidVersion_ = cidVersion;
}
CCPReader* QuicServerWorker::getCcpReader() const noexcept {
return ccpReader_.get();
}
void QuicServerWorker::setNewConnectionSocketFactory(
QuicUDPSocketFactory* factory) {
socketFactory_ = factory;
takeoverPktHandler_.setSocketFactory(socketFactory_);
}
void QuicServerWorker::setTransportFactory(
QuicServerTransportFactory* factory) {
transportFactory_ = factory;
}
void QuicServerWorker::setSupportedVersions(
const std::vector<QuicVersion>& supportedVersions) {
supportedVersions_ = supportedVersions;
}
void QuicServerWorker::setFizzContext(
std::shared_ptr<const fizz::server::FizzServerContext> ctx) {
ctx_ = ctx;
}
void QuicServerWorker::setTransportSettings(
TransportSettings transportSettings) {
transportSettings_ = transportSettings;
if (transportSettings_.batchingMode != QuicBatchingMode::BATCHING_MODE_GSO) {
if (transportSettings_.dataPathType == DataPathType::ContinuousMemory) {
LOG(ERROR) << "Unsupported data path type and batching mode combination";
}
transportSettings_.dataPathType = DataPathType::ChainedMemory;
}
if (transportSettings_.dataPathType == DataPathType::ContinuousMemory) {
// TODO: maxBatchSize is only a good start value when each transport does
// its own socket writing. If we experiment with multiple transports GSO
// together, we will need a better value.
bufAccessor_ = std::make_unique<SimpleBufAccessor>(
kDefaultMaxUDPPayload * transportSettings_.maxBatchSize);
VLOG(10) << "GSO write buf accessor created for ContinuousMemory data path";
}
}
void QuicServerWorker::rejectNewConnections(
std::function<bool()> rejectNewConnections) {
rejectNewConnections_ = std::move(rejectNewConnections);
}
void QuicServerWorker::setIsBlockListedSrcPort(
std::function<bool(uint16_t)> isBlockListedSrcPort) {
isBlockListedSrcPort_ = std::move(isBlockListedSrcPort);
}
void QuicServerWorker::setHealthCheckToken(
const std::string& healthCheckToken) {
healthCheckToken_ = folly::IOBuf::copyBuffer(healthCheckToken);
}
std::unique_ptr<folly::AsyncUDPSocket> QuicServerWorker::makeSocket(
folly::EventBase* evb) const {
CHECK(socket_);
auto sock = socketFactory_->make(evb, socket_->getNetworkSocket().toFd());
if (sock && mvfst_hook_on_socket_create) {
mvfst_hook_on_socket_create(sock->getNetworkSocket().toFd());
}
return sock;
}
std::unique_ptr<folly::AsyncUDPSocket> QuicServerWorker::makeSocket(
folly::EventBase* evb,
int fd) const {
auto sock = socketFactory_->make(evb, fd);
if (sock && mvfst_hook_on_socket_create) {
mvfst_hook_on_socket_create(sock->getNetworkSocket().toFd());
}
return sock;
}
const QuicServerWorker::ConnIdToTransportMap&
QuicServerWorker::getConnectionIdMap() const {
return connectionIdMap_;
}
const QuicServerWorker::SrcToTransportMap&
QuicServerWorker::getSrcToTransportMap() const {
return sourceAddressMap_;
}
void QuicServerWorker::onConnectionIdAvailable(
QuicServerTransport::Ptr transport,
ConnectionId id) noexcept {
VLOG(4) << "Adding into connectionIdMap_ for CID=" << id << " " << *transport;
QuicServerTransport* transportPtr = transport.get();
std::weak_ptr<QuicServerTransport> weakTransport = transport;
auto result =
connectionIdMap_.emplace(std::make_pair(id, std::move(transport)));
if (!result.second) {
// In the case of duplicates, log if they represent the same transport,
// or different ones.
auto it = result.first;
QuicServerTransport* existingTransportPtr = it->second.get();
LOG(ERROR) << "connectionIdMap_ already has CID=" << id
<< " Is same transport: "
<< (existingTransportPtr == transportPtr);
} else if (boundServerTransports_.emplace(transportPtr, weakTransport)
.second) {
QUIC_STATS(statsCallback_, onNewConnection);
}
}
void QuicServerWorker::onConnectionIdBound(
QuicServerTransport::Ptr transport) noexcept {
auto clientInitialDestCid = transport->getClientChosenDestConnectionId();
CHECK(clientInitialDestCid);
auto source = std::make_pair(
transport->getOriginalPeerAddress(), *clientInitialDestCid);
VLOG(4) << "Removing from sourceAddressMap_ address=" << source.first;
auto iter = sourceAddressMap_.find(source);
if (iter == sourceAddressMap_.end() || iter->second != transport) {
LOG(ERROR) << "Transport not match, client=" << *transport;
} else {
sourceAddressMap_.erase(source);
}
}
void QuicServerWorker::onConnectionUnbound(
QuicServerTransport* transport,
const QuicServerTransport::SourceIdentity& source,
const std::vector<ConnectionIdData>& connectionIdData) noexcept {
VLOG(4) << "Removing from sourceAddressMap_ address=" << source.first;
auto& localConnectionError = transport->getState()->localConnectionError;
if (transport->getConnectionsStats().totalBytesSent == 0 &&
!(localConnectionError && localConnectionError->code.asLocalErrorCode() &&
*localConnectionError->code.asLocalErrorCode() ==
LocalErrorCode::CONNECTION_ABANDONED)) {
QUIC_STATS(statsCallback_, onConnectionCloseZeroBytesWritten);
}
// Ensures we only process `onConnectionUnbound()` once.
transport->setRoutingCallback(nullptr);
boundServerTransports_.erase(transport);
for (auto& connId : connectionIdData) {
VLOG(4) << fmt::format(
"Removing CID from connectionIdMap_, routingInfo={}",
logRoutingInfo(connId.connId));
auto it = connectionIdMap_.find(connId.connId);
// This should be nullptr in most cases. In order to investigate if
// an incorrect server transport is removed, this will be set to the value
// of the incorrect transport, to see if boundServerTransports_ will
// still hold a pointer to the incorrect transport.
QuicServerTransport* incorrectTransportPtr = nullptr;
if (it == connectionIdMap_.end()) {
VLOG(3) << "CID not found in connectionIdMap_ CID= " << connId.connId;
} else {
QuicServerTransport* existingPtr = it->second.get();
if (existingPtr != transport) {
LOG(ERROR) << "Incorrect transport being removed for duplicate CID="
<< connId.connId;
incorrectTransportPtr = existingPtr;
}
}
connectionIdMap_.erase(connId.connId);
if (incorrectTransportPtr != nullptr) {
if (boundServerTransports_.find(incorrectTransportPtr) !=
boundServerTransports_.end()) {
LOG(ERROR)
<< "boundServerTransports_ contains deleted transport for duplicate CID="
<< connId.connId;
}
}
}
sourceAddressMap_.erase(source);
}
void QuicServerWorker::onHandshakeFinished() noexcept {
CHECK_GE(--globalUnfinishedHandshakes, 0);
}
void QuicServerWorker::onHandshakeUnfinished() noexcept {
CHECK_GE(--globalUnfinishedHandshakes, 0);
}
void QuicServerWorker::shutdownAllConnections(LocalErrorCode error) {
VLOG(4) << "QuicServer shutdown all connections."
<< " addressMap=" << sourceAddressMap_.size()
<< " connectionIdMap=" << connectionIdMap_.size();
if (shutdown_) {
return;
}
shutdown_ = true;
if (socket_) {
socket_->pauseRead();
}
if (takeoverCB_) {
takeoverCB_->pause();
}
callback_ = nullptr;
// Shut down all transports without bound connection ids.
for (auto& it : sourceAddressMap_) {
auto transport = it.second;
transport->setRoutingCallback(nullptr);
transport->setTransportStatsCallback(nullptr);
transport->setHandshakeFinishedCallback(nullptr);
transport->closeNow(
QuicError(QuicErrorCode(error), std::string("shutting down")));
}
// Shut down all transports with bound connection ids.
for (auto transport : boundServerTransports_) {
if (auto t = transport.second.lock()) {
t->setRoutingCallback(nullptr);
t->setTransportStatsCallback(nullptr);
t->setHandshakeFinishedCallback(nullptr);
t->closeNow(
QuicError(QuicErrorCode(error), std::string("shutting down")));
}
}
sourceAddressMap_.clear();
connectionIdMap_.clear();
takeoverPktHandler_.stop();
if (statsCallback_) {
statsCallback_.reset();
}
socket_.reset();
takeoverCB_.reset();
pacingTimer_.reset();
evb_.reset();
}
QuicServerWorker::~QuicServerWorker() {
shutdownAllConnections(LocalErrorCode::SHUTTING_DOWN);
}
bool QuicServerWorker::rejectConnectionId(
const ConnectionId& candidate) const noexcept {
return connectionIdMap_.find(candidate) != connectionIdMap_.end();
}
std::string QuicServerWorker::logRoutingInfo(const ConnectionId& connId) const {
constexpr auto base =
"CID={}, cidVersion={}, workerId={}, processId={}, hostId={}, threadId={}, ";
if (!connIdAlgo_->canParse(connId)) {
return fmt::format(
base,
connId.hex(),
(uint32_t)cidVersion_,
(uint32_t)workerId_,
(uint32_t)processId_,
(uint32_t)hostId_,
folly::getCurrentThreadID());
}
auto connIdParam = connIdAlgo_->parseConnectionId(connId);
if (connIdParam.hasError()) {
return fmt::format(
base,
connId.hex(),
(uint32_t)cidVersion_,
(uint32_t)workerId_,
(uint32_t)processId_,
(uint32_t)hostId_,
folly::getCurrentThreadID());
}
std::string extended = std::string(base) +
"cidVersion in packet={}, workerId in packet={}, processId in packet={}, hostId in packet={}, ";
return fmt::vformat(
extended,
fmt::make_format_args(
connId.hex(),
(uint32_t)cidVersion_,
(uint32_t)workerId_,
(uint32_t)processId_,
(uint32_t)hostId_,
folly::getCurrentThreadID(),
(uint32_t)connIdParam->version,
(uint32_t)connIdParam->workerId,
(uint32_t)connIdParam->processId,
(uint32_t)connIdParam->hostId));
}
QuicServerWorker::AcceptObserverList::AcceptObserverList(
QuicServerWorker* worker)
: worker_(worker) {}
QuicServerWorker::AcceptObserverList::~AcceptObserverList() {
for (const auto& cb : observers_) {
cb->acceptorDestroy(worker_);
}
}
void QuicServerWorker::AcceptObserverList::add(AcceptObserver* observer) {
// adding the same observer multiple times is not allowed
CHECK(
std::find(observers_.begin(), observers_.end(), observer) ==
observers_.end());
observers_.emplace_back(CHECK_NOTNULL(observer));
observer->observerAttach(worker_);
}
bool QuicServerWorker::AcceptObserverList::remove(AcceptObserver* observer) {
auto it = std::find(observers_.begin(), observers_.end(), observer);
if (it == observers_.end()) {
return false;
}
observer->observerDetach(worker_);
observers_.erase(it);
return true;
}
void QuicServerWorker::getAllConnectionsStats(
std::vector<QuicConnectionStats>& stats) {
folly::F14FastMap<QuicServerTransport::Ptr, uint32_t> uniqueConns;
for (const auto& conn : connectionIdMap_) {
if (!conn.second) {
continue;
}
auto connState =
static_cast<const QuicServerConnectionState*>(conn.second->getState());
if (!connState) {
continue;
}
uniqueConns[conn.second]++;
}
stats.reserve(stats.size() + uniqueConns.size());
for (const auto& connEntry : uniqueConns) {
QuicConnectionStats connStats = connEntry.first->getConnectionsStats();
connStats.workerID = workerId_;
connStats.numConnIDs = connEntry.second;
stats.emplace_back(connStats);
}
}
size_t QuicServerWorker::SourceIdentityHash::operator()(
const QuicServerTransport::SourceIdentity& sid) const {
static const ::siphash::Key hashKey(
folly::Random::secureRandom<std::uint64_t>(),
folly::Random::secureRandom<std::uint64_t>());
// We opt to manually lay out the key in order to ensure that our key
// has a unique object representation. (i.e. no padding).
//
// (sockaddr, quic connection id, port)
constexpr size_t kKeySize =
sizeof(struct sockaddr_storage) + kMaxConnectionIdSize + sizeof(uint16_t);
// Zero initialization is intentional here.
std::array<unsigned char, kKeySize> key{};
struct sockaddr_storage* storage =
reinterpret_cast<struct sockaddr_storage*>(key.data());
const auto& sockaddr = sid.first;
sockaddr.getAddress(storage);
unsigned char* connid = key.data() + sizeof(struct sockaddr_storage);
memcpy(connid, sid.second.data(), sid.second.size());
uint16_t* port = reinterpret_cast<uint16_t*>(
key.data() + sizeof(struct sockaddr_storage) + kMaxConnectionIdSize);
*port = sid.first.getPort();
return siphash::siphash24(key.data(), key.size(), &hashKey);
}
} // namespace quic