1
0
mirror of https://github.com/facebookincubator/mvfst.git synced 2025-04-18 17:24:03 +03:00
mvfst/quic/api/QuicTransportBase.cpp
Hani Damlaj 00e67c1bf9 mvfst License Header Update
Reviewed By: lnicco

Differential Revision: D33587012

fbshipit-source-id: 972eb440f0156c9c04aa6e8787561b18295c1a97
2022-01-18 13:56:12 -08:00

3581 lines
126 KiB
C++

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <quic/api/QuicTransportBase.h>
#include <folly/Chrono.h>
#include <folly/ScopeGuard.h>
#include <quic/api/LoopDetectorCallback.h>
#include <quic/api/QuicTransportFunctions.h>
#include <quic/common/TimeUtil.h>
#include <quic/congestion_control/Pacer.h>
#include <quic/congestion_control/TokenlessPacer.h>
#include <quic/d6d/QuicD6DStateFunctions.h>
#include <quic/logging/QLoggerConstants.h>
#include <quic/loss/QuicLossFunctions.h>
#include <quic/state/QuicPacingFunctions.h>
#include <quic/state/QuicStateFunctions.h>
#include <quic/state/QuicStreamFunctions.h>
#include <quic/state/QuicStreamUtilities.h>
#include <quic/state/SimpleFrameFunctions.h>
#include <quic/state/stream/StreamSendHandlers.h>
namespace quic {
QuicTransportBase::QuicTransportBase(
folly::EventBase* evb,
std::unique_ptr<folly::AsyncUDPSocket> socket,
bool useSplitConnectionCallbacks)
: evb_(evb),
socket_(std::move(socket)),
lossTimeout_(this),
ackTimeout_(this),
pathValidationTimeout_(this),
idleTimeout_(this),
drainTimeout_(this),
pingTimeout_(this),
d6dProbeTimeout_(this),
d6dRaiseTimeout_(this),
d6dTxTimeout_(this),
readLooper_(new FunctionLooper(
evb,
[this](bool /* ignored */) { invokeReadDataAndCallbacks(); },
LooperType::ReadLooper)),
peekLooper_(new FunctionLooper(
evb,
[this](bool /* ignored */) { invokePeekDataAndCallbacks(); },
LooperType::PeekLooper)),
writeLooper_(new FunctionLooper(
evb,
[this](bool fromTimer) { pacedWriteDataToSocket(fromTimer); },
LooperType::WriteLooper)),
useSplitConnectionCallbacks_(useSplitConnectionCallbacks) {
writeLooper_->setPacingFunction([this]() -> auto {
if (isConnectionPaced(*conn_)) {
return conn_->pacer->getTimeUntilNextWrite();
}
return 0us;
});
}
void QuicTransportBase::setPacingTimer(
TimerHighRes::SharedPtr pacingTimer) noexcept {
if (pacingTimer) {
writeLooper_->setPacingTimer(std::move(pacingTimer));
}
}
void QuicTransportBase::setCongestionControllerFactory(
std::shared_ptr<CongestionControllerFactory> ccFactory) {
CHECK(ccFactory);
CHECK(conn_);
conn_->congestionControllerFactory = ccFactory;
conn_->congestionController.reset();
}
folly::EventBase* QuicTransportBase::getEventBase() const {
return evb_.load();
}
const std::shared_ptr<QLogger> QuicTransportBase::getQLogger() const {
return conn_->qLogger;
}
void QuicTransportBase::setQLogger(std::shared_ptr<QLogger> qLogger) {
// setQLogger can be called multiple times for the same connection and with
// the same qLogger we track the number of times it gets set and the number
// of times it gets reset, and only stop qlog collection when the number of
// resets equals the number of times the logger was set
if (!conn_->qLogger) {
CHECK_EQ(qlogRefcnt_, 0);
} else {
CHECK_GT(qlogRefcnt_, 0);
}
if (qLogger) {
conn_->qLogger = std::move(qLogger);
conn_->qLogger->setDcid(conn_->clientChosenDestConnectionId);
if (conn_->nodeType == QuicNodeType::Server) {
conn_->qLogger->setScid(conn_->serverConnectionId);
} else {
conn_->qLogger->setScid(conn_->clientConnectionId);
}
qlogRefcnt_++;
} else {
if (conn_->qLogger) {
qlogRefcnt_--;
if (qlogRefcnt_ == 0) {
conn_->qLogger = nullptr;
}
}
}
}
folly::Optional<ConnectionId> QuicTransportBase::getClientConnectionId() const {
return conn_->clientConnectionId;
}
folly::Optional<ConnectionId> QuicTransportBase::getServerConnectionId() const {
return conn_->serverConnectionId;
}
folly::Optional<ConnectionId>
QuicTransportBase::getClientChosenDestConnectionId() const {
return conn_->clientChosenDestConnectionId;
}
const folly::SocketAddress& QuicTransportBase::getPeerAddress() const {
return conn_->peerAddress;
}
const folly::SocketAddress& QuicTransportBase::getOriginalPeerAddress() const {
return conn_->originalPeerAddress;
}
const folly::SocketAddress& QuicTransportBase::getLocalAddress() const {
return socket_ && socket_->isBound() ? socket_->address()
: localFallbackAddress;
}
QuicTransportBase::~QuicTransportBase() {
resetConnectionCallbacks();
closeImpl(
std::make_pair(
QuicErrorCode(LocalErrorCode::SHUTTING_DOWN),
std::string("Closing from base destructor")),
false);
// If a drainTimeout is already scheduled, then closeNow above
// won't do anything. We have to manually clean up the socket. Timeout will be
// canceled by timer's destructor.
if (socket_) {
auto sock = std::move(socket_);
socket_ = nullptr;
sock->pauseRead();
sock->close();
}
for (const auto& cb : *observers_) {
cb->destroy(this);
}
}
bool QuicTransportBase::good() const {
return hasWriteCipher() && !error();
}
bool QuicTransportBase::replaySafe() const {
return (conn_->oneRttWriteCipher != nullptr);
}
bool QuicTransportBase::error() const {
return conn_->localConnectionError.has_value();
}
void QuicTransportBase::close(
folly::Optional<std::pair<QuicErrorCode, std::string>> errorCode) {
FOLLY_MAYBE_UNUSED auto self = sharedGuard();
// The caller probably doesn't need a conn callback any more because they
// explicitly called close.
resetConnectionCallbacks();
// If we were called with no error code, ensure that we are going to write
// an application close, so the peer knows it didn't come from the transport.
if (!errorCode) {
errorCode = std::make_pair(
GenericApplicationErrorCode::NO_ERROR,
toString(GenericApplicationErrorCode::NO_ERROR));
}
closeImpl(std::move(errorCode), true);
conn_->logger.reset();
}
void QuicTransportBase::closeNow(
folly::Optional<std::pair<QuicErrorCode, std::string>> errorCode) {
DCHECK(getEventBase() && getEventBase()->isInEventBaseThread());
FOLLY_MAYBE_UNUSED auto self = sharedGuard();
VLOG(4) << __func__ << " " << *this;
if (!errorCode) {
errorCode = std::make_pair(
GenericApplicationErrorCode::NO_ERROR,
toString(GenericApplicationErrorCode::NO_ERROR));
}
closeImpl(std::move(errorCode), false);
// the drain timeout may have been scheduled by a previous close, in which
// case, our close would not take effect. This cancels the drain timeout in
// this case and expires the timeout.
if (drainTimeout_.isScheduled()) {
drainTimeout_.cancelTimeout();
drainTimeoutExpired();
}
conn_->logger.reset();
}
void QuicTransportBase::closeGracefully() {
if (closeState_ == CloseState::CLOSED ||
closeState_ == CloseState::GRACEFUL_CLOSING) {
return;
}
FOLLY_MAYBE_UNUSED auto self = sharedGuard();
resetConnectionCallbacks();
closeState_ = CloseState::GRACEFUL_CLOSING;
updatePacingOnClose(*conn_);
if (conn_->qLogger) {
conn_->qLogger->addConnectionClose(kNoError, kGracefulExit, true, false);
}
// Stop reads and cancel all the app callbacks.
VLOG(10) << "Stopping read and peek loopers due to graceful close " << *this;
readLooper_->stop();
peekLooper_->stop();
cancelAllAppCallbacks(std::make_pair(
QuicErrorCode(LocalErrorCode::NO_ERROR), "Graceful Close"));
// All streams are closed, close the transport for realz.
if (conn_->streamManager->streamCount() == 0) {
closeImpl(folly::none);
}
}
// TODO: t64691045 change the closeImpl API to include both the sanitized and
// unsanited error message, remove exceptionCloseWhat_.
void QuicTransportBase::closeImpl(
folly::Optional<std::pair<QuicErrorCode, std::string>> errorCode,
bool drainConnection,
bool sendCloseImmediately) {
if (closeState_ == CloseState::CLOSED) {
return;
}
for (const auto& cb : *observers_) {
cb->close(this, errorCode);
}
drainConnection = drainConnection & conn_->transportSettings.shouldDrain;
uint64_t totalCryptoDataWritten = 0;
uint64_t totalCryptoDataRecvd = 0;
if (conn_->cryptoState) {
totalCryptoDataWritten +=
conn_->cryptoState->initialStream.currentWriteOffset;
totalCryptoDataWritten +=
conn_->cryptoState->handshakeStream.currentWriteOffset;
totalCryptoDataWritten +=
conn_->cryptoState->oneRttStream.currentWriteOffset;
totalCryptoDataRecvd += conn_->cryptoState->initialStream.maxOffsetObserved;
totalCryptoDataRecvd +=
conn_->cryptoState->handshakeStream.maxOffsetObserved;
totalCryptoDataRecvd += conn_->cryptoState->oneRttStream.maxOffsetObserved;
}
if (conn_->qLogger) {
conn_->qLogger->addTransportSummary(
{conn_->lossState.totalBytesSent,
conn_->lossState.totalBytesRecvd,
conn_->flowControlState.sumCurWriteOffset,
conn_->flowControlState.sumMaxObservedOffset,
conn_->flowControlState.sumCurStreamBufferLen,
conn_->lossState.totalBytesRetransmitted,
conn_->lossState.totalStreamBytesCloned,
conn_->lossState.totalBytesCloned,
totalCryptoDataWritten,
totalCryptoDataRecvd,
conn_->congestionController
? conn_->congestionController->getWritableBytes()
: std::numeric_limits<uint64_t>::max(),
getSendConnFlowControlBytesWire(*conn_),
conn_->lossState.totalPacketsSpuriouslyMarkedLost,
conn_->lossState.reorderingThreshold,
uint64_t(conn_->transportSettings.timeReorderingThreshDividend),
conn_->usedZeroRtt,
conn_->version.value_or(QuicVersion::MVFST_INVALID),
conn_->dsrPacketCount});
}
// TODO: truncate the error code string to be 1MSS only.
closeState_ = CloseState::CLOSED;
updatePacingOnClose(*conn_);
auto cancelCode = std::make_pair(
QuicErrorCode(LocalErrorCode::NO_ERROR),
toString(LocalErrorCode::NO_ERROR));
if (conn_->peerConnectionError) {
cancelCode = *conn_->peerConnectionError;
} else if (errorCode) {
cancelCode = *errorCode;
}
// cancelCode is used for communicating error message to local app layer.
// errorCode will be used for localConnectionError, and sent in close frames.
// It's safe to include the unsanitized error message in cancelCode
if (exceptionCloseWhat_) {
cancelCode.second = exceptionCloseWhat_.value();
}
bool isReset = false;
bool isAbandon = false;
bool isInvalidMigration = false;
LocalErrorCode* localError = cancelCode.first.asLocalErrorCode();
TransportErrorCode* transportError = cancelCode.first.asTransportErrorCode();
if (localError) {
isReset = *localError == LocalErrorCode::CONNECTION_RESET;
isAbandon = *localError == LocalErrorCode::CONNECTION_ABANDONED;
}
isInvalidMigration = transportError &&
*transportError == TransportErrorCode::INVALID_MIGRATION;
VLOG_IF(4, isReset) << "Closing transport due to stateless reset " << *this;
VLOG_IF(4, isAbandon) << "Closing transport due to abandoned connection "
<< *this;
if (errorCode) {
conn_->localConnectionError = errorCode;
std::string errorStr = conn_->localConnectionError->second;
std::string errorCodeStr = errorCode->second;
if (conn_->qLogger) {
conn_->qLogger->addConnectionClose(
errorStr, errorCodeStr, drainConnection, sendCloseImmediately);
}
} else {
auto reason = folly::to<std::string>(
"Server: ",
kNoError,
", Peer: isReset: ",
isReset,
", Peer: isAbandon: ",
isAbandon);
if (conn_->qLogger) {
conn_->qLogger->addConnectionClose(
kNoError, reason, drainConnection, sendCloseImmediately);
}
}
cancelLossTimeout();
if (ackTimeout_.isScheduled()) {
ackTimeout_.cancelTimeout();
}
if (pathValidationTimeout_.isScheduled()) {
pathValidationTimeout_.cancelTimeout();
}
if (idleTimeout_.isScheduled()) {
idleTimeout_.cancelTimeout();
}
if (pingTimeout_.isScheduled()) {
pingTimeout_.cancelTimeout();
}
VLOG(10) << "Stopping read looper due to immediate close " << *this;
readLooper_->stop();
peekLooper_->stop();
writeLooper_->stop();
cancelAllAppCallbacks(cancelCode);
// Clear out all the pending events, we don't need them any more.
closeTransport();
// Clear out all the streams, we don't need them any more. When the peer
// receives the conn close they will implicitly reset all the streams.
QUIC_STATS_FOR_EACH(
conn_->streamManager->streams().cbegin(),
conn_->streamManager->streams().cend(),
conn_->statsCallback,
onQuicStreamClosed);
conn_->streamManager->clearOpenStreams();
// Clear out all the buffered datagrams
conn_->datagramState.readBuffer.clear();
conn_->datagramState.writeBuffer.clear();
// Clear out all the pending events.
conn_->pendingEvents = QuicConnectionStateBase::PendingEvents();
conn_->streamManager->clearActionable();
conn_->streamManager->clearWritable();
conn_->ackStates.initialAckState.acks.clear();
conn_->ackStates.handshakeAckState.acks.clear();
conn_->ackStates.appDataAckState.acks.clear();
// connCallback_ could be null if start() was never invoked and the
// transport was destroyed or if the app initiated close.
if (connCallback_) {
if (!useSplitConnectionCallbacks_) {
processConnectionEndError(cancelCode);
} else {
processConnectionEndErrorSplitCallbacks(cancelCode);
}
}
// can't invoke connection callbacks any more.
resetConnectionCallbacks();
// Don't need outstanding packets.
conn_->outstandings.packets.clear();
conn_->outstandings.packetCount = {};
conn_->outstandings.clonedPacketCount = {};
// We don't need no congestion control.
conn_->congestionController = nullptr;
sendCloseImmediately = sendCloseImmediately && !isReset && !isAbandon;
if (sendCloseImmediately) {
// We might be invoked from the destructor, so just send the connection
// close directly.
try {
writeData();
} catch (const std::exception& ex) {
// This could happen if the writes fail.
LOG(ERROR) << "close threw exception " << ex.what() << " " << *this;
}
}
drainConnection =
drainConnection && !isReset && !isAbandon && !isInvalidMigration;
if (drainConnection) {
// We ever drain once, and the object ever gets created once.
DCHECK(!drainTimeout_.isScheduled());
getEventBase()->timer().scheduleTimeout(
&drainTimeout_,
folly::chrono::ceil<std::chrono::milliseconds>(
kDrainFactor * calculatePTO(*conn_)));
} else {
drainTimeoutExpired();
}
}
bool QuicTransportBase::processCancelCode(
const std::pair<QuicErrorCode, folly::StringPiece>& cancelCode) {
bool noError = false;
switch (cancelCode.first.type()) {
case QuicErrorCode::Type::LocalErrorCode: {
LocalErrorCode localErrorCode = *cancelCode.first.asLocalErrorCode();
noError = localErrorCode == LocalErrorCode::NO_ERROR ||
localErrorCode == LocalErrorCode::IDLE_TIMEOUT;
break;
}
case QuicErrorCode::Type::TransportErrorCode: {
TransportErrorCode transportErrorCode =
*cancelCode.first.asTransportErrorCode();
noError = transportErrorCode == TransportErrorCode::NO_ERROR;
break;
}
case QuicErrorCode::Type::ApplicationErrorCode:
auto appErrorCode = *cancelCode.first.asApplicationErrorCode();
noError = appErrorCode == GenericApplicationErrorCode::NO_ERROR;
}
return noError;
}
void QuicTransportBase::processConnectionEndError(
const std::pair<QuicErrorCode, folly::StringPiece>& cancelCode) {
bool noError = processCancelCode(cancelCode);
if (noError) {
connCallback_->onConnectionEnd();
} else {
connCallback_->onConnectionError(
std::make_pair(cancelCode.first, cancelCode.second.str()));
}
}
void QuicTransportBase::processConnectionEndErrorSplitCallbacks(
const std::pair<QuicErrorCode, folly::StringPiece>& cancelCode) {
bool noError = processCancelCode(cancelCode);
if (noError) {
if (transportReadyNotified_) {
connCallback_->onConnectionEnd();
} else {
connCallback_->onConnectionSetupError(
std::make_pair(cancelCode.first, cancelCode.second.str()));
}
} else {
if (transportReadyNotified_) {
connCallback_->onConnectionError(
std::make_pair(cancelCode.first, cancelCode.second.str()));
} else {
connCallback_->onConnectionSetupError(
std::make_pair(cancelCode.first, cancelCode.second.str()));
}
}
}
void QuicTransportBase::drainTimeoutExpired() noexcept {
if (socket_) {
auto sock = std::move(socket_);
socket_ = nullptr;
sock->pauseRead();
sock->close();
}
unbindConnection();
}
folly::Expected<size_t, LocalErrorCode> QuicTransportBase::getStreamReadOffset(
StreamId) const {
return 0;
}
folly::Expected<size_t, LocalErrorCode> QuicTransportBase::getStreamWriteOffset(
StreamId id) const {
if (isReceivingStream(conn_->nodeType, id)) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
try {
auto stream = conn_->streamManager->getStream(id);
return stream->currentWriteOffset;
} catch (const QuicInternalException& ex) {
VLOG(4) << __func__ << " " << ex.what() << " " << *this;
return folly::makeUnexpected(ex.errorCode());
} catch (const QuicTransportException& ex) {
VLOG(4) << __func__ << " " << ex.what() << " " << *this;
return folly::makeUnexpected(LocalErrorCode::TRANSPORT_ERROR);
} catch (const std::exception& ex) {
VLOG(4) << __func__ << " " << ex.what() << " " << *this;
return folly::makeUnexpected(LocalErrorCode::INTERNAL_ERROR);
}
}
folly::Expected<size_t, LocalErrorCode>
QuicTransportBase::getStreamWriteBufferedBytes(StreamId id) const {
if (isReceivingStream(conn_->nodeType, id)) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
try {
auto stream = conn_->streamManager->getStream(id);
return stream->writeBuffer.chainLength();
} catch (const QuicInternalException& ex) {
VLOG(4) << __func__ << " " << ex.what() << " " << *this;
return folly::makeUnexpected(ex.errorCode());
} catch (const QuicTransportException& ex) {
VLOG(4) << __func__ << " " << ex.what() << " " << *this;
return folly::makeUnexpected(LocalErrorCode::TRANSPORT_ERROR);
} catch (const std::exception& ex) {
VLOG(4) << __func__ << " " << ex.what() << " " << *this;
return folly::makeUnexpected(LocalErrorCode::INTERNAL_ERROR);
}
}
/**
* Getters for details from the transport/security layers such as
* RTT, rxmit, cwnd, mss, app protocol, handshake latency,
* client proposed ciphers, etc.
*/
QuicSocket::TransportInfo QuicTransportBase::getTransportInfo() const {
CongestionControlType congestionControlType = CongestionControlType::None;
uint64_t writableBytes = std::numeric_limits<uint64_t>::max();
uint64_t congestionWindow = std::numeric_limits<uint64_t>::max();
uint64_t burstSize = 0;
std::chrono::microseconds pacingInterval = 0ms;
if (conn_->congestionController) {
congestionControlType = conn_->congestionController->type();
writableBytes = conn_->congestionController->getWritableBytes();
congestionWindow = conn_->congestionController->getCongestionWindow();
if (isConnectionPaced(*conn_)) {
burstSize = conn_->pacer->getCachedWriteBatchSize();
pacingInterval = conn_->pacer->getTimeUntilNextWrite();
}
}
TransportInfo transportInfo;
transportInfo.srtt = conn_->lossState.srtt;
transportInfo.rttvar = conn_->lossState.rttvar;
transportInfo.lrtt = conn_->lossState.lrtt;
if (conn_->lossState.mrtt != kDefaultMinRtt) {
transportInfo.maybeMinRtt = conn_->lossState.mrtt;
}
transportInfo.mss = conn_->udpSendPacketLen;
transportInfo.congestionControlType = congestionControlType;
transportInfo.writableBytes = writableBytes;
transportInfo.congestionWindow = congestionWindow;
transportInfo.pacingBurstSize = burstSize;
transportInfo.pacingInterval = pacingInterval;
transportInfo.packetsRetransmitted = conn_->lossState.rtxCount;
transportInfo.totalPacketsSent = conn_->lossState.totalPacketsSent;
transportInfo.totalAckElicitingPacketsSent =
conn_->lossState.totalAckElicitingPacketsSent;
transportInfo.totalPacketsMarkedLost =
conn_->lossState.totalPacketsMarkedLost;
transportInfo.totalPacketsMarkedLostByPto =
conn_->lossState.totalPacketsMarkedLostByPto;
transportInfo.totalPacketsMarkedLostByReorderingThreshold =
conn_->lossState.totalPacketsMarkedLostByReorderingThreshold;
transportInfo.totalPacketsSpuriouslyMarkedLost =
conn_->lossState.totalPacketsSpuriouslyMarkedLost;
transportInfo.timeoutBasedLoss = conn_->lossState.timeoutBasedRtxCount;
transportInfo.totalBytesRetransmitted =
conn_->lossState.totalBytesRetransmitted;
transportInfo.pto = calculatePTO(*conn_);
transportInfo.bytesSent = conn_->lossState.totalBytesSent;
transportInfo.bytesAcked = conn_->lossState.totalBytesAcked;
transportInfo.bytesRecvd = conn_->lossState.totalBytesRecvd;
transportInfo.bytesInFlight = conn_->lossState.inflightBytes;
transportInfo.bodyBytesSent = conn_->lossState.totalBodyBytesSent;
transportInfo.bodyBytesAcked = conn_->lossState.totalBodyBytesAcked;
transportInfo.totalStreamBytesSent = conn_->lossState.totalStreamBytesSent;
transportInfo.totalNewStreamBytesSent =
conn_->lossState.totalNewStreamBytesSent;
transportInfo.ptoCount = conn_->lossState.ptoCount;
transportInfo.totalPTOCount = conn_->lossState.totalPTOCount;
transportInfo.largestPacketAckedByPeer =
conn_->ackStates.appDataAckState.largestAckedByPeer;
transportInfo.largestPacketSent = conn_->lossState.largestSent;
transportInfo.usedZeroRtt = conn_->usedZeroRtt;
return transportInfo;
}
folly::Optional<std::string> QuicTransportBase::getAppProtocol() const {
return conn_->handshakeLayer->getApplicationProtocol();
}
void QuicTransportBase::setReceiveWindow(
StreamId /*id*/,
size_t /*recvWindowSize*/) {}
void QuicTransportBase::setSendBuffer(
StreamId /*id*/,
size_t /*maxUnacked*/,
size_t /*maxUnsent*/) {}
uint64_t QuicTransportBase::getConnectionBufferAvailable() const {
return bufferSpaceAvailable();
}
uint64_t QuicTransportBase::bufferSpaceAvailable() const {
auto bytesBuffered = conn_->flowControlState.sumCurStreamBufferLen;
auto totalBufferSpaceAvailable =
conn_->transportSettings.totalBufferSpaceAvailable;
return bytesBuffered > totalBufferSpaceAvailable
? 0
: totalBufferSpaceAvailable - bytesBuffered;
}
folly::Expected<QuicSocket::FlowControlState, LocalErrorCode>
QuicTransportBase::getConnectionFlowControl() const {
return QuicSocket::FlowControlState(
getSendConnFlowControlBytesAPI(*conn_),
conn_->flowControlState.peerAdvertisedMaxOffset,
getRecvConnFlowControlBytes(*conn_),
conn_->flowControlState.advertisedMaxOffset);
}
folly::Expected<QuicSocket::FlowControlState, LocalErrorCode>
QuicTransportBase::getStreamFlowControl(StreamId id) const {
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
auto stream = CHECK_NOTNULL(conn_->streamManager->getStream(id));
return QuicSocket::FlowControlState(
getSendStreamFlowControlBytesAPI(*stream),
stream->flowControlState.peerAdvertisedMaxOffset,
getRecvStreamFlowControlBytes(*stream),
stream->flowControlState.advertisedMaxOffset);
}
folly::Expected<folly::Unit, LocalErrorCode>
QuicTransportBase::setConnectionFlowControlWindow(uint64_t windowSize) {
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
conn_->flowControlState.windowSize = windowSize;
maybeSendConnWindowUpdate(*conn_, Clock::now());
updateWriteLooper(true);
return folly::unit;
}
folly::Expected<folly::Unit, LocalErrorCode>
QuicTransportBase::setStreamFlowControlWindow(
StreamId id,
uint64_t windowSize) {
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
auto stream = conn_->streamManager->getStream(id);
stream->flowControlState.windowSize = windowSize;
maybeSendStreamWindowUpdate(*stream, Clock::now());
updateWriteLooper(true);
return folly::unit;
}
folly::Expected<folly::Unit, LocalErrorCode> QuicTransportBase::setReadCallback(
StreamId id,
ReadCallback* cb,
folly::Optional<ApplicationErrorCode> err) {
if (isSendingStream(conn_->nodeType, id)) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
return setReadCallbackInternal(id, cb, err);
}
void QuicTransportBase::unsetAllReadCallbacks() {
for (auto& streamCallbackPair : readCallbacks_) {
setReadCallbackInternal(
streamCallbackPair.first,
nullptr,
GenericApplicationErrorCode::NO_ERROR);
}
}
void QuicTransportBase::unsetAllPeekCallbacks() {
for (auto& streamCallbackPair : peekCallbacks_) {
setPeekCallbackInternal(streamCallbackPair.first, nullptr);
}
}
void QuicTransportBase::unsetAllDeliveryCallbacks() {
auto deliveryCallbacksCopy = deliveryCallbacks_;
for (auto& streamCallbackPair : deliveryCallbacksCopy) {
cancelDeliveryCallbacksForStream(streamCallbackPair.first);
}
}
folly::Expected<folly::Unit, LocalErrorCode>
QuicTransportBase::setReadCallbackInternal(
StreamId id,
ReadCallback* cb,
folly::Optional<ApplicationErrorCode> err) noexcept {
VLOG(4) << "Setting setReadCallback for stream=" << id << " cb=" << cb << " "
<< *this;
auto readCbIt = readCallbacks_.find(id);
if (readCbIt == readCallbacks_.end()) {
// Don't allow initial setting of a nullptr callback.
if (!cb) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
readCbIt = readCallbacks_.emplace(id, ReadCallbackData(cb)).first;
}
auto& readCb = readCbIt->second.readCb;
if (readCb == nullptr && cb != nullptr) {
// It's already been set to nullptr we do not allow unsetting it.
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
} else {
readCb = cb;
if (readCb == nullptr && err) {
return stopSending(id, err.value());
}
}
updateReadLooper();
return folly::unit;
}
folly::Expected<folly::Unit, LocalErrorCode> QuicTransportBase::pauseRead(
StreamId id) {
VLOG(4) << __func__ << " " << *this << " stream=" << id;
return pauseOrResumeRead(id, false);
}
folly::Expected<folly::Unit, LocalErrorCode> QuicTransportBase::stopSending(
StreamId id,
ApplicationErrorCode error) {
if (isSendingStream(conn_->nodeType, id)) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
sendSimpleFrame(*conn_, StopSendingFrame(id, error));
updateWriteLooper(true);
return folly::unit;
}
folly::Expected<folly::Unit, LocalErrorCode> QuicTransportBase::resumeRead(
StreamId id) {
VLOG(4) << __func__ << " " << *this << " stream=" << id;
return pauseOrResumeRead(id, true);
}
folly::Expected<folly::Unit, LocalErrorCode>
QuicTransportBase::pauseOrResumeRead(StreamId id, bool resume) {
if (isSendingStream(conn_->nodeType, id)) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
auto readCb = readCallbacks_.find(id);
if (readCb == readCallbacks_.end()) {
return folly::makeUnexpected(LocalErrorCode::APP_ERROR);
}
if (readCb->second.resumed != resume) {
readCb->second.resumed = resume;
updateReadLooper();
}
return folly::unit;
}
void QuicTransportBase::invokeReadDataAndCallbacks() {
auto self = sharedGuard();
SCOPE_EXIT {
self->checkForClosedStream();
self->updateReadLooper();
self->updateWriteLooper(true);
};
// Need a copy since the set can change during callbacks.
std::vector<StreamId> readableStreamsCopy;
const auto& readableStreams = self->conn_->streamManager->readableStreams();
readableStreamsCopy.reserve(readableStreams.size());
std::copy(
readableStreams.begin(),
readableStreams.end(),
std::back_inserter(readableStreamsCopy));
if (self->conn_->transportSettings.orderedReadCallbacks) {
std::sort(readableStreamsCopy.begin(), readableStreamsCopy.end());
}
for (StreamId streamId : readableStreamsCopy) {
auto callback = self->readCallbacks_.find(streamId);
if (callback == self->readCallbacks_.end()) {
// Stream doesn't have a read callback set, skip it.
continue;
}
auto readCb = callback->second.readCb;
auto stream = conn_->streamManager->getStream(streamId);
if (readCb && stream->streamReadError) {
self->conn_->streamManager->readableStreams().erase(streamId);
readCallbacks_.erase(callback);
// if there is an error on the stream - it's not readable anymore, so
// we cannot peek into it as well.
self->conn_->streamManager->peekableStreams().erase(streamId);
peekCallbacks_.erase(streamId);
VLOG(10) << "invoking read error callbacks on stream=" << streamId << " "
<< *this;
readCb->readError(
streamId, std::make_pair(*stream->streamReadError, folly::none));
} else if (
readCb && callback->second.resumed && stream->hasReadableData()) {
VLOG(10) << "invoking read callbacks on stream=" << streamId << " "
<< *this;
readCb->readAvailable(streamId);
}
}
if (self->datagramCallback_ && !conn_->datagramState.readBuffer.empty()) {
self->datagramCallback_->onDatagramsAvailable();
}
}
void QuicTransportBase::updateReadLooper() {
if (closeState_ != CloseState::OPEN) {
VLOG(10) << "Stopping read looper " << *this;
readLooper_->stop();
return;
}
auto iter = std::find_if(
conn_->streamManager->readableStreams().begin(),
conn_->streamManager->readableStreams().end(),
[&readCallbacks = readCallbacks_](StreamId s) {
auto readCb = readCallbacks.find(s);
if (readCb == readCallbacks.end()) {
return false;
}
// TODO: if the stream has an error and it is also paused we should
// still return an error
return readCb->second.readCb && readCb->second.resumed;
});
if (iter != conn_->streamManager->readableStreams().end() ||
!conn_->datagramState.readBuffer.empty()) {
VLOG(10) << "Scheduling read looper " << *this;
readLooper_->run();
} else {
VLOG(10) << "Stopping read looper " << *this;
readLooper_->stop();
}
}
folly::Expected<folly::Unit, LocalErrorCode> QuicTransportBase::setPeekCallback(
StreamId id,
PeekCallback* cb) {
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
setPeekCallbackInternal(id, cb);
return folly::unit;
}
folly::Expected<folly::Unit, LocalErrorCode>
QuicTransportBase::setPeekCallbackInternal(
StreamId id,
PeekCallback* cb) noexcept {
VLOG(4) << "Setting setPeekCallback for stream=" << id << " cb=" << cb << " "
<< *this;
auto peekCbIt = peekCallbacks_.find(id);
if (peekCbIt == peekCallbacks_.end()) {
// Don't allow initial setting of a nullptr callback.
if (!cb) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
peekCbIt = peekCallbacks_.emplace(id, PeekCallbackData(cb)).first;
}
if (!cb) {
VLOG(10) << "Resetting the peek callback to nullptr "
<< "stream=" << id << " peekCb=" << peekCbIt->second.peekCb;
}
peekCbIt->second.peekCb = cb;
updatePeekLooper();
return folly::unit;
}
folly::Expected<folly::Unit, LocalErrorCode> QuicTransportBase::pausePeek(
StreamId id) {
VLOG(4) << __func__ << " " << *this << " stream=" << id;
return pauseOrResumePeek(id, false);
}
folly::Expected<folly::Unit, LocalErrorCode> QuicTransportBase::resumePeek(
StreamId id) {
VLOG(4) << __func__ << " " << *this << " stream=" << id;
return pauseOrResumePeek(id, true);
}
folly::Expected<folly::Unit, LocalErrorCode>
QuicTransportBase::pauseOrResumePeek(StreamId id, bool resume) {
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
auto peekCb = peekCallbacks_.find(id);
if (peekCb == peekCallbacks_.end()) {
return folly::makeUnexpected(LocalErrorCode::APP_ERROR);
}
if (peekCb->second.resumed != resume) {
peekCb->second.resumed = resume;
updatePeekLooper();
}
return folly::unit;
}
void QuicTransportBase::invokePeekDataAndCallbacks() {
auto self = sharedGuard();
SCOPE_EXIT {
self->checkForClosedStream();
self->updatePeekLooper();
self->updateWriteLooper(true);
};
// TODO: add protection from calling "consume" in the middle of the peek -
// one way is to have a peek counter that is incremented when peek calblack
// is called and decremented when peek is done. once counter transitions
// to 0 we can execute "consume" calls that were done during "peek", for that,
// we would need to keep stack of them.
std::vector<StreamId> peekableStreamsCopy;
const auto& peekableStreams = self->conn_->streamManager->peekableStreams();
peekableStreamsCopy.reserve(peekableStreams.size());
std::copy(
peekableStreams.begin(),
peekableStreams.end(),
std::back_inserter(peekableStreamsCopy));
VLOG(10) << __func__
<< " peekableListCopy.size()=" << peekableStreamsCopy.size();
for (StreamId streamId : peekableStreamsCopy) {
auto callback = self->peekCallbacks_.find(streamId);
// This is a likely bug. Need to think more on whether events can
// be dropped
// remove streamId from list of peekable - as opposed to "read", "peek" is
// only called once per streamId and not on every EVB loop until application
// reads the data.
self->conn_->streamManager->peekableStreams().erase(streamId);
if (callback == self->peekCallbacks_.end()) {
VLOG(10) << " No peek callback for stream=" << streamId;
continue;
}
auto peekCb = callback->second.peekCb;
auto stream = conn_->streamManager->getStream(streamId);
if (peekCb && stream->streamReadError) {
VLOG(10) << "invoking peek error callbacks on stream=" << streamId << " "
<< *this;
peekCb->peekError(
streamId, std::make_pair(*stream->streamReadError, folly::none));
} else if (
peekCb && !stream->streamReadError && stream->hasPeekableData()) {
VLOG(10) << "invoking peek callbacks on stream=" << streamId << " "
<< *this;
peekDataFromQuicStream(
*stream,
[&](StreamId id, const folly::Range<PeekIterator>& peekRange) {
peekCb->onDataAvailable(id, peekRange);
});
} else {
VLOG(10) << "Not invoking peek callbacks on stream=" << streamId;
}
}
}
void QuicTransportBase::invokeStreamsAvailableCallbacks() {
if (conn_->streamManager->consumeMaxLocalBidirectionalStreamIdIncreased()) {
// check in case new streams were created in preceding callbacks
// and max is already reached
auto numStreams = getNumOpenableBidirectionalStreams();
if (numStreams > 0) {
connCallback_->onBidirectionalStreamsAvailable(numStreams);
}
}
if (conn_->streamManager->consumeMaxLocalUnidirectionalStreamIdIncreased()) {
// check in case new streams were created in preceding callbacks
// and max is already reached
auto numStreams = getNumOpenableUnidirectionalStreams();
if (numStreams > 0) {
connCallback_->onUnidirectionalStreamsAvailable(numStreams);
}
}
}
void QuicTransportBase::updatePeekLooper() {
if (peekCallbacks_.empty() || closeState_ != CloseState::OPEN) {
VLOG(10) << "Stopping peek looper " << *this;
peekLooper_->stop();
return;
}
VLOG(10) << "Updating peek looper, has "
<< conn_->streamManager->peekableStreams().size()
<< " peekable streams";
auto iter = std::find_if(
conn_->streamManager->peekableStreams().begin(),
conn_->streamManager->peekableStreams().end(),
[&peekCallbacks = peekCallbacks_](StreamId s) {
VLOG(10) << "Checking stream=" << s;
auto peekCb = peekCallbacks.find(s);
if (peekCb == peekCallbacks.end()) {
VLOG(10) << "No peek callbacks for stream=" << s;
return false;
}
if (!peekCb->second.resumed) {
VLOG(10) << "peek callback for stream=" << s << " not resumed";
}
if (!peekCb->second.peekCb) {
VLOG(10) << "no peekCb in peekCb stream=" << s;
}
return peekCb->second.peekCb && peekCb->second.resumed;
});
if (iter != conn_->streamManager->peekableStreams().end()) {
VLOG(10) << "Scheduling peek looper " << *this;
peekLooper_->run();
} else {
VLOG(10) << "Stopping peek looper " << *this;
peekLooper_->stop();
}
}
void QuicTransportBase::updateWriteLooper(bool thisIteration) {
if (closeState_ == CloseState::CLOSED) {
VLOG(10) << nodeToString(conn_->nodeType)
<< " stopping write looper because conn closed " << *this;
writeLooper_->stop();
return;
}
// TODO: Also listens to write event from libevent. Only schedule write when
// the socket itself is writable.
auto writeDataReason = shouldWriteData(*conn_);
if (writeDataReason != WriteDataReason::NO_WRITE) {
VLOG(10) << nodeToString(conn_->nodeType)
<< " running write looper thisIteration=" << thisIteration << " "
<< *this;
writeLooper_->run(thisIteration);
if (conn_->loopDetectorCallback) {
conn_->writeDebugState.needsWriteLoopDetect =
(conn_->loopDetectorCallback != nullptr);
}
} else {
VLOG(10) << nodeToString(conn_->nodeType) << " stopping write looper "
<< *this;
writeLooper_->stop();
if (conn_->loopDetectorCallback) {
conn_->writeDebugState.needsWriteLoopDetect = false;
conn_->writeDebugState.currentEmptyLoopCount = 0;
}
}
if (conn_->loopDetectorCallback) {
conn_->writeDebugState.writeDataReason = writeDataReason;
}
}
void QuicTransportBase::cancelDeliveryCallbacksForStream(StreamId id) {
cancelByteEventCallbacksForStream(ByteEvent::Type::ACK, id);
}
void QuicTransportBase::cancelDeliveryCallbacksForStream(
StreamId id,
uint64_t offset) {
cancelByteEventCallbacksForStream(ByteEvent::Type::ACK, id, offset);
}
void QuicTransportBase::cancelByteEventCallbacksForStream(
const StreamId id,
const folly::Optional<uint64_t>& offset) {
invokeForEachByteEventType(([this, id, &offset](const ByteEvent::Type type) {
cancelByteEventCallbacksForStream(type, id, offset);
}));
}
void QuicTransportBase::cancelByteEventCallbacksForStream(
const ByteEvent::Type type,
const StreamId id,
const folly::Optional<uint64_t>& offset) {
if (isReceivingStream(conn_->nodeType, id)) {
return;
}
auto& byteEventMap = getByteEventMap(type);
auto byteEventMapIt = byteEventMap.find(id);
if (byteEventMapIt == byteEventMap.end()) {
switch (type) {
case ByteEvent::Type::ACK:
conn_->streamManager->removeDeliverable(id);
break;
case ByteEvent::Type::TX:
conn_->streamManager->removeTx(id);
break;
}
return;
}
auto& streamByteEvents = byteEventMapIt->second;
// Callbacks are kept sorted by offset, so we can just walk the queue and
// invoke those with offset below provided offset.
while (!streamByteEvents.empty()) {
// decomposition not supported for xplat
const auto cbOffset = streamByteEvents.front().offset;
const auto callback = streamByteEvents.front().callback;
if (!offset.has_value() || cbOffset < *offset) {
streamByteEvents.pop_front();
ByteEventCancellation cancellation = {};
cancellation.id = id;
cancellation.offset = cbOffset;
cancellation.type = type;
callback->onByteEventCanceled(cancellation);
if (closeState_ != CloseState::OPEN) {
// socket got closed - we can't use streamByteEvents anymore,
// closeImpl should take care of cleaning up any remaining callbacks
return;
}
} else {
// Only larger or equal offsets left, exit the loop.
break;
}
}
// Clean up state for this stream if no callbacks left to invoke.
if (streamByteEvents.empty()) {
switch (type) {
case ByteEvent::Type::ACK:
conn_->streamManager->removeDeliverable(id);
break;
case ByteEvent::Type::TX:
conn_->streamManager->removeTx(id);
break;
}
// The callback could have changed the map so erase by id.
byteEventMap.erase(id);
}
}
void QuicTransportBase::cancelAllByteEventCallbacks() {
invokeForEachByteEventType(
([this](const ByteEvent::Type type) { cancelByteEventCallbacks(type); }));
}
void QuicTransportBase::cancelByteEventCallbacks(const ByteEvent::Type type) {
ByteEventMap byteEventMap = std::move(getByteEventMap(type));
for (const auto& byteEventMapIt : byteEventMap) {
const auto streamId = byteEventMapIt.first;
const auto callbackMap = byteEventMapIt.second;
for (const auto& callbackMapIt : callbackMap) {
const auto offset = callbackMapIt.offset;
const auto callback = callbackMapIt.callback;
ByteEventCancellation cancellation = {};
cancellation.id = streamId;
cancellation.offset = offset;
cancellation.type = type;
callback->onByteEventCanceled(cancellation);
}
}
}
size_t QuicTransportBase::getNumByteEventCallbacksForStream(
const StreamId id) const {
size_t total = 0;
invokeForEachByteEventTypeConst(
([this, id, &total](const ByteEvent::Type type) {
total += getNumByteEventCallbacksForStream(type, id);
}));
return total;
}
size_t QuicTransportBase::getNumByteEventCallbacksForStream(
const ByteEvent::Type type,
const StreamId id) const {
const auto& byteEventMap = getByteEventMapConst(type);
const auto byteEventMapIt = byteEventMap.find(id);
if (byteEventMapIt == byteEventMap.end()) {
return 0;
}
const auto& streamByteEvents = byteEventMapIt->second;
return streamByteEvents.size();
}
folly::Expected<std::pair<Buf, bool>, LocalErrorCode> QuicTransportBase::read(
StreamId id,
size_t maxLen) {
if (isSendingStream(conn_->nodeType, id)) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
FOLLY_MAYBE_UNUSED auto self = sharedGuard();
SCOPE_EXIT {
updateReadLooper();
updatePeekLooper(); // read can affect "peek" API
updateWriteLooper(true);
};
try {
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
auto stream = conn_->streamManager->getStream(id);
auto result = readDataFromQuicStream(*stream, maxLen);
if (result.second) {
VLOG(10) << "Delivered eof to app for stream=" << stream->id << " "
<< *this;
auto it = readCallbacks_.find(id);
if (it != readCallbacks_.end()) {
// it's highly unlikely that someone called read() without having a read
// callback so we don't deal with the case of someone installing a read
// callback after reading the EOM.
it->second.deliveredEOM = true;
}
}
return folly::makeExpected<LocalErrorCode>(std::move(result));
} catch (const QuicTransportException& ex) {
VLOG(4) << "read() error " << ex.what() << " " << *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(ex.errorCode()), std::string("read() error")));
return folly::makeUnexpected(LocalErrorCode::TRANSPORT_ERROR);
} catch (const QuicInternalException& ex) {
VLOG(4) << __func__ << " " << ex.what() << " " << *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(ex.errorCode()), std::string("read() error")));
return folly::makeUnexpected(ex.errorCode());
} catch (const std::exception& ex) {
VLOG(4) << "read() error " << ex.what() << " " << *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(TransportErrorCode::INTERNAL_ERROR),
std::string("read() error")));
return folly::makeUnexpected(LocalErrorCode::INTERNAL_ERROR);
}
}
folly::Expected<folly::Unit, LocalErrorCode> QuicTransportBase::peek(
StreamId id,
const folly::Function<void(StreamId id, const folly::Range<PeekIterator>&)
const>& peekCallback) {
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
FOLLY_MAYBE_UNUSED auto self = sharedGuard();
SCOPE_EXIT {
updatePeekLooper();
updateWriteLooper(true);
};
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
auto stream = conn_->streamManager->getStream(id);
if (stream->streamReadError) {
switch (stream->streamReadError->type()) {
case QuicErrorCode::Type::LocalErrorCode:
return folly::makeUnexpected(
*stream->streamReadError->asLocalErrorCode());
default:
return folly::makeUnexpected(LocalErrorCode::INTERNAL_ERROR);
}
}
peekDataFromQuicStream(*stream, std::move(peekCallback));
return folly::makeExpected<LocalErrorCode>(folly::Unit());
}
folly::Expected<folly::Unit, LocalErrorCode> QuicTransportBase::consume(
StreamId id,
size_t amount) {
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
auto stream = conn_->streamManager->getStream(id);
auto result = consume(id, stream->currentReadOffset, amount);
if (result.hasError()) {
return folly::makeUnexpected(result.error().first);
}
return folly::makeExpected<LocalErrorCode>(result.value());
}
folly::
Expected<folly::Unit, std::pair<LocalErrorCode, folly::Optional<uint64_t>>>
QuicTransportBase::consume(StreamId id, uint64_t offset, size_t amount) {
using ConsumeError = std::pair<LocalErrorCode, folly::Optional<uint64_t>>;
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(
ConsumeError{LocalErrorCode::CONNECTION_CLOSED, folly::none});
}
FOLLY_MAYBE_UNUSED auto self = sharedGuard();
SCOPE_EXIT {
updatePeekLooper();
updateReadLooper(); // consume may affect "read" API
updateWriteLooper(true);
};
folly::Optional<uint64_t> readOffset = folly::none;
try {
// Need to check that the stream exists first so that we don't
// accidentally let the API create a peer stream that was not
// sent by the peer.
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(
ConsumeError{LocalErrorCode::STREAM_NOT_EXISTS, readOffset});
}
auto stream = conn_->streamManager->getStream(id);
readOffset = stream->currentReadOffset;
if (stream->currentReadOffset != offset) {
return folly::makeUnexpected(
ConsumeError{LocalErrorCode::INTERNAL_ERROR, readOffset});
}
if (stream->streamReadError) {
switch (stream->streamReadError->type()) {
case QuicErrorCode::Type::LocalErrorCode:
return folly::makeUnexpected(ConsumeError{
*stream->streamReadError->asLocalErrorCode(), folly::none});
default:
return folly::makeUnexpected(
ConsumeError{LocalErrorCode::INTERNAL_ERROR, folly::none});
}
}
consumeDataFromQuicStream(*stream, amount);
return folly::makeExpected<ConsumeError>(folly::Unit());
} catch (const QuicTransportException& ex) {
VLOG(4) << "consume() error " << ex.what() << " " << *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(ex.errorCode()), std::string("consume() error")));
return folly::makeUnexpected(
ConsumeError{LocalErrorCode::TRANSPORT_ERROR, readOffset});
} catch (const QuicInternalException& ex) {
VLOG(4) << __func__ << " " << ex.what() << " " << *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(ex.errorCode()), std::string("consume() error")));
return folly::makeUnexpected(ConsumeError{ex.errorCode(), readOffset});
} catch (const std::exception& ex) {
VLOG(4) << "consume() error " << ex.what() << " " << *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(TransportErrorCode::INTERNAL_ERROR),
std::string("consume() error")));
return folly::makeUnexpected(
ConsumeError{LocalErrorCode::INTERNAL_ERROR, readOffset});
}
}
void QuicTransportBase::handlePingCallback() {
if (!conn_->pendingEvents.cancelPingTimeout) {
return; // nothing to cancel
}
if (!pingTimeout_.isScheduled()) {
// set cancelpingTimeOut to false, delayed acks
conn_->pendingEvents.cancelPingTimeout = false;
return; // nothing to do, as timeout has already fired
}
pingTimeout_.cancelTimeout();
if (pingCallback_ != nullptr) {
runOnEvbAsync([](auto self) { self->pingCallback_->pingAcknowledged(); });
}
conn_->pendingEvents.cancelPingTimeout = false;
}
void QuicTransportBase::processCallbacksAfterWriteData() {
if (closeState_ != CloseState::OPEN) {
return;
}
auto txStreamId = conn_->streamManager->popTx();
while (txStreamId.has_value()) {
auto streamId = *txStreamId;
auto stream = conn_->streamManager->getStream(streamId);
auto largestOffsetTxed = getLargestWriteOffsetTxed(*stream);
// if it's in the set of streams with TX, we should have a valid offset
CHECK(largestOffsetTxed.has_value());
// lambda to help get the next callback to call for this stream
auto getNextTxCallbackForStreamAndCleanup =
[this, &largestOffsetTxed](
const auto& streamId) -> folly::Optional<ByteEventDetail> {
auto txCallbacksForStreamIt = txCallbacks_.find(streamId);
if (txCallbacksForStreamIt == txCallbacks_.end() ||
txCallbacksForStreamIt->second.empty()) {
return folly::none;
}
auto& txCallbacksForStream = txCallbacksForStreamIt->second;
if (txCallbacksForStream.front().offset > *largestOffsetTxed) {
return folly::none;
}
// extract the callback, pop from the queue, then check for cleanup
auto result = txCallbacksForStream.front();
txCallbacksForStream.pop_front();
if (txCallbacksForStream.empty()) {
txCallbacks_.erase(txCallbacksForStreamIt);
}
return result;
};
folly::Optional<ByteEventDetail> nextOffsetAndCallback;
while (
(nextOffsetAndCallback =
getNextTxCallbackForStreamAndCleanup(streamId))) {
ByteEvent byteEvent = {};
byteEvent.id = streamId;
byteEvent.offset = nextOffsetAndCallback->offset;
byteEvent.type = ByteEvent::Type::TX;
nextOffsetAndCallback->callback->onByteEvent(byteEvent);
// connection may be closed by callback
if (closeState_ != CloseState::OPEN) {
return;
}
}
// pop the next stream
txStreamId = conn_->streamManager->popTx();
}
}
void QuicTransportBase::handleKnobCallbacks() {
for (auto& knobFrame : conn_->pendingEvents.knobs) {
if (knobFrame.knobSpace != kDefaultQuicTransportKnobSpace) {
for (const auto& cb : *observers_) {
if (cb->getConfig().knobFrameEvents) {
cb->knobFrameReceived(
this, quic::Observer::KnobFrameEvent(Clock::now(), knobFrame));
}
}
connCallback_->onKnob(
knobFrame.knobSpace, knobFrame.id, std::move(knobFrame.blob));
} else {
// KnobId is ignored
onTransportKnobs(std::move(knobFrame.blob));
}
}
conn_->pendingEvents.knobs.clear();
}
void QuicTransportBase::handleAckEventCallbacks() {
const auto& lastProcessedAckEvents = conn_->lastProcessedAckEvents;
if (lastProcessedAckEvents.empty()) {
return; // nothing to do
}
const auto event = quic::Observer::AcksProcessedEvent::Builder()
.setAckEvents(lastProcessedAckEvents)
.build();
for (const auto& cb : *observers_) {
if (cb->getConfig().acksProcessedEvents) {
cb->acksProcessed(this, event);
}
}
}
void QuicTransportBase::handleCancelByteEventCallbacks() {
for (auto pendingResetIt = conn_->pendingEvents.resets.begin();
pendingResetIt != conn_->pendingEvents.resets.end();
pendingResetIt++) {
cancelByteEventCallbacksForStream(pendingResetIt->first);
if (closeState_ != CloseState::OPEN) {
return;
}
}
}
void QuicTransportBase::handleNewStreamCallbacks(
std::vector<StreamId>& streamStorage) {
streamStorage =
conn_->streamManager->consumeNewPeerStreams(std::move(streamStorage));
const auto& newPeerStreamIds = streamStorage;
for (const auto& streamId : newPeerStreamIds) {
CHECK_NOTNULL(connCallback_.get());
if (isBidirectionalStream(streamId)) {
connCallback_->onNewBidirectionalStream(streamId);
} else {
connCallback_->onNewUnidirectionalStream(streamId);
}
const Observer::StreamOpenEvent streamEvent(
streamId,
getStreamInitiator(streamId),
getStreamDirectionality(streamId));
for (const auto& cb : *observers_) {
if (cb->getConfig().streamEvents) {
cb->streamOpened(this, streamEvent);
}
}
if (closeState_ != CloseState::OPEN) {
return;
}
}
streamStorage.clear();
}
void QuicTransportBase::handleDeliveryCallbacks() {
auto deliverableStreamId = conn_->streamManager->popDeliverable();
while (deliverableStreamId.has_value()) {
auto streamId = *deliverableStreamId;
auto stream = conn_->streamManager->getStream(streamId);
auto maxOffsetToDeliver = getLargestDeliverableOffset(*stream);
while (maxOffsetToDeliver.has_value()) {
auto deliveryCallbacksForAckedStream = deliveryCallbacks_.find(streamId);
if (deliveryCallbacksForAckedStream == deliveryCallbacks_.end() ||
deliveryCallbacksForAckedStream->second.empty()) {
break;
}
if (deliveryCallbacksForAckedStream->second.front().offset >
*maxOffsetToDeliver) {
break;
}
auto deliveryCallbackAndOffset =
deliveryCallbacksForAckedStream->second.front();
deliveryCallbacksForAckedStream->second.pop_front();
auto currentDeliveryCallbackOffset = deliveryCallbackAndOffset.offset;
auto deliveryCallback = deliveryCallbackAndOffset.callback;
ByteEvent byteEvent = {};
byteEvent.id = streamId;
byteEvent.offset = currentDeliveryCallbackOffset;
byteEvent.type = ByteEvent::Type::ACK;
byteEvent.srtt = conn_->lossState.srtt;
deliveryCallback->onByteEvent(byteEvent);
if (closeState_ != CloseState::OPEN) {
return;
}
}
auto deliveryCallbacksForAckedStream = deliveryCallbacks_.find(streamId);
if (deliveryCallbacksForAckedStream != deliveryCallbacks_.end() &&
deliveryCallbacksForAckedStream->second.empty()) {
deliveryCallbacks_.erase(deliveryCallbacksForAckedStream);
}
deliverableStreamId = conn_->streamManager->popDeliverable();
}
}
void QuicTransportBase::handleStreamFlowControlUpdatedCallbacks(
std::vector<StreamId>& streamStorage) {
// Iterate over streams that changed their flow control window and give
// their registered listeners their updates.
// We don't really need flow control notifications when we are closed.
streamStorage =
conn_->streamManager->consumeFlowControlUpdated(std::move(streamStorage));
const auto& flowControlUpdated = streamStorage;
for (auto streamId : flowControlUpdated) {
auto stream = conn_->streamManager->getStream(streamId);
if (!stream->writable()) {
pendingWriteCallbacks_.erase(streamId);
continue;
}
connCallback_->onFlowControlUpdate(streamId);
if (closeState_ != CloseState::OPEN) {
return;
}
// In case the callback modified the stream map, get it again.
stream = conn_->streamManager->getStream(streamId);
auto maxStreamWritable = maxWritableOnStream(*stream);
if (maxStreamWritable != 0 && !pendingWriteCallbacks_.empty()) {
auto pendingWriteIt = pendingWriteCallbacks_.find(stream->id);
if (pendingWriteIt != pendingWriteCallbacks_.end()) {
auto wcb = pendingWriteIt->second;
pendingWriteCallbacks_.erase(stream->id);
wcb->onStreamWriteReady(stream->id, maxStreamWritable);
if (closeState_ != CloseState::OPEN) {
return;
}
}
}
}
streamStorage.clear();
}
void QuicTransportBase::handleStreamStopSendingCallbacks() {
const auto stopSendingStreamsCopy =
conn_->streamManager->consumeStopSending();
for (const auto& itr : stopSendingStreamsCopy) {
connCallback_->onStopSending(itr.first, itr.second);
if (closeState_ != CloseState::OPEN) {
return;
}
}
}
void QuicTransportBase::handleConnWritable() {
auto maxConnWrite = maxWritableOnConn();
if (maxConnWrite != 0) {
// If the connection now has flow control, we may either have been blocked
// before on a pending write to the conn, or a stream's write.
if (connWriteCallback_) {
auto connWriteCallback = connWriteCallback_;
connWriteCallback_ = nullptr;
connWriteCallback->onConnectionWriteReady(maxConnWrite);
}
// If the connection flow control is unblocked, we might be unblocked
// on the streams now.
auto writeCallbackIt = pendingWriteCallbacks_.begin();
while (writeCallbackIt != pendingWriteCallbacks_.end()) {
auto streamId = writeCallbackIt->first;
auto wcb = writeCallbackIt->second;
++writeCallbackIt;
auto stream = conn_->streamManager->getStream(streamId);
if (!stream->writable()) {
pendingWriteCallbacks_.erase(streamId);
continue;
}
auto maxStreamWritable = maxWritableOnStream(*stream);
if (maxStreamWritable != 0) {
pendingWriteCallbacks_.erase(streamId);
wcb->onStreamWriteReady(streamId, maxStreamWritable);
if (closeState_ != CloseState::OPEN) {
return;
}
}
}
}
}
void QuicTransportBase::cleanupAckEventState() {
// if there's no bytes in flight, clear any memory allocated for AckEvents
if (conn_->outstandings.packets.empty()) {
std::vector<AckEvent> empty;
conn_->lastProcessedAckEvents.swap(empty);
} // memory allocated for vector will be freed
}
void QuicTransportBase::processCallbacksAfterNetworkData() {
if (closeState_ != CloseState::OPEN) {
return;
}
// We reuse this storage for storing streams which need callbacks.
std::vector<StreamId> tempStorage;
handleNewStreamCallbacks(tempStorage);
if (closeState_ != CloseState::OPEN) {
return;
}
// to call any callbacks added for observers
for (const auto& callback : conn_->pendingCallbacks) {
callback(this);
}
conn_->pendingCallbacks.clear();
handlePingCallback();
if (closeState_ != CloseState::OPEN) {
return;
}
handleKnobCallbacks();
if (closeState_ != CloseState::OPEN) {
return;
}
handleAckEventCallbacks();
if (closeState_ != CloseState::OPEN) {
return;
}
handleCancelByteEventCallbacks();
if (closeState_ != CloseState::OPEN) {
return;
}
handleDeliveryCallbacks();
if (closeState_ != CloseState::OPEN) {
return;
}
handleStreamFlowControlUpdatedCallbacks(tempStorage);
if (closeState_ != CloseState::OPEN) {
return;
}
handleStreamStopSendingCallbacks();
if (closeState_ != CloseState::OPEN) {
return;
}
handleConnWritable();
if (closeState_ != CloseState::OPEN) {
return;
}
invokeStreamsAvailableCallbacks();
cleanupAckEventState();
}
void QuicTransportBase::onNetworkData(
const folly::SocketAddress& peer,
NetworkData&& networkData) noexcept {
FOLLY_MAYBE_UNUSED auto self = sharedGuard();
SCOPE_EXIT {
checkForClosedStream();
updateReadLooper();
updatePeekLooper();
updateWriteLooper(true);
};
try {
conn_->lastProcessedAckEvents.clear();
conn_->lossState.totalBytesRecvd += networkData.totalData;
auto originalAckVersion = currentAckStateVersion(*conn_);
for (auto& packet : networkData.packets) {
onReadData(
peer,
NetworkDataSingle(std::move(packet), networkData.receiveTimePoint));
}
processCallbacksAfterNetworkData();
if (closeState_ != CloseState::CLOSED) {
if (currentAckStateVersion(*conn_) != originalAckVersion) {
setIdleTimer();
conn_->receivedNewPacketBeforeWrite = true;
if (conn_->loopDetectorCallback) {
conn_->readDebugState.noReadReason = NoReadReason::READ_OK;
conn_->readDebugState.loopCount = 0;
}
} else if (conn_->loopDetectorCallback) {
conn_->readDebugState.noReadReason = NoReadReason::STALE_DATA;
conn_->loopDetectorCallback->onSuspiciousReadLoops(
++conn_->readDebugState.loopCount,
conn_->readDebugState.noReadReason);
}
// Reading data could process an ack and change the loss timer.
setLossDetectionAlarm(*conn_, *self);
// Reading data could change the state of the acks which could change the
// ack timer. But we need to call scheduleAckTimeout() for it to take
// effect.
scheduleAckTimeout();
// Received data could contain valid path response, in which case
// path validation timeout should be canceled
schedulePathValidationTimeout();
// Received data could contain an ack to a d6d probe, in which case we
// need to cancel the current d6d probe timeout. The ack might change d6d
// state to SEARCH_COMPLETE, in which case we need to schedule d6d raise
// timeout. We might also need to schedule the next probe.
scheduleD6DProbeTimeout();
scheduleD6DRaiseTimeout();
scheduleD6DTxTimeout();
} else {
// In the closed state, we would want to write a close if possible however
// the write looper will not be set.
writeSocketData();
}
} catch (const QuicTransportException& ex) {
VLOG(4) << __func__ << " " << ex.what() << " " << *this;
exceptionCloseWhat_ = ex.what();
return closeImpl(
std::make_pair(QuicErrorCode(ex.errorCode()), std::string(ex.what())));
} catch (const QuicInternalException& ex) {
VLOG(4) << __func__ << " " << ex.what() << " " << *this;
exceptionCloseWhat_ = ex.what();
return closeImpl(
std::make_pair(QuicErrorCode(ex.errorCode()), std::string(ex.what())));
} catch (const QuicApplicationException& ex) {
VLOG(4) << __func__ << " " << ex.what() << " " << *this;
exceptionCloseWhat_ = ex.what();
return closeImpl(
std::make_pair(QuicErrorCode(ex.errorCode()), std::string(ex.what())));
} catch (const std::exception& ex) {
VLOG(4) << __func__ << " " << ex.what() << " " << *this;
exceptionCloseWhat_ = ex.what();
return closeImpl(std::make_pair(
QuicErrorCode(TransportErrorCode::INTERNAL_ERROR),
std::string("error onNetworkData()")));
}
}
void QuicTransportBase::setIdleTimer() {
if (closeState_ == CloseState::CLOSED) {
return;
}
if (idleTimeout_.isScheduled()) {
idleTimeout_.cancelTimeout();
}
auto localIdleTimeout = conn_->transportSettings.idleTimeout;
// The local idle timeout being zero means it is disabled.
if (localIdleTimeout == 0ms) {
return;
}
auto peerIdleTimeout =
conn_->peerIdleTimeout > 0ms ? conn_->peerIdleTimeout : localIdleTimeout;
auto idleTimeout = timeMin(localIdleTimeout, peerIdleTimeout);
getEventBase()->timer().scheduleTimeout(&idleTimeout_, idleTimeout);
}
uint64_t QuicTransportBase::getNumOpenableBidirectionalStreams() const {
return conn_->streamManager->openableLocalBidirectionalStreams();
}
uint64_t QuicTransportBase::getNumOpenableUnidirectionalStreams() const {
return conn_->streamManager->openableLocalUnidirectionalStreams();
}
folly::Expected<StreamId, LocalErrorCode>
QuicTransportBase::createStreamInternal(bool bidirectional) {
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
folly::Expected<QuicStreamState*, LocalErrorCode> streamResult;
if (bidirectional) {
streamResult = conn_->streamManager->createNextBidirectionalStream();
} else {
streamResult = conn_->streamManager->createNextUnidirectionalStream();
}
if (streamResult) {
const StreamId streamId = streamResult.value()->id;
const Observer::StreamOpenEvent streamEvent(
streamId,
getStreamInitiator(streamId),
getStreamDirectionality(streamId));
for (const auto& cb : *observers_) {
if (cb->getConfig().streamEvents) {
cb->streamOpened(this, streamEvent);
}
}
return streamId;
} else {
return folly::makeUnexpected(streamResult.error());
}
}
folly::Expected<StreamId, LocalErrorCode>
QuicTransportBase::createBidirectionalStream(bool /*replaySafe*/) {
return createStreamInternal(true);
}
folly::Expected<StreamId, LocalErrorCode>
QuicTransportBase::createUnidirectionalStream(bool /*replaySafe*/) {
return createStreamInternal(false);
}
bool QuicTransportBase::isClientStream(StreamId stream) noexcept {
return quic::isClientStream(stream);
}
bool QuicTransportBase::isServerStream(StreamId stream) noexcept {
return quic::isServerStream(stream);
}
StreamInitiator QuicTransportBase::getStreamInitiator(
StreamId stream) noexcept {
return quic::getStreamInitiator(conn_->nodeType, stream);
}
bool QuicTransportBase::isUnidirectionalStream(StreamId stream) noexcept {
return quic::isUnidirectionalStream(stream);
}
bool QuicTransportBase::isBidirectionalStream(StreamId stream) noexcept {
return quic::isBidirectionalStream(stream);
}
StreamDirectionality QuicTransportBase::getStreamDirectionality(
StreamId stream) noexcept {
return quic::getStreamDirectionality(stream);
}
folly::Expected<folly::Unit, LocalErrorCode>
QuicTransportBase::notifyPendingWriteOnConnection(WriteCallback* wcb) {
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
if (connWriteCallback_ != nullptr) {
return folly::makeUnexpected(LocalErrorCode::INVALID_WRITE_CALLBACK);
}
// Assign the write callback before going into the loop so that if we close
// the connection while we are still scheduled, the write callback will get
// an error synchronously.
connWriteCallback_ = wcb;
runOnEvbAsync([](auto self) {
if (!self->connWriteCallback_) {
// The connection was probably closed.
return;
}
auto connWritableBytes = self->maxWritableOnConn();
if (connWritableBytes != 0) {
auto connWriteCallback = self->connWriteCallback_;
self->connWriteCallback_ = nullptr;
connWriteCallback->onConnectionWriteReady(connWritableBytes);
}
});
return folly::unit;
}
folly::Expected<folly::Unit, LocalErrorCode>
QuicTransportBase::unregisterStreamWriteCallback(StreamId id) {
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
if (pendingWriteCallbacks_.find(id) == pendingWriteCallbacks_.end()) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
pendingWriteCallbacks_.erase(id);
return folly::unit;
}
folly::Expected<folly::Unit, LocalErrorCode>
QuicTransportBase::notifyPendingWriteOnStream(StreamId id, WriteCallback* wcb) {
if (isReceivingStream(conn_->nodeType, id)) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
auto stream = conn_->streamManager->getStream(id);
if (!stream->writable()) {
return folly::makeUnexpected(LocalErrorCode::STREAM_CLOSED);
}
if (wcb == nullptr) {
return folly::makeUnexpected(LocalErrorCode::INVALID_WRITE_CALLBACK);
}
// Add the callback to the pending write callbacks so that if we are closed
// while we are scheduled in the loop, the close will error out the callbacks.
auto wcbEmplaceResult = pendingWriteCallbacks_.emplace(id, wcb);
if (!wcbEmplaceResult.second) {
if ((wcbEmplaceResult.first)->second != wcb) {
return folly::makeUnexpected(LocalErrorCode::INVALID_WRITE_CALLBACK);
} else {
return folly::makeUnexpected(LocalErrorCode::CALLBACK_ALREADY_INSTALLED);
}
}
runOnEvbAsync([id](auto self) {
auto wcbIt = self->pendingWriteCallbacks_.find(id);
if (wcbIt == self->pendingWriteCallbacks_.end()) {
// the connection was probably closed.
return;
}
auto writeCallback = wcbIt->second;
if (!self->conn_->streamManager->streamExists(id)) {
self->pendingWriteCallbacks_.erase(wcbIt);
writeCallback->onStreamWriteError(
id, std::make_pair(LocalErrorCode::STREAM_NOT_EXISTS, folly::none));
return;
}
auto stream = self->conn_->streamManager->getStream(id);
if (!stream->writable()) {
self->pendingWriteCallbacks_.erase(wcbIt);
writeCallback->onStreamWriteError(
id, std::make_pair(LocalErrorCode::STREAM_NOT_EXISTS, folly::none));
return;
}
auto maxCanWrite = self->maxWritableOnStream(*stream);
if (maxCanWrite != 0) {
self->pendingWriteCallbacks_.erase(wcbIt);
writeCallback->onStreamWriteReady(id, maxCanWrite);
}
});
return folly::unit;
}
uint64_t QuicTransportBase::maxWritableOnStream(const QuicStreamState& stream) {
auto connWritableBytes = maxWritableOnConn();
auto streamFlowControlBytes = getSendStreamFlowControlBytesAPI(stream);
auto flowControlAllowedBytes =
std::min(streamFlowControlBytes, connWritableBytes);
return flowControlAllowedBytes;
}
uint64_t QuicTransportBase::maxWritableOnConn() {
auto connWritableBytes = getSendConnFlowControlBytesAPI(*conn_);
auto availableBufferSpace = bufferSpaceAvailable();
return std::min(connWritableBytes, availableBufferSpace);
}
QuicSocket::WriteResult QuicTransportBase::writeChain(
StreamId id,
Buf data,
bool eof,
ByteEventCallback* cb) {
if (isReceivingStream(conn_->nodeType, id)) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
FOLLY_MAYBE_UNUSED auto self = sharedGuard();
try {
// Check whether stream exists before calling getStream to avoid
// creating a peer stream if it does not exist yet.
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
auto stream = conn_->streamManager->getStream(id);
if (!stream->writable()) {
return folly::makeUnexpected(LocalErrorCode::STREAM_CLOSED);
}
// Register DeliveryCallback for the data + eof offset.
if (cb) {
auto dataLength =
(data ? data->computeChainDataLength() : 0) + (eof ? 1 : 0);
if (dataLength) {
auto currentLargestWriteOffset = getLargestWriteOffsetSeen(*stream);
registerDeliveryCallback(
id, currentLargestWriteOffset + dataLength - 1, cb);
}
}
bool wasAppLimitedOrIdle = false;
if (conn_->congestionController) {
wasAppLimitedOrIdle = conn_->congestionController->isAppLimited();
wasAppLimitedOrIdle |= conn_->streamManager->isAppIdle();
}
writeDataToQuicStream(*stream, std::move(data), eof);
// If we were previously app limited restart pacing with the current rate.
if (wasAppLimitedOrIdle && conn_->pacer) {
conn_->pacer->reset();
}
updateWriteLooper(true);
} catch (const QuicTransportException& ex) {
VLOG(4) << __func__ << " streamId=" << id << " " << ex.what() << " "
<< *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(ex.errorCode()), std::string("writeChain() error")));
return folly::makeUnexpected(LocalErrorCode::TRANSPORT_ERROR);
} catch (const QuicInternalException& ex) {
VLOG(4) << __func__ << " streamId=" << id << " " << ex.what() << " "
<< *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(ex.errorCode()), std::string("writeChain() error")));
return folly::makeUnexpected(ex.errorCode());
} catch (const std::exception& ex) {
VLOG(4) << __func__ << " streamId=" << id << " " << ex.what() << " "
<< *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(TransportErrorCode::INTERNAL_ERROR),
std::string("writeChain() error")));
return folly::makeUnexpected(LocalErrorCode::INTERNAL_ERROR);
}
return folly::unit;
}
QuicSocket::WriteResult QuicTransportBase::writeBufMeta(
StreamId id,
const BufferMeta& data,
bool eof,
ByteEventCallback* cb) {
if (isReceivingStream(conn_->nodeType, id)) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
FOLLY_MAYBE_UNUSED auto self = sharedGuard();
try {
// Check whether stream exists before calling getStream to avoid
// creating a peer stream if it does not exist yet.
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
auto stream = conn_->streamManager->getStream(id);
if (!stream->writable()) {
return folly::makeUnexpected(LocalErrorCode::STREAM_CLOSED);
}
if (!stream->dsrSender) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
if (stream->currentWriteOffset == 0 && stream->writeBuffer.empty()) {
// If nothing has been written to writeBuffer ever, meta writing isn't
// allowed.
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
// Register DeliveryCallback for the data + eof offset.
if (cb) {
auto dataLength = data.length + (eof ? 1 : 0);
if (dataLength) {
auto currentLargestWriteOffset = getLargestWriteOffsetSeen(*stream);
registerDeliveryCallback(
id, currentLargestWriteOffset + dataLength - 1, cb);
}
}
bool wasAppLimitedOrIdle = false;
if (conn_->congestionController) {
wasAppLimitedOrIdle = conn_->congestionController->isAppLimited();
wasAppLimitedOrIdle |= conn_->streamManager->isAppIdle();
}
writeBufMetaToQuicStream(*stream, data, eof);
// If we were previously app limited restart pacing with the current rate.
if (wasAppLimitedOrIdle && conn_->pacer) {
conn_->pacer->reset();
}
updateWriteLooper(true);
} catch (const QuicTransportException& ex) {
VLOG(4) << __func__ << " streamId=" << id << " " << ex.what() << " "
<< *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(ex.errorCode()), std::string("writeChain() error")));
return folly::makeUnexpected(LocalErrorCode::TRANSPORT_ERROR);
} catch (const QuicInternalException& ex) {
VLOG(4) << __func__ << " streamId=" << id << " " << ex.what() << " "
<< *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(ex.errorCode()), std::string("writeChain() error")));
return folly::makeUnexpected(ex.errorCode());
} catch (const std::exception& ex) {
VLOG(4) << __func__ << " streamId=" << id << " " << ex.what() << " "
<< *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(TransportErrorCode::INTERNAL_ERROR),
std::string("writeChain() error")));
return folly::makeUnexpected(LocalErrorCode::INTERNAL_ERROR);
}
return folly::unit;
}
folly::Expected<folly::Unit, LocalErrorCode>
QuicTransportBase::registerDeliveryCallback(
StreamId id,
uint64_t offset,
ByteEventCallback* cb) {
return registerByteEventCallback(ByteEvent::Type::ACK, id, offset, cb);
}
folly::Expected<folly::Unit, LocalErrorCode>
QuicTransportBase::registerTxCallback(
StreamId id,
uint64_t offset,
ByteEventCallback* cb) {
return registerByteEventCallback(ByteEvent::Type::TX, id, offset, cb);
}
folly::Expected<folly::Unit, LocalErrorCode>
QuicTransportBase::registerByteEventCallback(
const ByteEvent::Type type,
const StreamId id,
const uint64_t offset,
ByteEventCallback* cb) {
if (isReceivingStream(conn_->nodeType, id)) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
FOLLY_MAYBE_UNUSED auto self = sharedGuard();
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
if (!cb) {
return folly::unit;
}
ByteEventMap& byteEventMap = getByteEventMap(type);
auto byteEventMapIt = byteEventMap.find(id);
if (byteEventMapIt == byteEventMap.end()) {
byteEventMap.emplace(
id,
std::initializer_list<std::remove_reference<
decltype(byteEventMap)>::type::mapped_type::value_type>(
{{offset, cb}}));
} else {
// Keep ByteEvents for the same stream sorted by offsets:
auto pos = std::upper_bound(
byteEventMapIt->second.begin(),
byteEventMapIt->second.end(),
offset,
[&](uint64_t o, const ByteEventDetail& p) { return o < p.offset; });
if (pos != byteEventMapIt->second.begin()) {
auto matchingEvent = std::find_if(
byteEventMapIt->second.begin(),
pos,
[offset, cb](const ByteEventDetail& p) {
return ((p.offset == offset) && (p.callback == cb));
});
if (matchingEvent != pos) {
// ByteEvent has been already registered for the same type, id,
// offset and for the same recipient, return an INVALID_OPERATION error
// to prevent duplicate registrations.
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
}
byteEventMapIt->second.emplace(pos, offset, cb);
}
auto stream = conn_->streamManager->getStream(id);
// Notify recipients that the registration was successful.
ByteEvent byteEvent = {};
byteEvent.id = id;
byteEvent.offset = offset;
byteEvent.type = type;
cb->onByteEventRegistered(byteEvent);
// if the callback is already ready, we still insert, but schedule to process
folly::Optional<uint64_t> maxOffsetReady;
switch (type) {
case ByteEvent::Type::ACK:
maxOffsetReady = getLargestDeliverableOffset(*stream);
break;
case ByteEvent::Type::TX:
maxOffsetReady = getLargestWriteOffsetTxed(*stream);
break;
}
if (maxOffsetReady.has_value() && (offset <= *maxOffsetReady)) {
runOnEvbAsync([id, cb, offset, type](auto selfObj) {
if (selfObj->closeState_ != CloseState::OPEN) {
// Close will error out all byte event callbacks.
return;
}
auto& byteEventMapL = selfObj->getByteEventMap(type);
auto streamByteEventCbIt = byteEventMapL.find(id);
if (streamByteEventCbIt == byteEventMapL.end()) {
return;
}
// This is scheduled to run in the future (during the next iteration of
// the event loop). It is possible that the ByteEventDetail list gets
// mutated between the time it was scheduled to now when we are ready to
// run it. Look at the current outstanding ByteEvents for this stream ID
// and confirm that our ByteEvent's offset and recipient callback are
// still present.
auto pos = std::find_if(
streamByteEventCbIt->second.begin(),
streamByteEventCbIt->second.end(),
[offset, cb](const ByteEventDetail& p) {
return ((p.offset == offset) && (p.callback == cb));
});
// if our byteEvent is not present, it must have been delivered already.
if (pos == streamByteEventCbIt->second.end()) {
return;
}
streamByteEventCbIt->second.erase(pos);
ByteEvent byteEvent = {};
byteEvent.id = id;
byteEvent.offset = offset;
byteEvent.type = type;
cb->onByteEvent(byteEvent);
});
}
return folly::unit;
}
folly::Optional<LocalErrorCode> QuicTransportBase::shutdownWrite(StreamId id) {
if (isReceivingStream(conn_->nodeType, id)) {
return LocalErrorCode::INVALID_OPERATION;
}
return folly::none;
}
folly::Expected<folly::Unit, LocalErrorCode> QuicTransportBase::resetStream(
StreamId id,
ApplicationErrorCode errorCode) {
if (isReceivingStream(conn_->nodeType, id)) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
FOLLY_MAYBE_UNUSED auto self = sharedGuard();
SCOPE_EXIT {
checkForClosedStream();
updateReadLooper();
updatePeekLooper();
updateWriteLooper(true);
};
try {
// Check whether stream exists before calling getStream to avoid
// creating a peer stream if it does not exist yet.
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
auto stream = conn_->streamManager->getStream(id);
// Invoke state machine
sendRstSMHandler(*stream, errorCode);
for (auto pendingResetIt = conn_->pendingEvents.resets.begin();
closeState_ == CloseState::OPEN &&
pendingResetIt != conn_->pendingEvents.resets.end();
pendingResetIt++) {
cancelByteEventCallbacksForStream(pendingResetIt->first);
}
pendingWriteCallbacks_.erase(id);
QUIC_STATS(conn_->statsCallback, onQuicStreamReset, errorCode);
} catch (const QuicTransportException& ex) {
VLOG(4) << __func__ << " streamId=" << id << " " << ex.what() << " "
<< *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(ex.errorCode()), std::string("resetStream() error")));
return folly::makeUnexpected(LocalErrorCode::TRANSPORT_ERROR);
} catch (const QuicInternalException& ex) {
VLOG(4) << __func__ << " streamId=" << id << " " << ex.what() << " "
<< *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(ex.errorCode()), std::string("resetStream() error")));
return folly::makeUnexpected(ex.errorCode());
} catch (const std::exception& ex) {
VLOG(4) << __func__ << " streamId=" << id << " " << ex.what() << " "
<< *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(TransportErrorCode::INTERNAL_ERROR),
std::string("resetStream() error")));
return folly::makeUnexpected(LocalErrorCode::INTERNAL_ERROR);
}
return folly::unit;
}
void QuicTransportBase::checkForClosedStream() {
if (closeState_ == CloseState::CLOSED) {
return;
}
auto itr = conn_->streamManager->closedStreams().begin();
while (itr != conn_->streamManager->closedStreams().end()) {
const auto& streamId = *itr;
const Observer::StreamCloseEvent streamEvent(
streamId,
getStreamInitiator(streamId),
getStreamDirectionality(streamId));
for (const auto& cb : *observers_) {
if (cb->getConfig().streamEvents) {
cb->streamClosed(this, streamEvent);
}
}
// We may be in an active read cb when we close the stream
auto readCbIt = readCallbacks_.find(*itr);
if (readCbIt != readCallbacks_.end() &&
readCbIt->second.readCb != nullptr && !readCbIt->second.deliveredEOM) {
VLOG(10) << "Not closing stream=" << *itr
<< " because it has active read callback";
++itr;
continue;
}
// We may be in the active peek cb when we close the stream
auto peekCbIt = peekCallbacks_.find(*itr);
if (peekCbIt != peekCallbacks_.end() &&
peekCbIt->second.peekCb != nullptr) {
VLOG(10) << "Not closing stream=" << *itr
<< " because it has active peek callback";
++itr;
continue;
}
// If we have pending byte events, delay closing the stream
auto numByteEventCb = getNumByteEventCallbacksForStream(*itr);
if (numByteEventCb > 0) {
VLOG(10) << "Not closing stream=" << *itr << " because it has "
<< numByteEventCb << " pending byte event callbacks";
++itr;
continue;
}
VLOG(10) << "Closing stream=" << *itr;
if (conn_->qLogger) {
conn_->qLogger->addTransportStateUpdate(
getClosingStream(folly::to<std::string>(*itr)));
}
conn_->streamManager->removeClosedStream(*itr);
maybeSendStreamLimitUpdates(*conn_);
if (readCbIt != readCallbacks_.end()) {
readCallbacks_.erase(readCbIt);
}
if (peekCbIt != peekCallbacks_.end()) {
peekCallbacks_.erase(peekCbIt);
}
itr = conn_->streamManager->closedStreams().erase(itr);
} // while
if (closeState_ == CloseState::GRACEFUL_CLOSING &&
conn_->streamManager->streamCount() == 0) {
closeImpl(folly::none);
}
}
void QuicTransportBase::sendPing(
PingCallback* callback,
std::chrono::milliseconds pingTimeout) {
/* Step 0: Connection should not be closed */
if (closeState_ == CloseState::CLOSED) {
return;
}
// Step 1: Send a simple ping frame
conn_->pendingEvents.sendPing = true;
updateWriteLooper(true);
// Step 2: Schedule the timeout on event base
if (callback && pingTimeout != 0ms) {
schedulePingTimeout(callback, pingTimeout);
}
}
void QuicTransportBase::lossTimeoutExpired() noexcept {
CHECK_NE(closeState_, CloseState::CLOSED);
// onLossDetectionAlarm will set packetToSend in pending events
FOLLY_MAYBE_UNUSED auto self = sharedGuard();
try {
onLossDetectionAlarm(*conn_, markPacketLoss);
if (conn_->qLogger) {
conn_->qLogger->addTransportStateUpdate(kLossTimeoutExpired);
}
// loss detection might cancel d6d raise timeout, and might cause the next
// probe to be scheduled
scheduleD6DRaiseTimeout();
scheduleD6DTxTimeout();
pacedWriteDataToSocket(false);
} catch (const QuicTransportException& ex) {
VLOG(4) << __func__ << " " << ex.what() << " " << *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(ex.errorCode()),
std::string("lossTimeoutExpired() error")));
} catch (const QuicInternalException& ex) {
VLOG(4) << __func__ << " " << ex.what() << " " << *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(ex.errorCode()),
std::string("lossTimeoutExpired() error")));
} catch (const std::exception& ex) {
VLOG(4) << __func__ << " " << ex.what() << " " << *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(TransportErrorCode::INTERNAL_ERROR),
std::string("lossTimeoutExpired() error")));
}
}
void QuicTransportBase::ackTimeoutExpired() noexcept {
CHECK_NE(closeState_, CloseState::CLOSED);
VLOG(10) << __func__ << " " << *this;
FOLLY_MAYBE_UNUSED auto self = sharedGuard();
updateAckStateOnAckTimeout(*conn_);
pacedWriteDataToSocket(false);
}
void QuicTransportBase::pingTimeoutExpired() noexcept {
// If timeout expired just call the call back Provided
if (pingCallback_ == nullptr) {
return;
}
runOnEvbAsync([](auto self) { self->pingCallback_->pingTimeout(); });
}
void QuicTransportBase::pathValidationTimeoutExpired() noexcept {
CHECK(conn_->outstandingPathValidation);
conn_->pendingEvents.schedulePathValidationTimeout = false;
conn_->outstandingPathValidation = folly::none;
if (conn_->qLogger) {
conn_->qLogger->addPathValidationEvent(false);
}
// TODO junqiw probing is not supported, so pathValidation==connMigration
// We decide to close conn when pathValidation to migrated path fails.
FOLLY_MAYBE_UNUSED auto self = sharedGuard();
closeImpl(std::make_pair(
QuicErrorCode(TransportErrorCode::INVALID_MIGRATION),
std::string("Path validation timed out")));
}
void QuicTransportBase::idleTimeoutExpired(bool drain) noexcept {
VLOG(4) << __func__ << " " << *this;
FOLLY_MAYBE_UNUSED auto self = sharedGuard();
// idle timeout is expired, just close the connection and drain or
// send connection close immediately depending on 'drain'
DCHECK_NE(closeState_, CloseState::CLOSED);
uint64_t numOpenStreans = conn_->streamManager->streamCount();
closeImpl(
std::make_pair(
QuicErrorCode(LocalErrorCode::IDLE_TIMEOUT),
folly::to<std::string>(
toString(LocalErrorCode::IDLE_TIMEOUT),
", num non control streams: ",
numOpenStreans - conn_->streamManager->numControlStreams())),
drain /* drainConnection */,
!drain /* sendCloseImmediately */);
}
void QuicTransportBase::d6dProbeTimeoutExpired() noexcept {
VLOG(4) << __func__ << " " << *this;
FOLLY_MAYBE_UNUSED auto self = sharedGuard();
conn_->pendingEvents.d6d.scheduleProbeTimeout = false;
onD6DProbeTimeoutExpired(*conn_);
}
void QuicTransportBase::d6dRaiseTimeoutExpired() noexcept {
VLOG(4) << __func__ << " " << *this;
FOLLY_MAYBE_UNUSED auto self = sharedGuard();
conn_->pendingEvents.d6d.scheduleRaiseTimeout = false;
onD6DRaiseTimeoutExpired(*conn_);
}
void QuicTransportBase::d6dTxTimeoutExpired() noexcept {
VLOG(4) << __func__ << " " << *this;
conn_->pendingEvents.d6d.sendProbeDelay = folly::none;
conn_->pendingEvents.d6d.sendProbePacket = true;
}
void QuicTransportBase::scheduleLossTimeout(std::chrono::milliseconds timeout) {
if (closeState_ == CloseState::CLOSED) {
return;
}
auto& wheelTimer = getEventBase()->timer();
timeout = timeMax(timeout, wheelTimer.getTickInterval());
wheelTimer.scheduleTimeout(&lossTimeout_, timeout);
}
void QuicTransportBase::scheduleAckTimeout() {
if (closeState_ == CloseState::CLOSED) {
return;
}
if (conn_->pendingEvents.scheduleAckTimeout) {
if (!ackTimeout_.isScheduled()) {
auto factoredRtt = std::chrono::duration_cast<std::chrono::microseconds>(
kAckTimerFactor * conn_->lossState.srtt);
auto& wheelTimer = getEventBase()->timer();
auto timeout = timeMax(
std::chrono::duration_cast<std::chrono::microseconds>(
wheelTimer.getTickInterval()),
timeMin(conn_->ackStates.maxAckDelay, factoredRtt));
auto timeoutMs = folly::chrono::ceil<std::chrono::milliseconds>(timeout);
VLOG(10) << __func__ << " timeout=" << timeoutMs.count() << "ms"
<< " factoredRtt=" << factoredRtt.count() << "us"
<< " " << *this;
wheelTimer.scheduleTimeout(&ackTimeout_, timeoutMs);
}
} else {
if (ackTimeout_.isScheduled()) {
VLOG(10) << __func__ << " cancel timeout " << *this;
ackTimeout_.cancelTimeout();
}
}
}
void QuicTransportBase::schedulePingTimeout(
PingCallback* pingCb,
std::chrono::milliseconds timeout) {
// if a ping timeout is already scheduled, nothing to do, return
if (pingTimeout_.isScheduled()) {
return;
}
pingCallback_ = pingCb;
auto& wheelTimer = getEventBase()->timer();
wheelTimer.scheduleTimeout(&pingTimeout_, timeout);
}
void QuicTransportBase::schedulePathValidationTimeout() {
if (closeState_ == CloseState::CLOSED) {
return;
}
if (!conn_->pendingEvents.schedulePathValidationTimeout) {
if (pathValidationTimeout_.isScheduled()) {
VLOG(10) << __func__ << " cancel timeout " << *this;
// This means path validation succeeded, and we should have updated to
// correct state
pathValidationTimeout_.cancelTimeout();
}
} else if (!pathValidationTimeout_.isScheduled()) {
auto pto = conn_->lossState.srtt +
std::max(4 * conn_->lossState.rttvar, kGranularity) +
conn_->lossState.maxAckDelay;
auto validationTimeout =
std::max(3 * pto, 6 * conn_->transportSettings.initialRtt);
auto timeoutMs =
folly::chrono::ceil<std::chrono::milliseconds>(validationTimeout);
VLOG(10) << __func__ << " timeout=" << timeoutMs.count() << "ms " << *this;
getEventBase()->timer().scheduleTimeout(&pathValidationTimeout_, timeoutMs);
}
}
void QuicTransportBase::scheduleD6DProbeTimeout() {
if (conn_->pendingEvents.d6d.scheduleProbeTimeout) {
if (!d6dProbeTimeout_.isScheduled()) {
VLOG(10) << __func__ << "timeout=" << conn_->d6d.probeTimeout.count()
<< "ms " << *this;
getEventBase()->timer().scheduleTimeout(
&d6dProbeTimeout_, conn_->d6d.probeTimeout);
}
} else {
if (d6dProbeTimeout_.isScheduled()) {
VLOG(10) << __func__ << " cancel timeout " << *this;
d6dProbeTimeout_.cancelTimeout();
}
}
}
void QuicTransportBase::scheduleD6DRaiseTimeout() {
if (conn_->pendingEvents.d6d.scheduleRaiseTimeout) {
if (!d6dRaiseTimeout_.isScheduled()) {
VLOG(10) << __func__ << "timeout=" << conn_->d6d.raiseTimeout.count()
<< "s " << *this;
getEventBase()->timer().scheduleTimeout(
&d6dRaiseTimeout_, conn_->d6d.raiseTimeout);
}
} else {
if (d6dRaiseTimeout_.isScheduled()) {
VLOG(10) << __func__ << " cancel timeout " << *this;
d6dRaiseTimeout_.cancelTimeout();
}
}
}
void QuicTransportBase::scheduleD6DTxTimeout() {
auto& delay = conn_->pendingEvents.d6d.sendProbeDelay;
if (delay) {
if (!d6dTxTimeout_.isScheduled()) {
VLOG(10) << __func__ << "timeout=" << conn_->d6d.raiseTimeout.count()
<< "s " << *this;
getEventBase()->timer().scheduleTimeout(&d6dTxTimeout_, *delay);
}
}
}
void QuicTransportBase::cancelLossTimeout() {
if (lossTimeout_.isScheduled()) {
lossTimeout_.cancelTimeout();
}
}
bool QuicTransportBase::isLossTimeoutScheduled() const {
return lossTimeout_.isScheduled();
}
void QuicTransportBase::setSupportedVersions(
const std::vector<QuicVersion>& versions) {
conn_->originalVersion = versions.at(0);
conn_->supportedVersions = versions;
}
void QuicTransportBase::setConnectionCallback(ConnectionCallback* callback) {
if (!connCallback_) {
connCallback_ = CallbackDispatcher::make();
}
connCallback_->setConnectionCallback(CHECK_NOTNULL(callback));
}
void QuicTransportBase::setConnectionSetupCallback(
ConnectionSetupCallback* callback) {
if (!connCallback_) {
connCallback_ = CallbackDispatcher::make();
}
connCallback_->setConnectionSetupCallback(callback);
}
void QuicTransportBase::setConnectionCallbackNew(
ConnectionCallbackNew* callback) {
if (!connCallback_) {
connCallback_ = CallbackDispatcher::make();
}
connCallback_->setConnectionCallbackNew(callback);
}
void QuicTransportBase::setEarlyDataAppParamsFunctions(
folly::Function<bool(const folly::Optional<std::string>&, const Buf&) const>
validator,
folly::Function<Buf()> getter) {
conn_->earlyDataAppParamsValidator = std::move(validator);
conn_->earlyDataAppParamsGetter = std::move(getter);
}
void QuicTransportBase::cancelAllAppCallbacks(
const std::pair<QuicErrorCode, folly::StringPiece>& err) noexcept {
SCOPE_EXIT {
checkForClosedStream();
updateReadLooper();
updatePeekLooper();
updateWriteLooper(true);
};
conn_->streamManager->clearActionable();
// Cancel any pending ByteEvent callbacks
cancelAllByteEventCallbacks();
// TODO: this will become simpler when we change the underlying data
// structure of read callbacks.
// TODO: this approach will make the app unable to setReadCallback to
// nullptr during the loop. Need to fix that.
// TODO: setReadCallback to nullptr closes the stream, so the app
// may just do that...
auto readCallbacksCopy = readCallbacks_;
for (auto& cb : readCallbacksCopy) {
readCallbacks_.erase(cb.first);
if (cb.second.readCb) {
cb.second.readCb->readError(cb.first, err);
}
}
VLOG(4) << "Clearing datagram callback";
datagramCallback_ = nullptr;
VLOG(4) << "Clearing " << peekCallbacks_.size() << " peek callbacks";
auto peekCallbacksCopy = peekCallbacks_;
for (auto& cb : peekCallbacksCopy) {
peekCallbacks_.erase(cb.first);
if (cb.second.peekCb) {
cb.second.peekCb->peekError(cb.first, err);
}
}
if (connWriteCallback_) {
auto connWriteCallback = connWriteCallback_;
connWriteCallback_ = nullptr;
connWriteCallback->onConnectionWriteError(err);
}
auto it = pendingWriteCallbacks_.begin();
while (it != pendingWriteCallbacks_.end()) {
auto wcb = it->second;
wcb->onStreamWriteError(it->first, err);
it = pendingWriteCallbacks_.erase(it);
}
}
void QuicTransportBase::resetNonControlStreams(
ApplicationErrorCode error,
folly::StringPiece errorMsg) {
std::vector<StreamId> nonControlStreamIds;
nonControlStreamIds.reserve(conn_->streamManager->streamCount());
conn_->streamManager->streamStateForEach(
[&nonControlStreamIds](const auto& stream) {
if (!stream.isControl) {
nonControlStreamIds.push_back(stream.id);
}
});
for (auto id : nonControlStreamIds) {
if (isSendingStream(conn_->nodeType, id) || isBidirectionalStream(id)) {
auto writeCallbackIt = pendingWriteCallbacks_.find(id);
if (writeCallbackIt != pendingWriteCallbacks_.end()) {
writeCallbackIt->second->onStreamWriteError(id, {error, errorMsg});
}
resetStream(id, error);
}
if (isReceivingStream(conn_->nodeType, id) || isBidirectionalStream(id)) {
auto readCallbackIt = readCallbacks_.find(id);
if (readCallbackIt != readCallbacks_.end() &&
readCallbackIt->second.readCb) {
readCallbackIt->second.readCb->readError(id, {error, errorMsg});
}
peekCallbacks_.erase(id);
stopSending(id, error);
}
}
}
void QuicTransportBase::addObserver(Observer* observer) {
// adding the same observer multiple times is not allowed
CHECK(
std::find(observers_->begin(), observers_->end(), observer) ==
observers_->end());
observers_->push_back(CHECK_NOTNULL(observer));
observer->observerAttach(this);
}
bool QuicTransportBase::removeObserver(Observer* observer) {
auto it = std::find(observers_->begin(), observers_->end(), observer);
if (it == observers_->end()) {
return false;
}
observer->observerDetach(this);
observers_->erase(it);
return true;
}
const ObserverVec& QuicTransportBase::getObservers() const {
return *observers_;
}
QuicConnectionStats QuicTransportBase::getConnectionsStats() const {
QuicConnectionStats connStats;
if (!conn_) {
return connStats;
}
connStats.peerAddress = conn_->peerAddress;
connStats.duration = Clock::now() - conn_->connectionTime;
if (conn_->congestionController) {
connStats.cwnd_bytes = conn_->congestionController->getCongestionWindow();
connStats.congestionController = conn_->congestionController->type();
conn_->congestionController->getStats(connStats.congestionControllerStats);
}
connStats.ptoCount = conn_->lossState.ptoCount;
connStats.srtt = conn_->lossState.srtt;
connStats.rttvar = conn_->lossState.rttvar;
connStats.peerAckDelayExponent = conn_->peerAckDelayExponent;
connStats.udpSendPacketLen = conn_->udpSendPacketLen;
if (conn_->streamManager) {
connStats.numStreams = conn_->streamManager->streams().size();
}
if (conn_->clientChosenDestConnectionId.hasValue()) {
connStats.clientChosenDestConnectionId =
conn_->clientChosenDestConnectionId->hex();
}
if (conn_->clientConnectionId.hasValue()) {
connStats.clientConnectionId = conn_->clientConnectionId->hex();
}
if (conn_->serverConnectionId.hasValue()) {
connStats.serverConnectionId = conn_->serverConnectionId->hex();
}
connStats.totalBytesSent = conn_->lossState.totalBytesSent;
connStats.totalBytesReceived = conn_->lossState.totalBytesRecvd;
connStats.totalBytesRetransmitted = conn_->lossState.totalBytesRetransmitted;
if (conn_->version.hasValue()) {
connStats.version = static_cast<uint32_t>(*conn_->version);
}
return connStats;
}
folly::Expected<folly::Unit, LocalErrorCode>
QuicTransportBase::setDatagramCallback(DatagramCallback* cb) {
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
VLOG(4) << "Setting datagram callback "
<< " cb=" << cb << " " << *this;
datagramCallback_ = cb;
updateReadLooper();
return folly::unit;
}
uint16_t QuicTransportBase::getDatagramSizeLimit() const {
CHECK(conn_);
auto maxDatagramPacketSize = std::min<decltype(conn_->udpSendPacketLen)>(
conn_->datagramState.maxWriteFrameSize, conn_->udpSendPacketLen);
return std::max<decltype(maxDatagramPacketSize)>(
0, maxDatagramPacketSize - kMaxDatagramPacketOverhead);
}
folly::Expected<folly::Unit, LocalErrorCode> QuicTransportBase::writeDatagram(
Buf buf) {
// TODO(lniccolini) update max datagram frame size
// https://github.com/quicwg/datagram/issues/3
// For now, max_datagram_size > 0 means the peer supports datagram frames
if (conn_->datagramState.maxWriteFrameSize == 0) {
QUIC_STATS(conn_->statsCallback, onDatagramDroppedOnWrite);
return folly::makeUnexpected(LocalErrorCode::INVALID_WRITE_DATA);
}
if (conn_->datagramState.writeBuffer.size() >=
conn_->datagramState.maxWriteBufferSize) {
QUIC_STATS(conn_->statsCallback, onDatagramDroppedOnWrite);
if (!conn_->transportSettings.datagramConfig.sendDropOldDataFirst) {
// TODO(lniccolini) use different return codes to signal the application
// exactly why the datagram got dropped
return folly::makeUnexpected(LocalErrorCode::INVALID_WRITE_DATA);
} else {
conn_->datagramState.writeBuffer.pop_front();
}
}
conn_->datagramState.writeBuffer.emplace_back(std::move(buf));
updateWriteLooper(true);
return folly::unit;
}
folly::Expected<std::vector<Buf>, LocalErrorCode>
QuicTransportBase::readDatagrams(size_t atMost) {
CHECK(conn_);
auto datagrams = &conn_->datagramState.readBuffer;
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
if (atMost == 0) {
atMost = datagrams->size();
} else {
atMost = std::min(atMost, datagrams->size());
}
std::vector<Buf> retDatagrams;
retDatagrams.reserve(atMost);
std::transform(
datagrams->begin(),
datagrams->begin() + atMost,
std::back_inserter(retDatagrams),
[](BufQueue& bq) { return bq.move(); });
datagrams->erase(datagrams->begin(), datagrams->begin() + atMost);
return retDatagrams;
}
void QuicTransportBase::writeSocketData() {
if (socket_) {
++(conn_->writeCount); // incremented on each write (or write attempt)
// record current number of sent packets to detect delta
const auto beforeTotalPacketsSent = conn_->lossState.totalPacketsSent;
const auto beforeTotalAckElicitingPacketsSent =
conn_->lossState.totalAckElicitingPacketsSent;
const auto beforeNumOutstandingPackets =
conn_->outstandings.numOutstanding();
// if we're starting to write from app limited, notify observers
if (conn_->waitingForAppData && conn_->congestionController) {
notifyStartWritingFromAppRateLimited();
conn_->waitingForAppData = false;
}
writeData();
if (closeState_ != CloseState::CLOSED) {
if (conn_->pendingEvents.closeTransport == true) {
throw QuicTransportException(
"Max packet number reached",
TransportErrorCode::PROTOCOL_VIOLATION);
}
setLossDetectionAlarm(*conn_, *this);
// check for change in number of packets
const auto afterTotalPacketsSent = conn_->lossState.totalPacketsSent;
const auto afterTotalAckElicitingPacketsSent =
conn_->lossState.totalAckElicitingPacketsSent;
const auto afterNumOutstandingPackets =
conn_->outstandings.numOutstanding();
CHECK_LE(beforeTotalPacketsSent, afterTotalPacketsSent);
CHECK_LE(
beforeTotalAckElicitingPacketsSent,
afterTotalAckElicitingPacketsSent);
CHECK_LE(beforeNumOutstandingPackets, afterNumOutstandingPackets);
CHECK_EQ(
afterNumOutstandingPackets - beforeNumOutstandingPackets,
afterTotalAckElicitingPacketsSent -
beforeTotalAckElicitingPacketsSent);
const bool newPackets = (afterTotalPacketsSent > beforeTotalPacketsSent);
const bool newOutstandingPackets =
(afterTotalAckElicitingPacketsSent >
beforeTotalAckElicitingPacketsSent);
// if packets sent, notify observers
if (newPackets && conn_->congestionController) {
notifyPacketsWritten(
afterTotalPacketsSent - beforeTotalPacketsSent
/* numPacketsWritten */,
afterTotalAckElicitingPacketsSent -
beforeTotalAckElicitingPacketsSent
/* numAckElicitingPacketsWritten */);
}
if (conn_->loopDetectorCallback && newOutstandingPackets) {
conn_->writeDebugState.currentEmptyLoopCount = 0;
} else if (
conn_->writeDebugState.needsWriteLoopDetect &&
conn_->loopDetectorCallback) {
// TODO: Currently we will to get some stats first. Then we may filter
// out some errors here. For example, socket fail to write might be a
// legit case to filter out.
conn_->loopDetectorCallback->onSuspiciousWriteLoops(
++conn_->writeDebugState.currentEmptyLoopCount,
conn_->writeDebugState.writeDataReason,
conn_->writeDebugState.noWriteReason,
conn_->writeDebugState.schedulerName);
}
// If we sent a new packet and the new packet was either the first
// packet after quiescence or after receiving a new packet.
if (newOutstandingPackets &&
(beforeNumOutstandingPackets == 0 ||
conn_->receivedNewPacketBeforeWrite)) {
// Reset the idle timer because we sent some data.
setIdleTimer();
conn_->receivedNewPacketBeforeWrite = false;
}
// Check if we are app-limited after finish this round of sending
auto currentSendBufLen = conn_->flowControlState.sumCurStreamBufferLen;
auto lossBufferEmpty = !conn_->streamManager->hasLoss() &&
conn_->cryptoState->initialStream.lossBuffer.empty() &&
conn_->cryptoState->handshakeStream.lossBuffer.empty() &&
conn_->cryptoState->oneRttStream.lossBuffer.empty();
if (conn_->congestionController &&
currentSendBufLen < conn_->udpSendPacketLen && lossBufferEmpty &&
conn_->congestionController->getWritableBytes()) {
conn_->congestionController->setAppLimited();
// notify via connection call and any observer callbacks
if (transportReadyNotified_) {
connCallback_->onAppRateLimited();
}
notifyAppRateLimited();
conn_->waitingForAppData = true;
}
}
}
// Writing data could write out an ack which could cause us to cancel
// the ack timer. But we need to call scheduleAckTimeout() for it to take
// effect.
scheduleAckTimeout();
schedulePathValidationTimeout();
// Writing data could write out a d6d probe, for which we need to schedule a
// probe timeout
scheduleD6DProbeTimeout();
updateWriteLooper(false);
}
void QuicTransportBase::writeSocketDataAndCatch() {
FOLLY_MAYBE_UNUSED auto self = sharedGuard();
try {
writeSocketData();
processCallbacksAfterWriteData();
} catch (const QuicTransportException& ex) {
VLOG(4) << __func__ << ex.what() << " " << *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(ex.errorCode()),
std::string("writeSocketDataAndCatch() error")));
} catch (const QuicInternalException& ex) {
VLOG(4) << __func__ << ex.what() << " " << *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(ex.errorCode()),
std::string("writeSocketDataAndCatch() error")));
} catch (const std::exception& ex) {
VLOG(4) << __func__ << " error=" << ex.what() << " " << *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(TransportErrorCode::INTERNAL_ERROR),
std::string("writeSocketDataAndCatch() error")));
}
}
void QuicTransportBase::setTransportSettings(
TransportSettings transportSettings) {
if (conn_->nodeType == QuicNodeType::Client) {
conn_->transportSettings.dataPathType = DataPathType::ChainedMemory;
}
// If transport parameters are encoded, we can only update congestion control
// related params. Setting other transport settings again would be buggy.
// TODO should we throw or return Expected here?
if (conn_->transportParametersEncoded) {
updateCongestionControlSettings(transportSettings);
} else {
// TODO: We should let chain based GSO to use bufAccessor in the future as
// well.
CHECK(
conn_->bufAccessor ||
transportSettings.dataPathType != DataPathType::ContinuousMemory);
conn_->transportSettings = std::move(transportSettings);
conn_->streamManager->refreshTransportSettings(conn_->transportSettings);
}
// A few values cannot be overridden to be lower than default:
// TODO refactor transport settings to avoid having to update params twice.
if (conn_->transportSettings.defaultCongestionController !=
CongestionControlType::None) {
conn_->transportSettings.initCwndInMss =
std::max(conn_->transportSettings.initCwndInMss, kInitCwndInMss);
conn_->transportSettings.minCwndInMss =
std::max(conn_->transportSettings.initCwndInMss, kMinCwndInMss);
conn_->transportSettings.initCwndInMss = std::max(
conn_->transportSettings.minCwndInMss,
conn_->transportSettings.initCwndInMss);
}
validateCongestionAndPacing(
conn_->transportSettings.defaultCongestionController);
if (conn_->transportSettings.pacingEnabled) {
if (writeLooper_->hasPacingTimer()) {
bool usingBbr =
(conn_->transportSettings.defaultCongestionController ==
CongestionControlType::BBR);
auto minCwnd = usingBbr ? kMinCwndInMssForBbr
: conn_->transportSettings.minCwndInMss;
conn_->pacer = std::make_unique<TokenlessPacer>(*conn_, minCwnd);
} else {
LOG(ERROR) << "Pacing cannot be enabled without a timer";
conn_->transportSettings.pacingEnabled = false;
}
}
setCongestionControl(conn_->transportSettings.defaultCongestionController);
if (conn_->transportSettings.datagramConfig.enabled) {
conn_->datagramState.maxReadFrameSize = kMaxDatagramFrameSize;
conn_->datagramState.maxReadBufferSize =
conn_->transportSettings.datagramConfig.readBufSize;
conn_->datagramState.maxWriteBufferSize =
conn_->transportSettings.datagramConfig.writeBufSize;
}
}
folly::Expected<folly::Unit, LocalErrorCode>
QuicTransportBase::setMaxPacingRate(uint64_t maxRateBytesPerSec) {
if (conn_->pacer) {
conn_->pacer->setMaxPacingRate(maxRateBytesPerSec);
return folly::unit;
} else {
LOG(WARNING)
<< "Cannot set max pacing rate without a pacer. Pacing Enabled = "
<< conn_->transportSettings.pacingEnabled;
return folly::makeUnexpected(LocalErrorCode::PACER_NOT_AVAILABLE);
}
}
void QuicTransportBase::updateCongestionControlSettings(
const TransportSettings& transportSettings) {
conn_->transportSettings.defaultCongestionController =
transportSettings.defaultCongestionController;
conn_->transportSettings.initCwndInMss = transportSettings.initCwndInMss;
conn_->transportSettings.minCwndInMss = transportSettings.minCwndInMss;
conn_->transportSettings.maxCwndInMss = transportSettings.maxCwndInMss;
conn_->transportSettings.limitedCwndInMss =
transportSettings.limitedCwndInMss;
conn_->transportSettings.pacingEnabled = transportSettings.pacingEnabled;
conn_->transportSettings.pacingTimerTickInterval =
transportSettings.pacingTimerTickInterval;
conn_->transportSettings.minBurstPackets = transportSettings.minBurstPackets;
conn_->transportSettings.copaDeltaParam = transportSettings.copaDeltaParam;
conn_->transportSettings.copaUseRttStanding =
transportSettings.copaUseRttStanding;
}
folly::Expected<folly::Unit, LocalErrorCode>
QuicTransportBase::setKnob(uint64_t knobSpace, uint64_t knobId, Buf knobBlob) {
if (isKnobSupported()) {
sendSimpleFrame(*conn_, KnobFrame(knobSpace, knobId, std::move(knobBlob)));
return folly::unit;
}
LOG(ERROR)
<< "Cannot set Knob Frame. QUIC negotiation not complete or negotiated version is not MVFST";
return folly::makeUnexpected(LocalErrorCode::KNOB_FRAME_UNSUPPORTED);
}
bool QuicTransportBase::isKnobSupported() const {
// We determine that the peer supports knob frames by looking at the
// negotiated QUIC version.
// TODO: This is temporary. Soon, we will add a transport parameter for knob
// support and incorporate it into the check, such that if the QUIC version
// increases/changes, this method will still continue to work, based on the
// transport parameter setting.
return (conn_->version && (*(conn_->version) == QuicVersion::MVFST));
}
const TransportSettings& QuicTransportBase::getTransportSettings() const {
return conn_->transportSettings;
}
folly::Expected<folly::Unit, LocalErrorCode>
QuicTransportBase::setStreamPriority(
StreamId id,
PriorityLevel level,
bool incremental) {
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
if (level > kDefaultMaxPriority) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
if (!conn_->streamManager->streamExists(id)) {
// It's not an error to try to prioritize a non-existent stream.
return folly::unit;
}
// It's not an error to prioritize a stream after it's sent its FIN - this
// can reprioritize retransmissions.
bool updated =
conn_->streamManager->setStreamPriority(id, level, incremental);
if (updated && conn_->qLogger) {
conn_->qLogger->addPriorityUpdate(id, level, incremental);
}
return folly::unit;
}
folly::Expected<Priority, LocalErrorCode> QuicTransportBase::getStreamPriority(
StreamId id) {
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
auto stream = conn_->streamManager->findStream(id);
if (!stream) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
return stream->priority;
}
void QuicTransportBase::validateCongestionAndPacing(
CongestionControlType& type) {
// Fallback to Cubic if Pacing isn't enabled with BBR together
if (type == CongestionControlType::BBR &&
(!conn_->transportSettings.pacingEnabled ||
!writeLooper_->hasPacingTimer())) {
LOG(ERROR) << "Unpaced BBR isn't supported";
type = CongestionControlType::Cubic;
}
}
void QuicTransportBase::setCongestionControl(CongestionControlType type) {
DCHECK(conn_);
if (!conn_->congestionController ||
type != conn_->congestionController->type()) {
CHECK(conn_->congestionControllerFactory);
validateCongestionAndPacing(type);
conn_->congestionController =
conn_->congestionControllerFactory->makeCongestionController(
*conn_, type);
}
}
bool QuicTransportBase::isDetachable() {
// only the client is detachable.
return conn_->nodeType == QuicNodeType::Client;
}
void QuicTransportBase::attachEventBase(folly::EventBase* evb) {
VLOG(10) << __func__ << " " << *this;
DCHECK(!getEventBase());
DCHECK(evb && evb->isInEventBaseThread());
evb_ = evb;
if (socket_) {
socket_->attachEventBase(evb);
}
scheduleAckTimeout();
schedulePathValidationTimeout();
setIdleTimer();
readLooper_->attachEventBase(evb);
peekLooper_->attachEventBase(evb);
writeLooper_->attachEventBase(evb);
updateReadLooper();
updatePeekLooper();
updateWriteLooper(false);
for (const auto& cb : *observers_) {
if (cb->getConfig().evbEvents) {
cb->evbAttach(this, evb_);
}
}
}
void QuicTransportBase::detachEventBase() {
VLOG(10) << __func__ << " " << *this;
DCHECK(getEventBase() && getEventBase()->isInEventBaseThread());
if (socket_) {
socket_->detachEventBase();
}
connWriteCallback_ = nullptr;
pendingWriteCallbacks_.clear();
lossTimeout_.cancelTimeout();
ackTimeout_.cancelTimeout();
pathValidationTimeout_.cancelTimeout();
idleTimeout_.cancelTimeout();
drainTimeout_.cancelTimeout();
readLooper_->detachEventBase();
peekLooper_->detachEventBase();
writeLooper_->detachEventBase();
for (const auto& cb : *observers_) {
if (cb->getConfig().evbEvents) {
cb->evbDetach(this, evb_);
}
}
evb_ = nullptr;
}
folly::Optional<LocalErrorCode> QuicTransportBase::setControlStream(
StreamId id) {
if (!conn_->streamManager->streamExists(id)) {
return LocalErrorCode::STREAM_NOT_EXISTS;
}
auto stream = conn_->streamManager->getStream(id);
conn_->streamManager->setStreamAsControl(*stream);
return folly::none;
}
void QuicTransportBase::runOnEvbAsync(
folly::Function<void(std::shared_ptr<QuicTransportBase>)> func) {
auto evb = getEventBase();
evb->runInLoop(
[self = sharedGuard(), func = std::move(func), evb]() mutable {
if (self->getEventBase() != evb) {
// The eventbase changed between scheduling the loop and invoking the
// callback, ignore this
return;
}
func(std::move(self));
},
true);
}
void QuicTransportBase::pacedWriteDataToSocket(bool /* fromTimer */) {
FOLLY_MAYBE_UNUSED auto self = sharedGuard();
if (!isConnectionPaced(*conn_)) {
// Not paced and connection is still open, normal write. Even if pacing is
// previously enabled and then gets disabled, and we are here due to a
// timeout, we should do a normal write to flush out the residue from pacing
// write.
writeSocketDataAndCatch();
return;
}
// We are in the middle of a pacing interval. Leave it be.
if (writeLooper_->isScheduled()) {
// The next burst is already scheduled. Since the burst size doesn't depend
// on much data we currently have in buffer at all, no need to change
// anything.
return;
}
// Do a burst write before waiting for an interval. This will also call
// updateWriteLooper, but inside FunctionLooper we will ignore that.
writeSocketDataAndCatch();
}
folly::Expected<QuicSocket::StreamTransportInfo, LocalErrorCode>
QuicTransportBase::getStreamTransportInfo(StreamId id) const {
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
auto stream = conn_->streamManager->getStream(id);
auto packets = getNumPacketsTxWithNewData(*stream);
return StreamTransportInfo{
stream->totalHolbTime,
stream->holbCount,
bool(stream->lastHolbTime),
packets};
}
void QuicTransportBase::describe(std::ostream& os) const {
CHECK(conn_);
os << *conn_;
}
std::ostream& operator<<(std::ostream& os, const QuicTransportBase& qt) {
qt.describe(os);
return os;
}
inline std::ostream& operator<<(
std::ostream& os,
const CloseState& closeState) {
switch (closeState) {
case CloseState::OPEN:
os << "OPEN";
break;
case CloseState::GRACEFUL_CLOSING:
os << "GRACEFUL_CLOSING";
break;
case CloseState::CLOSED:
os << "CLOSED";
break;
}
return os;
}
folly::Expected<folly::Unit, LocalErrorCode>
QuicTransportBase::maybeResetStreamFromReadError(
StreamId id,
QuicErrorCode error) {
quic::ApplicationErrorCode* code = error.asApplicationErrorCode();
if (code) {
return resetStream(id, *code);
}
return folly::Expected<folly::Unit, LocalErrorCode>(folly::unit);
}
QuicTransportBase::ByteEventMap& QuicTransportBase::getByteEventMap(
const ByteEvent::Type type) {
switch (type) {
case ByteEvent::Type::ACK:
return deliveryCallbacks_;
case ByteEvent::Type::TX:
return txCallbacks_;
}
LOG(FATAL) << "Unhandled case in getByteEventMap";
folly::assume_unreachable();
}
const QuicTransportBase::ByteEventMap& QuicTransportBase::getByteEventMapConst(
const ByteEvent::Type type) const {
switch (type) {
case ByteEvent::Type::ACK:
return deliveryCallbacks_;
case ByteEvent::Type::TX:
return txCallbacks_;
}
LOG(FATAL) << "Unhandled case in getByteEventMapConst";
folly::assume_unreachable();
}
void QuicTransportBase::onTransportKnobs(Buf knobBlob) {
// Not yet implemented,
VLOG(4) << "Received transport knobs: "
<< std::string(
reinterpret_cast<const char*>(knobBlob->data()),
knobBlob->length());
}
QuicSocket::WriteResult QuicTransportBase::setDSRPacketizationRequestSender(
StreamId id,
std::unique_ptr<DSRPacketizationRequestSender> sender) {
if (closeState_ != CloseState::OPEN) {
return folly::makeUnexpected(LocalErrorCode::CONNECTION_CLOSED);
}
if (isReceivingStream(conn_->nodeType, id)) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
FOLLY_MAYBE_UNUSED auto self = sharedGuard();
try {
// Check whether stream exists before calling getStream to avoid
// creating a peer stream if it does not exist yet.
if (!conn_->streamManager->streamExists(id)) {
return folly::makeUnexpected(LocalErrorCode::STREAM_NOT_EXISTS);
}
auto stream = conn_->streamManager->getStream(id);
if (!stream->writable()) {
return folly::makeUnexpected(LocalErrorCode::STREAM_CLOSED);
}
if (stream->dsrSender != nullptr) {
return folly::makeUnexpected(LocalErrorCode::INVALID_OPERATION);
}
stream->dsrSender = std::move(sender);
// Fow now, no appLimited or appIdle update here since we are not writing
// either BufferMetas yet. The first BufferMeta write will update it.
} catch (const QuicTransportException& ex) {
VLOG(4) << __func__ << " streamId=" << id << " " << ex.what() << " "
<< *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(ex.errorCode()), std::string("writeChain() error")));
return folly::makeUnexpected(LocalErrorCode::TRANSPORT_ERROR);
} catch (const QuicInternalException& ex) {
VLOG(4) << __func__ << " streamId=" << id << " " << ex.what() << " "
<< *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(ex.errorCode()), std::string("writeChain() error")));
return folly::makeUnexpected(ex.errorCode());
} catch (const std::exception& ex) {
VLOG(4) << __func__ << " streamId=" << id << " " << ex.what() << " "
<< *this;
exceptionCloseWhat_ = ex.what();
closeImpl(std::make_pair(
QuicErrorCode(TransportErrorCode::INTERNAL_ERROR),
std::string("writeChain() error")));
return folly::makeUnexpected(LocalErrorCode::INTERNAL_ERROR);
}
return folly::unit;
}
void QuicTransportBase::notifyStartWritingFromAppRateLimited() {
const auto event = Observer::AppLimitedEvent::Builder()
.setOutstandingPackets(conn_->outstandings.packets)
.setWriteCount(conn_->writeCount)
.build();
for (const auto& cb : *observers_) {
if (cb->getConfig().appRateLimitedEvents) {
cb->startWritingFromAppLimited(this, event);
}
}
}
void QuicTransportBase::notifyPacketsWritten(
uint64_t numPacketsWritten,
uint64_t numAckElicitingPacketsWritten) {
const auto event =
Observer::PacketsWrittenEvent::Builder()
.setOutstandingPackets(conn_->outstandings.packets)
.setWriteCount(conn_->writeCount)
.setNumPacketsWritten(numPacketsWritten)
.setNumAckElicitingPacketsWritten(numAckElicitingPacketsWritten)
.build();
for (const auto& cb : *observers_) {
if (cb->getConfig().packetsWrittenEvents) {
cb->packetsWritten(this, event);
}
}
}
void QuicTransportBase::notifyAppRateLimited() {
const auto event = Observer::AppLimitedEvent::Builder()
.setOutstandingPackets(conn_->outstandings.packets)
.setWriteCount(conn_->writeCount)
.build();
for (const auto& cb : *observers_) {
if (cb->getConfig().appRateLimitedEvents) {
cb->appRateLimited(this, event);
}
}
}
void QuicTransportBase::setCmsgs(const folly::SocketOptionMap& options) {
socket_->setCmsgs(options);
}
void QuicTransportBase::appendCmsgs(const folly::SocketOptionMap& options) {
socket_->appendCmsgs(options);
}
void QuicTransportBase::setBackgroundModeParameters(
PriorityLevel maxBackgroundPriority,
float backgroundUtilizationFactor) {
backgroundPriorityThreshold_.assign(maxBackgroundPriority);
backgroundUtilizationFactor_.assign(backgroundUtilizationFactor);
conn_->streamManager->setPriorityChangesObserver(this);
onStreamPrioritiesChange();
}
void QuicTransportBase::clearBackgroundModeParameters() {
backgroundPriorityThreshold_.clear();
backgroundUtilizationFactor_.clear();
conn_->streamManager->resetPriorityChangesObserver();
onStreamPrioritiesChange();
}
// If backgroundPriorityThreshold_ and backgroundUtilizationFactor_ are set and
// all streams have equal or lower priority than the threshold
// (value >= threshold), set the connection's congestion controller to use
// background mode with the set utilization factor.
// In all other cases, turn off the congestion controller's background mode.
void QuicTransportBase::onStreamPrioritiesChange() {
if (conn_->congestionController == nullptr) {
return;
}
if (!backgroundPriorityThreshold_.hasValue() ||
!backgroundUtilizationFactor_.hasValue()) {
conn_->congestionController->setBandwidthUtilizationFactor(1.0);
return;
}
bool allStreamsBackground = conn_->streamManager->getHighestPriorityLevel() >=
backgroundPriorityThreshold_.value();
float targetUtilization =
allStreamsBackground ? backgroundUtilizationFactor_.value() : 1.0f;
VLOG(10) << fmt::format(
"Updating transport background mode. Highest Priority={} Threshold={} TargetUtilization={}",
conn_->streamManager->getHighestPriorityLevel(),
backgroundPriorityThreshold_.value(),
targetUtilization);
conn_->congestionController->setBandwidthUtilizationFactor(targetUtilization);
}
} // namespace quic