1
0
mirror of https://github.com/facebookincubator/mvfst.git synced 2025-11-09 10:00:57 +03:00
Files
mvfst/quic/client/QuicClientTransport.cpp
Subodh Iyengar 166d881316 avoid copy with destination connid
Summary:
value_or seems to copy the connectionid. This changes it so that we avoid the
copy in frequently called places.

Reviewed By: yangchi

Differential Revision: D15300395

fbshipit-source-id: 4b2098cf624b748c5c3158f27777fd7435a823d0
2019-05-10 15:59:11 -07:00

1155 lines
44 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*
*/
#include <quic/client/QuicClientTransport.h>
#include <folly/portability/Sockets.h>
#include <quic/api/QuicTransportFunctions.h>
#include <quic/client/handshake/ClientTransportParametersExtension.h>
#include <quic/client/state/ClientStateMachine.h>
#include <quic/flowcontrol/QuicFlowController.h>
#include <quic/happyeyeballs/QuicHappyEyeballsFunctions.h>
#include <quic/loss/QuicLossFunctions.h>
#include <quic/state/AckHandlers.h>
#include <quic/state/QuicPacingFunctions.h>
namespace fsp = folly::portability::sockets;
namespace quic {
QuicClientTransport::QuicClientTransport(
folly::EventBase* evb,
std::unique_ptr<folly::AsyncUDPSocket> socket)
: QuicTransportBase(evb, std::move(socket)),
happyEyeballsConnAttemptDelayTimeout_(this) {
auto tempConn = std::make_unique<QuicClientConnectionState>();
clientConn_ = tempConn.get();
conn_ = std::move(tempConn);
std::vector<uint8_t> connIdData(kDefaultConnectionIdSize);
folly::Random::secureRandom(connIdData.data(), connIdData.size());
// Set them to be the same, this shouldn't really matter.
conn_->clientConnectionId = ConnectionId(connIdData);
// Change destination connection to not be same as src connid to suss
// out bugs.
connIdData[0] ^= 0x1;
clientConn_->initialDestinationConnectionId = ConnectionId(connIdData);
conn_->readCodec = std::make_unique<QuicReadCodec>(QuicNodeType::Client);
conn_->readCodec->setClientConnectionId(*conn_->clientConnectionId);
conn_->readCodec->setCodecParameters(
CodecParameters(conn_->peerAckDelayExponent));
// TODO: generate this once we can generate the packet sequence number
// correctly.
// conn_->nextSequenceNum = folly::Random::secureRandom<PacketNum>();
VLOG(10) << "client created " << *conn_;
}
QuicClientTransport::~QuicClientTransport() {
VLOG(10) << "Destroyed connection to server=" << conn_->peerAddress;
// The caller probably doesn't need the conn callback after destroying the
// transport.
connCallback_ = nullptr;
// Close without draining.
closeImpl(
std::make_pair(
QuicErrorCode(LocalErrorCode::SHUTTING_DOWN),
std::string("Closing from client destructor")),
false);
if (conn_->happyEyeballsState.secondSocket) {
auto sock = std::move(conn_->happyEyeballsState.secondSocket);
sock->pauseRead();
sock->close();
}
}
void QuicClientTransport::processUDPData(
const folly::SocketAddress& peer,
NetworkData&& networkData) {
folly::IOBufQueue udpData{folly::IOBufQueue::cacheChainLength()};
udpData.append(std::move(networkData.data));
for (uint16_t processedPackets = 0;
!udpData.empty() && processedPackets < kMaxNumCoalescedPackets;
processedPackets++) {
processPacketData(peer, networkData.receiveTimePoint, udpData);
}
VLOG_IF(4, !udpData.empty())
<< "Leaving " << udpData.chainLength()
<< " bytes unprocessed after attempting to process "
<< kMaxNumCoalescedPackets << " packets.";
}
void QuicClientTransport::processPacketData(
const folly::SocketAddress& peer,
TimePoint receiveTimePoint,
folly::IOBufQueue& packetQueue) {
auto packetSize = packetQueue.chainLength();
if (packetSize == 0) {
return;
}
auto parsedPacket =
conn_->readCodec->parsePacket(packetQueue, conn_->ackStates);
bool parseSuccess = folly::variant_match(
parsedPacket,
[&](QuicPacket&) { return true; },
[&](StatelessReset& reset) {
auto& token = clientConn_->statelessResetToken;
if (reset.token != token) {
VLOG(4) << "Drop StatelessReset for bad connId or token " << *this;
return false;
}
VLOG(4) << "Received Stateless Reset " << *this;
conn_->peerConnectionError = std::make_pair(
QuicErrorCode(LocalErrorCode::CONNECTION_RESET),
toString(LocalErrorCode::CONNECTION_RESET));
throw QuicInternalException("Peer reset", LocalErrorCode::NO_ERROR);
folly::assume_unreachable();
},
[&](auto&) { return false; });
if (!parseSuccess) {
QUIC_TRACE(packet_drop, *conn_, "parse");
return;
}
if (happyEyeballsEnabled_) {
happyEyeballsOnDataReceived(
*conn_, happyEyeballsConnAttemptDelayTimeout_, socket_, peer);
}
auto& packet = boost::get<QuicPacket>(parsedPacket);
auto versionNegotiation = boost::get<VersionNegotiationPacket>(&packet);
if (versionNegotiation) {
VLOG(4) << "Got version negotiation packet from peer=" << peer
<< " versions=" << std::hex << versionNegotiation->versions << " "
<< *this;
throw QuicInternalException(
"Received version negotiation packet",
LocalErrorCode::CONNECTION_ABANDONED);
}
// TODO: handle other packet types.
// Before we know what the protection level of the packet is, we should
// not throw an error.
auto regularOptional = boost::get<RegularQuicPacket>(&packet);
if (!regularOptional) {
VLOG(4) << "Dropping non-regular packet " << *conn_;
QUIC_TRACE(packet_drop, *conn_, "non_regular");
return;
}
bool longHeader = folly::variant_match(
regularOptional->header,
[](const LongHeader&) { return true; },
[](const ShortHeader&) { return false; });
if (longHeader &&
boost::get<LongHeader>(regularOptional->header).getHeaderType() ==
LongHeader::Types::Retry) {
if (clientConn_->retryToken_) {
VLOG(4) << "Server sent more than one retry packet";
return;
}
// TODO (amsharma): Check if we have already received an initial packet
// from the server. If so, discard it. Here are some ways in which I
// could do this:
// 1. Have a boolean flag initialPacketReceived_ that we set to true when
// we get an initial packet from the server. This seems a bit messy.
// 2. Check for the presence of the oneRttWriteCipher and/or the
// oneRttReadCipher in the handshake layer. I think this might be a
// better approach, but I don't know if it is a good indicator that we've
// received an initial packet from the server.
auto header = boost::get<LongHeader>(regularOptional->header);
const ConnectionId* dstConnId =
&(*clientConn_->initialDestinationConnectionId);
if (conn_->serverConnectionId) {
dstConnId = &(*conn_->serverConnectionId);
}
if (*header.getOriginalDstConnId() != *dstConnId) {
VLOG(4) << "Original destination connection id field in the retry "
<< "packet doesn't match the destination connection id from the "
<< "client's initial packet";
return;
}
// Set the destination connection ID to be the value from the source
// connection id of the retry packet
clientConn_->initialDestinationConnectionId = header.getSourceConnId();
auto released = static_cast<QuicClientConnectionState*>(conn_.release());
std::unique_ptr<QuicClientConnectionState> uniqueClient(released);
auto tempConn = undoAllClientStateForRetry(std::move(uniqueClient));
clientConn_ = tempConn.get();
conn_ = std::move(tempConn);
clientConn_->retryToken_ = header.getToken()->clone();
startCryptoHandshake();
return;
}
auto protectionLevel = folly::variant_match(
regularOptional->header,
[](auto& header) { return header.getProtectionType(); });
auto encryptionLevel = protectionTypeToEncryptionLevel(protectionLevel);
auto packetNum = folly::variant_match(
regularOptional->header,
[](const auto& h) { return h.getPacketSequenceNum(); });
auto pnSpace = folly::variant_match(
regularOptional->header,
[](auto& header) { return header.getPacketNumberSpace(); });
bool isProtectedPacket = protectionLevel == ProtectionType::KeyPhaseZero ||
protectionLevel == ProtectionType::KeyPhaseOne;
auto& regularPacket = *regularOptional;
if (!isProtectedPacket) {
for (auto& quicFrame : regularPacket.frames) {
auto isPadding = boost::get<PaddingFrame>(&quicFrame);
auto isAck = boost::get<ReadAckFrame>(&quicFrame);
auto isClose = boost::get<ConnectionCloseFrame>(&quicFrame);
auto isCrypto = boost::get<ReadCryptoFrame>(&quicFrame);
// TODO: add path challenge and response
if (!isPadding && !isAck && !isClose && !isCrypto) {
throw QuicTransportException(
"Invalid frame", TransportErrorCode::PROTOCOL_VIOLATION);
}
}
}
QUIC_TRACE(packet_recvd, *conn_, toString(pnSpace), packetNum, packetSize);
// We got a packet that was not the version negotiation packet, that means
// that the version is now bound to the new packet.
// TODO: move this into the state machine.
// TODO: get this from the crypto layer instead. This would be a security vuln
// if we don't.
if (!conn_->version) {
conn_->version = conn_->originalVersion;
}
if (!conn_->serverConnectionId && longHeader) {
folly::Optional<ConnectionId> receivedSrcConnId(folly::variant_match(
regularOptional->header,
[&](const LongHeader& h) -> folly::Optional<ConnectionId> {
return h.getSourceConnId();
},
[](const ShortHeader&) -> folly::Optional<ConnectionId> {
return folly::none;
}));
// Assign the conn id to the server chosen connid.
if (!receivedSrcConnId) {
throw QuicTransportException(
"Expected long header with connection-id",
TransportErrorCode::PROTOCOL_VIOLATION);
}
conn_->serverConnectionId = std::move(receivedSrcConnId);
conn_->readCodec->setServerConnectionId(*conn_->serverConnectionId);
}
// Error out if the connection id on the packet is not the one that is
// expected.
if (folly::variant_match(
regularOptional->header,
[](const LongHeader& h) { return h.getDestinationConnId(); },
[](const ShortHeader& h) { return h.getConnectionId(); }) !=
*conn_->clientConnectionId) {
throw QuicTransportException(
"Invalid connection id", TransportErrorCode::PROTOCOL_VIOLATION);
}
auto& ackState = getAckState(*conn_, pnSpace);
auto outOfOrder =
updateLargestReceivedPacketNum(ackState, packetNum, receiveTimePoint);
bool pktHasRetransmittableData = false;
bool pktHasCryptoData = false;
for (auto& quicFrame : regularPacket.frames) {
folly::variant_match(
quicFrame,
[&](ReadAckFrame& ackFrame) {
VLOG(10) << "Client received ack frame in packet=" << packetNum << " "
<< *this;
processAckFrame(
*conn_,
pnSpace,
ackFrame,
[&](const OutstandingPacket& outstandingPacket,
const QuicWriteFrame& packetFrame,
const ReadAckFrame&) {
auto outstandingProtectionType = folly::variant_match(
outstandingPacket.packet.header,
[](const auto& h) { return h.getProtectionType(); });
if (outstandingProtectionType == ProtectionType::KeyPhaseZero) {
// If we received an ack for data that we sent in 1-rtt from
// the server, we can assume that the server had successfully
// derived the 1-rtt keys and hence received the client
// finished message. Thus we don't need to retransmit any of
// the crypto data any longer.
//
// This will not cancel oneRttStream.
//
// TODO: replace this with a better solution later.
cancelHandshakeCryptoStreamRetransmissions(
*conn_->cryptoState);
}
folly::variant_match(
packetFrame,
[&](const WriteAckFrame& frame) {
DCHECK(!frame.ackBlocks.empty());
VLOG(4) << "Client received ack for largestAcked="
<< frame.ackBlocks.back().end << " " << *this;
commonAckVisitorForAckFrame(ackState, frame);
},
[&](const RstStreamFrame& frame) {
VLOG(4) << "Client received ack for reset frame stream="
<< frame.streamId << " " << *this;
auto stream =
conn_->streamManager->getStream(frame.streamId);
if (stream) {
invokeStreamSendStateMachine(
*conn_, *stream, StreamEvents::RstAck(frame));
}
},
[&](const WriteStreamFrame& frame) {
auto ackedStream =
conn_->streamManager->getStream(frame.streamId);
VLOG(4) << "Client got ack for stream=" << frame.streamId
<< " offset=" << frame.offset
<< " fin=" << frame.fin << " data=" << frame.len
<< " closed=" << (ackedStream == nullptr) << " "
<< *this;
if (ackedStream) {
invokeStreamSendStateMachine(
*conn_,
*ackedStream,
StreamEvents::AckStreamFrame(frame));
}
},
[&](const WriteCryptoFrame& frame) {
auto cryptoStream = getCryptoStream(
*conn_->cryptoState,
protectionTypeToEncryptionLevel(
outstandingProtectionType));
processCryptoStreamAck(
*cryptoStream, frame.offset, frame.len);
},
[&](const auto& /* frame */) {
// Ignore other frames.
});
},
markPacketLoss,
receiveTimePoint);
},
[&](RstStreamFrame& frame) {
VLOG(10) << "Client received reset stream=" << frame.streamId << " "
<< *this;
pktHasRetransmittableData = true;
auto streamId = frame.streamId;
auto stream = conn_->streamManager->getStream(streamId);
if (!stream) {
return;
}
invokeStreamReceiveStateMachine(*conn_, *stream, std::move(frame));
},
[&](ReadCryptoFrame& cryptoFrame) {
pktHasRetransmittableData = true;
pktHasCryptoData = true;
VLOG(10) << "Client received crypto data offset="
<< cryptoFrame.offset
<< " len=" << cryptoFrame.data->computeChainDataLength()
<< " packetNum=" << packetNum << " " << *this;
appendDataToReadBuffer(
*getCryptoStream(*conn_->cryptoState, encryptionLevel),
StreamBuffer(
std::move(cryptoFrame.data), cryptoFrame.offset, false));
},
[&](ReadStreamFrame& frame) {
VLOG(10) << "Client received stream data for stream="
<< frame.streamId << " offset=" << frame.offset
<< " len=" << frame.data->computeChainDataLength()
<< " fin=" << frame.fin << " packetNum=" << packetNum << " "
<< *this;
auto stream = conn_->streamManager->getStream(frame.streamId);
pktHasRetransmittableData = true;
if (!stream) {
VLOG(10) << "Could not find stream=" << frame.streamId << " "
<< *conn_;
return;
}
invokeStreamReceiveStateMachine(*conn_, *stream, std::move(frame));
},
[&](MaxDataFrame& connWindowUpdate) {
VLOG(10) << "Client received max data offset="
<< connWindowUpdate.maximumData << " " << *this;
pktHasRetransmittableData = true;
handleConnWindowUpdate(*conn_, connWindowUpdate, packetNum);
},
[&](MaxStreamDataFrame& streamWindowUpdate) {
VLOG(10) << "Client received max stream data stream="
<< streamWindowUpdate.streamId
<< " offset=" << streamWindowUpdate.maximumData << " "
<< *this;
if (isReceivingStream(conn_->nodeType, streamWindowUpdate.streamId)) {
throw QuicTransportException(
"Received MaxStreamDataFrame for receiving stream.",
TransportErrorCode::STREAM_STATE_ERROR);
}
pktHasRetransmittableData = true;
auto stream =
conn_->streamManager->getStream(streamWindowUpdate.streamId);
if (stream) {
handleStreamWindowUpdate(
*stream, streamWindowUpdate.maximumData, packetNum);
}
},
[&](MaxStreamsFrame& maxStreamsFrame) {
VLOG(10) << "Client received max streams frame stream="
<< maxStreamsFrame.maxStreams << *this;
if (maxStreamsFrame.isForBidirectionalStream()) {
conn_->streamManager->setMaxLocalBidirectionalStreams(
maxStreamsFrame.maxStreams);
} else {
conn_->streamManager->setMaxLocalUnidirectionalStreams(
maxStreamsFrame.maxStreams);
}
},
[&](DataBlockedFrame&) {
VLOG(10) << "Client received blocked " << *this;
pktHasRetransmittableData = true;
handleConnBlocked(*conn_);
},
[&](StreamDataBlockedFrame& blocked) {
// peer wishes to send data, but is unable to due to stream-level flow
// control
VLOG(10) << "Client received blocked stream=" << blocked.streamId
<< " " << *this;
pktHasRetransmittableData = true;
auto stream = conn_->streamManager->getStream(blocked.streamId);
if (stream) {
handleStreamBlocked(*stream);
}
},
[&](StreamsBlockedFrame& blocked) {
// peer wishes to open a stream, but is unable to due to the maximum
// stream limit set by us
VLOG(10) << "Client received stream blocked limit="
<< blocked.streamLimit << " " << *this;
// TODO implement handler for it
},
[&](ConnectionCloseFrame& connFrame) {
auto errMsg = folly::to<std::string>(
"Client closed by peer reason=", connFrame.reasonPhrase);
VLOG(4) << errMsg << " " << *this;
// we want to deliver app callbacks with the peer supplied error,
// but send a NO_ERROR to the peer.
QUIC_TRACE(recvd_close, *conn_, errMsg.c_str());
conn_->peerConnectionError = std::make_pair(
QuicErrorCode(connFrame.errorCode), std::move(errMsg));
throw QuicTransportException(
"Peer closed", TransportErrorCode::NO_ERROR);
},
[&](ApplicationCloseFrame& appClose) {
auto errMsg = folly::to<std::string>(
"Client closed by peer reason=", appClose.reasonPhrase);
VLOG(4) << errMsg << " " << *this;
QUIC_TRACE(recvd_close, *conn_, errMsg.c_str());
conn_->peerConnectionError = std::make_pair(
QuicErrorCode(appClose.errorCode), std::move(errMsg));
throw QuicTransportException(
"Peer closed", TransportErrorCode::NO_ERROR);
},
[&](PaddingFrame&) {},
[&](QuicSimpleFrame& simpleFrame) {
pktHasRetransmittableData = true;
updateSimpleFrameOnPacketReceived(
*conn_, simpleFrame, packetNum, false);
},
[&](auto&) {});
}
// Try reading bytes off of crypto, and performing a handshake.
auto cryptoData = readDataFromCryptoStream(
*getCryptoStream(*conn_->cryptoState, encryptionLevel));
auto handshakeLayer = clientConn_->clientHandshakeLayer;
if (cryptoData) {
handshakeLayer->doHandshake(std::move(cryptoData), encryptionLevel);
auto handshakeWriteCipher = handshakeLayer->getHandshakeWriteCipher();
auto handshakeReadCipher = handshakeLayer->getHandshakeReadCipher();
auto handshakeReadHeaderCipher =
handshakeLayer->getHandshakeReadHeaderCipher();
auto handshakeWriteHeaderCipher =
handshakeLayer->getHandshakeWriteHeaderCipher();
if (handshakeWriteCipher) {
conn_->handshakeWriteCipher = std::move(handshakeWriteCipher);
}
if (handshakeWriteHeaderCipher) {
conn_->handshakeWriteHeaderCipher = std::move(handshakeWriteHeaderCipher);
}
if (handshakeReadCipher) {
conn_->readCodec->setHandshakeReadCipher(std::move(handshakeReadCipher));
}
if (handshakeReadHeaderCipher) {
conn_->readCodec->setHandshakeHeaderCipher(
std::move(handshakeReadHeaderCipher));
}
auto oneRttWriteCipher = handshakeLayer->getOneRttWriteCipher();
auto oneRttReadCipher = handshakeLayer->getOneRttReadCipher();
auto oneRttReadHeaderCipher = handshakeLayer->getOneRttReadHeaderCipher();
auto oneRttWriteHeaderCipher = handshakeLayer->getOneRttWriteHeaderCipher();
bool oneRttKeyDerivationTriggered = false;
if (oneRttWriteCipher) {
conn_->oneRttWriteCipher = std::move(oneRttWriteCipher);
oneRttKeyDerivationTriggered = true;
updatePacingOnKeyEstablished(*conn_);
}
if (oneRttWriteHeaderCipher) {
conn_->oneRttWriteHeaderCipher = std::move(oneRttWriteHeaderCipher);
}
if (oneRttReadCipher) {
conn_->readCodec->setOneRttReadCipher(std::move(oneRttReadCipher));
}
if (oneRttReadHeaderCipher) {
conn_->readCodec->setOneRttHeaderCipher(
std::move(oneRttReadHeaderCipher));
}
bool zeroRttRejected = handshakeLayer->getZeroRttRejected().value_or(false);
if (zeroRttRejected) {
QUIC_TRACE(zero_rtt, *conn_, "rejected");
removePsk();
} else if (conn_->zeroRttWriteCipher) {
QUIC_TRACE(zero_rtt, *conn_, "accepted");
}
bool shouldNegotiateParameters = false;
if (clientConn_->zeroRttWriteCipher) {
shouldNegotiateParameters =
zeroRttRejected && (conn_->oneRttWriteCipher != nullptr);
} else {
shouldNegotiateParameters = oneRttKeyDerivationTriggered;
}
if (shouldNegotiateParameters) {
auto originalPeerMaxOffset =
conn_->flowControlState.peerAdvertisedMaxOffset;
auto originalPeerInitialStreamOffsetBidiLocal =
conn_->flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiLocal;
auto originalPeerInitialStreamOffsetBidiRemote =
conn_->flowControlState
.peerAdvertisedInitialMaxStreamOffsetBidiRemote;
auto originalPeerInitialStreamOffsetUni =
conn_->flowControlState.peerAdvertisedInitialMaxStreamOffsetUni;
VLOG(10) << "Client negotiated transport params " << *this;
auto serverParams = handshakeLayer->getServerTransportParams();
if (!serverParams) {
throw QuicTransportException(
"No server transport params",
TransportErrorCode::TRANSPORT_PARAMETER_ERROR);
}
processServerInitialParams(
*clientConn_, std::move(*serverParams), packetNum);
cacheServerInitialParams(
conn_->flowControlState.peerAdvertisedMaxOffset,
conn_->flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiLocal,
conn_->flowControlState
.peerAdvertisedInitialMaxStreamOffsetBidiRemote,
conn_->flowControlState.peerAdvertisedInitialMaxStreamOffsetUni);
auto& statelessResetToken = clientConn_->statelessResetToken;
if (statelessResetToken) {
conn_->readCodec->setStatelessResetToken(*statelessResetToken);
}
if (zeroRttRejected) {
// verify that the new flow control parameters are >= the original
// transport parameters that were use. This is the easy case. If the
// flow control decreases then we are just screwed and we need to have
// the app retry the connection. The other parameters can be updated.
// TODO: implement undo transport state on retry.
if (originalPeerMaxOffset >
conn_->flowControlState.peerAdvertisedMaxOffset ||
originalPeerInitialStreamOffsetBidiLocal >
conn_->flowControlState
.peerAdvertisedInitialMaxStreamOffsetBidiLocal ||
originalPeerInitialStreamOffsetBidiRemote >
conn_->flowControlState
.peerAdvertisedInitialMaxStreamOffsetBidiRemote ||
originalPeerInitialStreamOffsetUni >
conn_->flowControlState
.peerAdvertisedInitialMaxStreamOffsetUni) {
throw QuicTransportException(
"Rejection of zero rtt parameters unsupported",
TransportErrorCode::TRANSPORT_PARAMETER_ERROR);
}
}
}
if (zeroRttRejected) {
// TODO: Make sure the alpn is the same, if not then do a full undo of the
// state.
clientConn_->zeroRttWriteCipher = nullptr;
markZeroRttPacketsLost(*conn_, markPacketLoss);
}
}
if (protectionLevel == ProtectionType::KeyPhaseZero ||
protectionLevel == ProtectionType::KeyPhaseOne) {
DCHECK(conn_->oneRttWriteCipher);
clientConn_->clientHandshakeLayer->onRecvOneRttProtectedData();
conn_->readCodec->onHandshakeDone(receiveTimePoint);
}
updateAckSendStateOnRecvPacket(
*conn_,
ackState,
outOfOrder,
pktHasRetransmittableData,
pktHasCryptoData);
}
void QuicClientTransport::onReadData(
const folly::SocketAddress& peer,
NetworkData&& networkData) {
if (closeState_ == CloseState::CLOSED) {
// If we are closed, then we shoudn't process new network data.
// TODO: we might want to process network data if we decide that we should
// exit draining state early
QUIC_TRACE(packet_drop, *conn_, "already_closed");
return;
}
processUDPData(peer, std::move(networkData));
if (!transportReadyNotified_ && hasWriteCipher()) {
transportReadyNotified_ = true;
CHECK_NOTNULL(connCallback_)->onTransportReady();
}
// Checking connCallback_ because application will start to write data
// in onTransportReady, if the write fails, QuicSocket can be closed
// and connCallback_ is set nullptr.
if (connCallback_ && !replaySafeNotified_ && conn_->oneRttWriteCipher) {
replaySafeNotified_ = true;
// We don't need this any more. Also unset it so that we don't allow random
// middleboxes to shutdown our connection once we have crypto keys.
socket_->setErrMessageCallback(nullptr);
connCallback_->onReplaySafe();
}
}
void QuicClientTransport::writeData() {
// TODO: replace with write in state machine.
// TODO: change to draining when we move the client to have a draining state
// as well.
auto phase = clientConn_->clientHandshakeLayer->getPhase();
QuicVersion version = conn_->version.value_or(*conn_->originalVersion);
const ConnectionId& srcConnId = *conn_->clientConnectionId;
const ConnectionId* destConnId =
&(*clientConn_->initialDestinationConnectionId);
if (conn_->serverConnectionId) {
destConnId = &(*conn_->serverConnectionId);
}
if (closeState_ == CloseState::CLOSED) {
// TODO: get rid of phase
if (phase == ClientHandshake::Phase::Established &&
conn_->oneRttWriteCipher) {
CHECK(conn_->oneRttWriteHeaderCipher);
writeShortClose(
*socket_,
*conn_,
*destConnId /* dst */,
conn_->localConnectionError,
*conn_->oneRttWriteCipher,
*conn_->oneRttWriteHeaderCipher);
} else if (conn_->initialWriteCipher) {
CHECK(conn_->initialHeaderCipher);
writeLongClose(
*socket_,
*conn_,
srcConnId /* src */,
*destConnId /* dst */,
LongHeader::Types::Initial,
conn_->localConnectionError,
*conn_->initialWriteCipher,
*conn_->initialHeaderCipher,
version);
}
return;
}
uint64_t packetLimit =
(isConnectionPaced(*conn_)
? conn_->congestionController->getPacingRate(Clock::now())
: conn_->transportSettings.writeConnectionDataPacketsLimit);
CryptoStreamScheduler initialScheduler(
*conn_,
*getCryptoStream(*conn_->cryptoState, fizz::EncryptionLevel::Plaintext));
CryptoStreamScheduler handshakeScheduler(
*conn_,
*getCryptoStream(*conn_->cryptoState, fizz::EncryptionLevel::Handshake));
if (initialScheduler.hasData() ||
(conn_->ackStates.initialAckState.needsToSendAckImmediately &&
hasAcksToSchedule(conn_->ackStates.initialAckState))) {
CHECK(conn_->initialWriteCipher);
CHECK(conn_->initialHeaderCipher);
packetLimit -= writeCryptoAndAckDataToSocket(
*socket_,
*conn_,
srcConnId /* src */,
*destConnId /* dst */,
LongHeader::Types::Initial,
*conn_->initialWriteCipher,
*conn_->initialHeaderCipher,
version,
packetLimit,
clientConn_->retryToken_ ? clientConn_->retryToken_->clone() : nullptr);
}
if (!packetLimit) {
return;
}
if (handshakeScheduler.hasData() ||
(conn_->ackStates.handshakeAckState.needsToSendAckImmediately &&
hasAcksToSchedule(conn_->ackStates.handshakeAckState))) {
CHECK(conn_->handshakeWriteCipher);
CHECK(conn_->handshakeWriteHeaderCipher);
packetLimit -= writeCryptoAndAckDataToSocket(
*socket_,
*conn_,
srcConnId /* src */,
*destConnId /* dst */,
LongHeader::Types::Handshake,
*conn_->handshakeWriteCipher,
*conn_->handshakeWriteHeaderCipher,
version,
packetLimit);
}
if (!packetLimit) {
return;
}
if (clientConn_->zeroRttWriteCipher && !conn_->oneRttWriteCipher) {
CHECK(clientConn_->zeroRttWriteHeaderCipher);
packetLimit -= writeZeroRttDataToSocket(
*socket_,
*conn_,
srcConnId /* src */,
*destConnId /* dst */,
*clientConn_->zeroRttWriteCipher,
*clientConn_->zeroRttWriteHeaderCipher,
version,
packetLimit);
}
if (!packetLimit) {
return;
}
if (conn_->oneRttWriteCipher) {
CHECK(clientConn_->oneRttWriteHeaderCipher);
writeQuicDataExceptCryptoStreamToSocket(
*socket_,
*conn_,
srcConnId,
*destConnId,
*conn_->oneRttWriteCipher,
*conn_->oneRttWriteHeaderCipher,
version,
packetLimit);
}
}
folly::Optional<QuicCachedPsk> QuicClientTransport::getPsk() {
if (!hostname_ || !pskCache_) {
return folly::none;
}
auto quicCachedPsk = pskCache_->getPsk(*hostname_);
if (!quicCachedPsk) {
return folly::none;
}
// TODO T32658838 better API to disable early data for current connection
if (!conn_->transportSettings.attemptEarlyData) {
quicCachedPsk->cachedPsk.maxEarlyDataSize = 0;
} else if (
quicCachedPsk->transportParams.negotiatedVersion !=
conn_->originalVersion) {
quicCachedPsk->cachedPsk.maxEarlyDataSize = 0;
removePsk();
} else if (!CHECK_NOTNULL(connCallback_)
->validateEarlyDataAppParams(
quicCachedPsk->cachedPsk.alpn,
folly::IOBuf::copyBuffer(quicCachedPsk->appParams))) {
quicCachedPsk->cachedPsk.maxEarlyDataSize = 0;
// Do not remove psk here, will let application decide
}
return quicCachedPsk;
}
void QuicClientTransport::startCryptoHandshake() {
auto self = this->shared_from_this();
// Set idle timer whenever crypto starts so that we can restart the idle timer
// after a version negotiation as well.
setIdleTimer();
// TODO: no need to close the transport if there is an error in the
// handshake.
// We need to update the flow control settings every time we start a crypto
// handshake. This is so that we can reset the flow control settings when
// we go through version negotiation as well.
updateFlowControlStateWithSettings(
conn_->flowControlState, conn_->transportSettings);
// Look up psk and supply to handshake layer
folly::Optional<QuicCachedPsk> quicCachedPsk = getPsk();
folly::Optional<fizz::client::CachedPsk> cachedPsk;
if (quicCachedPsk) {
cachedPsk = std::move(quicCachedPsk->cachedPsk);
}
QuicFizzFactory fizzFactory;
conn_->initialWriteCipher = getClientInitialCipher(
&fizzFactory, *clientConn_->initialDestinationConnectionId);
conn_->readCodec->setInitialReadCipher(getServerInitialCipher(
&fizzFactory, *clientConn_->initialDestinationConnectionId));
conn_->readCodec->setInitialHeaderCipher(makeServerInitialHeaderCipher(
&fizzFactory, *clientConn_->initialDestinationConnectionId));
conn_->initialHeaderCipher = makeClientInitialHeaderCipher(
&fizzFactory, *clientConn_->initialDestinationConnectionId);
// Add partial reliability parameter to customTransportParameters_.
setPartialReliabilityTransportParameter();
auto paramsExtension = std::make_shared<ClientTransportParametersExtension>(
*conn_->originalVersion,
conn_->transportSettings.advertisedInitialConnectionWindowSize,
conn_->transportSettings.advertisedInitialBidiLocalStreamWindowSize,
conn_->transportSettings.advertisedInitialBidiRemoteStreamWindowSize,
conn_->transportSettings.advertisedInitialUniStreamWindowSize,
conn_->transportSettings.idleTimeout,
conn_->transportSettings.ackDelayExponent,
conn_->transportSettings.maxRecvPacketSize,
customTransportParameters_);
auto handshakeLayer = clientConn_->clientHandshakeLayer;
handshakeLayer->connect(
ctx_,
verifier_,
hostname_,
std::move(cachedPsk),
std::move(paramsExtension),
this);
auto zeroRttWriteCipher = handshakeLayer->getZeroRttWriteCipher();
auto zeroRttWriteHeaderCipher = handshakeLayer->getZeroRttWriteHeaderCipher();
if (zeroRttWriteCipher) {
QUIC_TRACE(zero_rtt, *conn_, "attempted");
clientConn_->zeroRttWriteCipher = std::move(zeroRttWriteCipher);
clientConn_->zeroRttWriteHeaderCipher = std::move(zeroRttWriteHeaderCipher);
// If zero rtt write cipher is derived, it means the cached psk was valid
DCHECK(quicCachedPsk);
auto& transportParams = quicCachedPsk->transportParams;
cacheServerInitialParams(
transportParams.initialMaxData,
transportParams.initialMaxStreamDataBidiLocal,
transportParams.initialMaxStreamDataBidiRemote,
transportParams.initialMaxStreamDataUni);
updateTransportParamsFromCachedEarlyParams(*clientConn_, transportParams);
}
writeSocketData();
if (!transportReadyNotified_ && clientConn_->zeroRttWriteCipher) {
transportReadyNotified_ = true;
runOnEvbAsync([](auto self) {
auto clientPtr = static_cast<QuicClientTransport*>(self.get());
if (clientPtr->connCallback_) {
clientPtr->connCallback_->onTransportReady();
}
});
}
}
void QuicClientTransport::cacheServerInitialParams(
uint64_t peerAdvertisedInitialMaxData,
uint64_t peerAdvertisedInitialMaxStreamDataBidiLocal,
uint64_t peerAdvertisedInitialMaxStreamDataBidiRemote,
uint64_t peerAdvertisedInitialMaxStreamDataUni) {
serverInitialParamsSet_ = true;
peerAdvertisedInitialMaxData_ = peerAdvertisedInitialMaxData;
peerAdvertisedInitialMaxStreamDataBidiLocal_ =
peerAdvertisedInitialMaxStreamDataBidiLocal;
peerAdvertisedInitialMaxStreamDataBidiRemote_ =
peerAdvertisedInitialMaxStreamDataBidiRemote;
peerAdvertisedInitialMaxStreamDataUni_ =
peerAdvertisedInitialMaxStreamDataUni;
}
void QuicClientTransport::removePsk() {
if (pskCache_ && hostname_) {
pskCache_->removePsk(*hostname_);
}
}
void QuicClientTransport::onNewCachedPsk(
fizz::client::NewCachedPsk& newCachedPsk) noexcept {
DCHECK(conn_->version.hasValue());
DCHECK(serverInitialParamsSet_);
if (!pskCache_ || !hostname_) {
return;
}
QuicCachedPsk quicCachedPsk;
quicCachedPsk.cachedPsk = std::move(newCachedPsk.psk);
quicCachedPsk.transportParams.negotiatedVersion = *conn_->version;
quicCachedPsk.transportParams.initialMaxStreamDataBidiLocal =
peerAdvertisedInitialMaxStreamDataBidiLocal_;
quicCachedPsk.transportParams.initialMaxStreamDataBidiRemote =
peerAdvertisedInitialMaxStreamDataBidiRemote_;
quicCachedPsk.transportParams.initialMaxStreamDataUni =
peerAdvertisedInitialMaxStreamDataUni_;
quicCachedPsk.transportParams.initialMaxData = peerAdvertisedInitialMaxData_;
quicCachedPsk.transportParams.idleTimeout = conn_->peerIdleTimeout.count();
quicCachedPsk.transportParams.maxRecvPacketSize = conn_->udpSendPacketLen;
quicCachedPsk.transportParams.ackDelayExponent = conn_->peerAckDelayExponent;
auto appParams = CHECK_NOTNULL(connCallback_)->serializeEarlyDataAppParams();
if (appParams) {
quicCachedPsk.appParams = appParams->moveToFbString().toStdString();
}
pskCache_->putPsk(*hostname_, std::move(quicCachedPsk));
}
bool QuicClientTransport::hasWriteCipher() const {
return clientConn_->oneRttWriteCipher || clientConn_->zeroRttWriteCipher;
}
std::shared_ptr<QuicTransportBase> QuicClientTransport::sharedGuard() {
return shared_from_this();
}
bool QuicClientTransport::isTLSResumed() const {
return clientConn_->clientHandshakeLayer->isTLSResumed();
}
void QuicClientTransport::errMessage(const cmsghdr& cmsg) noexcept {
#ifdef FOLLY_HAVE_MSG_ERRQUEUE
if ((cmsg.cmsg_level == SOL_IP && cmsg.cmsg_type == IP_RECVERR) ||
(cmsg.cmsg_level == SOL_IPV6 && cmsg.cmsg_type == IPV6_RECVERR)) {
const struct sock_extended_err* serr =
reinterpret_cast<const struct sock_extended_err*>(CMSG_DATA(&cmsg));
auto connectionError = (serr->ee_errno == ECONNREFUSED) ||
(serr->ee_errno == ENETUNREACH) || (serr->ee_errno == ENETDOWN);
if (!connectionError) {
return;
}
auto errStr = folly::errnoStr(serr->ee_errno);
runOnEvbAsync([errString = std::move(errStr)](auto self) {
auto quicError = std::make_pair(
QuicErrorCode(LocalErrorCode::CONNECT_FAILED),
errString.toStdString());
auto clientPtr = static_cast<QuicClientTransport*>(self.get());
clientPtr->closeImpl(std::move(quicError), false, false);
});
}
#endif
}
void QuicClientTransport::getReadBuffer(void** buf, size_t* len) noexcept {
DCHECK(conn_) << "trying to receive packets without a connection";
auto readBufferSize = conn_->transportSettings.maxRecvPacketSize;
readBuffer_ = folly::IOBuf::create(readBufferSize);
*buf = readBuffer_->writableData();
*len = readBufferSize;
}
void QuicClientTransport::onDataAvailable(
const folly::SocketAddress& server,
size_t len,
bool truncated) noexcept {
VLOG(10) << "Got data from socket peer=" << server << " len=" << len;
// TODO: we can get better receive time accuracy than this, with
// SO_TIMESTAMP or SIOCGSTAMP.
auto packetReceiveTime = Clock::now();
Buf data = std::move(readBuffer_);
if (truncated) {
// This is an error, drop the packet.
QUIC_TRACE(packet_drop, *conn_, "udp_truncated");
return;
}
data->append(len);
QUIC_TRACE(udp_recvd, *conn_, (uint64_t)len);
NetworkData networkData(std::move(data), packetReceiveTime);
onNetworkData(server, std::move(networkData));
}
void QuicClientTransport::
happyEyeballsConnAttemptDelayTimeoutExpired() noexcept {
QUIC_TRACE(happy_eyeballs, *conn_, "delay timer expired");
happyEyeballsStartSecondSocket(conn_->happyEyeballsState);
}
void QuicClientTransport::start(ConnectionCallback* cb) {
if (happyEyeballsEnabled_) {
// TODO Supply v4 delay amount from somewhere when we want to tune this
startHappyEyeballs(
*conn_,
evb_,
happyEyeballsCachedFamily_,
happyEyeballsConnAttemptDelayTimeout_,
happyEyeballsCachedFamily_ == AF_UNSPEC
? kHappyEyeballsV4Delay
: kHappyEyeballsConnAttemptDelayWithCache,
this,
this);
}
CHECK(conn_->peerAddress.isInitialized());
if (!ctx_) {
ctx_ = std::make_shared<const fizz::client::FizzClientContext>();
}
if (!verifier_) {
verifier_ = std::make_shared<const fizz::DefaultCertificateVerifier>(
fizz::VerificationContext::Client);
}
QUIC_TRACE(fst_trace, *conn_, "start");
setConnectionCallback(cb);
try {
happyEyeballsSetUpSocket(
*socket_, conn_->peerAddress, conn_->transportSettings, this, this);
startCryptoHandshake();
} catch (const QuicTransportException& ex) {
runOnEvbAsync([ex](auto self) {
auto clientPtr = static_cast<QuicClientTransport*>(self.get());
clientPtr->closeImpl(std::make_pair(
QuicErrorCode(ex.errorCode()), std::string(ex.what())));
});
} catch (const QuicInternalException& ex) {
runOnEvbAsync([ex](auto self) {
auto clientPtr = static_cast<QuicClientTransport*>(self.get());
clientPtr->closeImpl(std::make_pair(
QuicErrorCode(ex.errorCode()), std::string(ex.what())));
});
} catch (const std::exception& ex) {
LOG(ERROR) << "Connect failed " << ex.what();
runOnEvbAsync([ex](auto self) {
auto clientPtr = static_cast<QuicClientTransport*>(self.get());
clientPtr->closeImpl(std::make_pair(
QuicErrorCode(TransportErrorCode::INTERNAL_ERROR),
std::string(ex.what())));
});
}
}
void QuicClientTransport::addNewPeerAddress(folly::SocketAddress peerAddress) {
CHECK(peerAddress.isInitialized());
if (happyEyeballsEnabled_) {
conn_->udpSendPacketLen = std::min(
conn_->udpSendPacketLen,
(peerAddress.getFamily() == AF_INET6 ? kDefaultV6UDPSendPacketLen
: kDefaultV4UDPSendPacketLen));
happyEyeballsAddPeerAddress(*conn_, peerAddress);
return;
}
conn_->udpSendPacketLen = peerAddress.getFamily() == AF_INET6
? kDefaultV6UDPSendPacketLen
: kDefaultV4UDPSendPacketLen;
conn_->originalPeerAddress = peerAddress;
conn_->peerAddress = std::move(peerAddress);
}
void QuicClientTransport::setHappyEyeballsEnabled(bool happyEyeballsEnabled) {
happyEyeballsEnabled_ = happyEyeballsEnabled;
}
void QuicClientTransport::setHappyEyeballsCachedFamily(
sa_family_t cachedFamily) {
happyEyeballsCachedFamily_ = cachedFamily;
}
void QuicClientTransport::addNewSocket(
std::unique_ptr<folly::AsyncUDPSocket> socket) {
happyEyeballsAddSocket(*conn_, std::move(socket));
}
void QuicClientTransport::setHostname(const std::string& hostname) {
hostname_ = hostname;
}
void QuicClientTransport::setFizzClientContext(
std::shared_ptr<const fizz::client::FizzClientContext> ctx) {
ctx_ = std::move(ctx);
}
void QuicClientTransport::setCertificateVerifier(
std::shared_ptr<const fizz::CertificateVerifier> verifier) {
verifier_ = std::move(verifier);
}
void QuicClientTransport::setPskCache(std::shared_ptr<QuicPskCache> pskCache) {
pskCache_ = std::move(pskCache);
}
void QuicClientTransport::setSelfOwning() {
selfOwning_ = shared_from_this();
}
bool QuicClientTransport::setCustomTransportParameter(
std::unique_ptr<CustomTransportParameter> customParam) {
// check that the parameter id is in the "private parameter" range, as
// described by the spec.
if (static_cast<uint16_t>(customParam->getParameterId()) <
kCustomTransportParameterThreshold) {
return false;
}
// check to see that we haven't already added in a parameter with the
// specified parameter id
auto it = std::find_if(
customTransportParameters_.begin(),
customTransportParameters_.end(),
[&customParam](const TransportParameter& param) {
return param.parameter == customParam->getParameterId();
});
// if a match has been found, we return failure
if (it != customTransportParameters_.end()) {
return false;
}
customTransportParameters_.push_back(customParam->encode());
return true;
}
void QuicClientTransport::setPartialReliabilityTransportParameter() {
uint64_t partialReliabilitySetting = 0;
if (conn_->transportSettings.partialReliabilityEnabled) {
partialReliabilitySetting = 1;
}
auto partialReliabilityCustomParam =
std::make_unique<CustomIntegralTransportParameter>(
kPartialReliabilityParameterId, partialReliabilitySetting);
if (!setCustomTransportParameter(std::move(partialReliabilityCustomParam))) {
LOG(ERROR) << "failed to set partial reliability transport setting";
}
}
void QuicClientTransport::closeTransport() {
happyEyeballsConnAttemptDelayTimeout_.cancelTimeout();
}
void QuicClientTransport::unbindConnection() {
selfOwning_ = nullptr;
}
} // namespace quic