/* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. * */ #include #include #include #include #include #include #include #include #include namespace quic { QuicServerTransport::QuicServerTransport( folly::EventBase* evb, std::unique_ptr sock, ConnectionCallback& cb, std::shared_ptr ctx) : QuicTransportBase(evb, std::move(sock)), ctx_(std::move(ctx)) { auto tempConn = std::make_unique( FizzServerQuicHandshakeContext::Builder() .setFizzServerContext(ctx_) .build()); tempConn->serverAddr = socket_->address(); serverConn_ = tempConn.get(); conn_.reset(tempConn.release()); conn_->observers = observers_; // TODO: generate this when we can encode the packet sequence number // correctly. // conn_->nextSequenceNum = folly::Random::secureRandom(); setConnectionCallback(&cb); registerAllTransportKnobParamHandlers(); } QuicServerTransport::~QuicServerTransport() { VLOG(10) << "Destroyed connection to client=" << *this; // The caller probably doesn't need the conn callback after destroying the // transport. connCallback_ = nullptr; closeImpl( std::make_pair( QuicErrorCode(LocalErrorCode::SHUTTING_DOWN), std::string("Closing from server destructor")), false); } // TODO: refactor this API so that the factory does not have to create an // owning reference. QuicServerTransport::Ptr QuicServerTransport::make( folly::EventBase* evb, std::unique_ptr sock, ConnectionCallback& cb, std::shared_ptr ctx) { return std::make_shared(evb, std::move(sock), cb, ctx); } void QuicServerTransport::setRoutingCallback( RoutingCallback* callback) noexcept { routingCb_ = callback; } void QuicServerTransport::setOriginalPeerAddress( const folly::SocketAddress& addr) { conn_->originalPeerAddress = addr; conn_->udpSendPacketLen = addr.getFamily() == AF_INET6 ? kDefaultV6UDPSendPacketLen : kDefaultV4UDPSendPacketLen; } void QuicServerTransport::setServerConnectionIdParams( ServerConnectionIdParams params) noexcept { serverConn_->serverConnIdParams.assign(std::move(params)); } void QuicServerTransport::setTransportStatsCallback( QuicTransportStatsCallback* statsCallback) noexcept { if (conn_) { conn_->statsCallback = statsCallback; } } void QuicServerTransport::setConnectionIdAlgo( ConnectionIdAlgo* connIdAlgo) noexcept { CHECK(connIdAlgo); if (serverConn_) { serverConn_->connIdAlgo = connIdAlgo; } } void QuicServerTransport::setServerConnectionIdRejector( ServerConnectionIdRejector* connIdRejector) noexcept { CHECK(connIdRejector); if (serverConn_) { serverConn_->connIdRejector = connIdRejector; } } void QuicServerTransport::onReadData( const folly::SocketAddress& peer, NetworkDataSingle&& networkData) { ServerEvents::ReadData readData; readData.peer = peer; readData.networkData = std::move(networkData); bool waitingForFirstPacket = !hasReceivedPackets(*conn_); onServerReadData(*serverConn_, readData); processPendingData(true); if (closeState_ == CloseState::CLOSED) { return; } if (!notifiedRouting_ && routingCb_ && conn_->serverConnectionId) { notifiedRouting_ = true; if (routingCb_) { routingCb_->onConnectionIdAvailable( shared_from_this(), *conn_->serverConnectionId); } } if (connCallback_ && waitingForFirstPacket && hasReceivedPackets(*conn_)) { connCallback_->onFirstPeerPacketProcessed(); } maybeWriteNewSessionTicket(); maybeNotifyConnectionIdBound(); maybeIssueConnectionIds(); maybeStartD6DProbing(); maybeNotifyTransportReady(); } void QuicServerTransport::accept() { setIdleTimer(); updateFlowControlStateWithSettings( conn_->flowControlState, conn_->transportSettings); serverConn_->serverHandshakeLayer->initialize( evb_, this, std::make_unique(serverConn_)); } void QuicServerTransport::writeData() { if (!conn_->clientConnectionId && !conn_->serverConnectionId) { // It is possible for the server to invoke writeData() after receiving a // packet that could not per parsed successfully. return; } auto version = conn_->version.value_or(*(conn_->originalVersion)); const ConnectionId& srcConnId = *conn_->serverConnectionId; const ConnectionId& destConnId = *conn_->clientConnectionId; if (closeState_ == CloseState::CLOSED) { if (conn_->peerConnectionError && hasReceivedPacketsAtLastCloseSent(*conn_)) { // The peer sent us an error, we are in draining state now. return; } if (hasReceivedPacketsAtLastCloseSent(*conn_) && hasNotReceivedNewPacketsSinceLastCloseSent(*conn_)) { // We did not receive any new packets, do not sent a new close frame. return; } updateLargestReceivedPacketsAtLastCloseSent(*conn_); if (conn_->oneRttWriteCipher) { CHECK(conn_->oneRttWriteHeaderCipher); writeShortClose( *socket_, *conn_, destConnId, conn_->localConnectionError, *conn_->oneRttWriteCipher, *conn_->oneRttWriteHeaderCipher); } if (conn_->handshakeWriteCipher && *conn_->version != QuicVersion::MVFST_D24) { CHECK(conn_->handshakeWriteHeaderCipher); writeLongClose( *socket_, *conn_, srcConnId, destConnId, LongHeader::Types::Handshake, conn_->localConnectionError, *conn_->handshakeWriteCipher, *conn_->handshakeWriteHeaderCipher, version); } if (conn_->initialWriteCipher) { CHECK(conn_->initialHeaderCipher); writeLongClose( *socket_, *conn_, srcConnId, destConnId, LongHeader::Types::Initial, conn_->localConnectionError, *conn_->initialWriteCipher, *conn_->initialHeaderCipher, version); } return; } uint64_t packetLimit = (isConnectionPaced(*conn_) ? conn_->pacer->updateAndGetWriteBatchSize(Clock::now()) : conn_->transportSettings.writeConnectionDataPacketsLimit); if (conn_->initialWriteCipher) { auto& initialCryptoStream = *getCryptoStream(*conn_->cryptoState, EncryptionLevel::Initial); CryptoStreamScheduler initialScheduler(*conn_, initialCryptoStream); if ((conn_->pendingEvents.numProbePackets && initialCryptoStream.retransmissionBuffer.size() && conn_->outstandings.initialPacketsCount) || initialScheduler.hasData() || (conn_->ackStates.initialAckState.needsToSendAckImmediately && hasAcksToSchedule(conn_->ackStates.initialAckState))) { CHECK(conn_->initialWriteCipher); CHECK(conn_->initialHeaderCipher); packetLimit -= writeCryptoAndAckDataToSocket( *socket_, *conn_, srcConnId /* src */, destConnId /* dst */, LongHeader::Types::Initial, *conn_->initialWriteCipher, *conn_->initialHeaderCipher, version, packetLimit); } if (!packetLimit && !conn_->pendingEvents.numProbePackets) { return; } } if (conn_->handshakeWriteCipher) { auto& handshakeCryptoStream = *getCryptoStream(*conn_->cryptoState, EncryptionLevel::Handshake); CryptoStreamScheduler handshakeScheduler(*conn_, handshakeCryptoStream); if ((conn_->outstandings.handshakePacketsCount && handshakeCryptoStream.retransmissionBuffer.size() && conn_->pendingEvents.numProbePackets) || handshakeScheduler.hasData() || (conn_->ackStates.handshakeAckState.needsToSendAckImmediately && hasAcksToSchedule(conn_->ackStates.handshakeAckState))) { CHECK(conn_->handshakeWriteCipher); CHECK(conn_->handshakeWriteHeaderCipher); packetLimit -= writeCryptoAndAckDataToSocket( *socket_, *conn_, srcConnId /* src */, destConnId /* dst */, LongHeader::Types::Handshake, *conn_->handshakeWriteCipher, *conn_->handshakeWriteHeaderCipher, version, packetLimit); } if (!packetLimit && !conn_->pendingEvents.numProbePackets) { return; } } if (conn_->oneRttWriteCipher) { CHECK(conn_->oneRttWriteHeaderCipher); packetLimit -= writeQuicDataToSocket( *socket_, *conn_, srcConnId /* src */, destConnId /* dst */, *conn_->oneRttWriteCipher, *conn_->oneRttWriteHeaderCipher, version, packetLimit); // D6D probes should be paced if (packetLimit && conn_->pendingEvents.d6d.sendProbePacket) { writeD6DProbeToSocket( *socket_, *conn_, srcConnId, destConnId, *conn_->oneRttWriteCipher, *conn_->oneRttWriteHeaderCipher, version); } } } void QuicServerTransport::closeTransport() { if (!serverConn_->serverHandshakeLayer->isHandshakeDone()) { QUIC_STATS(conn_->statsCallback, onServerUnfinishedHandshake); } serverConn_->serverHandshakeLayer->cancel(); // Clear out pending data. serverConn_->pendingZeroRttData.reset(); serverConn_->pendingOneRttData.reset(); onServerClose(*serverConn_); } void QuicServerTransport::unbindConnection() { if (routingCb_) { auto routingCb = routingCb_; routingCb_ = nullptr; CHECK(conn_->clientChosenDestConnectionId); if (conn_->serverConnectionId) { routingCb->onConnectionUnbound( this, std::make_pair( getOriginalPeerAddress(), *conn_->clientChosenDestConnectionId), conn_->selfConnectionIds); } } } bool QuicServerTransport::hasWriteCipher() const { return conn_->oneRttWriteCipher != nullptr; } bool QuicServerTransport::hasReadCipher() const { return conn_->readCodec != nullptr && conn_->readCodec->getOneRttReadCipher() != nullptr; } std::shared_ptr QuicServerTransport::sharedGuard() { return shared_from_this(); } void QuicServerTransport::setClientConnectionId( const ConnectionId& clientConnectionId) { conn_->clientConnectionId.assign(clientConnectionId); conn_->peerConnectionIds.emplace_back( clientConnectionId, kInitialSequenceNumber); } void QuicServerTransport::setClientChosenDestConnectionId( const ConnectionId& clientChosenDestConnectionId) { conn_->clientChosenDestConnectionId.assign(clientChosenDestConnectionId); } void QuicServerTransport::onCryptoEventAvailable() noexcept { try { VLOG(10) << "onCryptoEventAvailable " << *this; if (closeState_ != CloseState::OPEN) { VLOG(10) << "Got crypto event after connection closed " << *this; return; } updateHandshakeState(*serverConn_); processPendingData(false); // pending data may contain connection close if (closeState_ == CloseState::CLOSED) { return; } maybeWriteNewSessionTicket(); maybeNotifyConnectionIdBound(); maybeIssueConnectionIds(); writeSocketData(); maybeNotifyTransportReady(); } catch (const QuicTransportException& ex) { VLOG(4) << "onCryptoEventAvailable() error " << ex.what() << " " << *this; closeImpl( std::make_pair(QuicErrorCode(ex.errorCode()), std::string(ex.what()))); } catch (const QuicInternalException& ex) { VLOG(4) << "onCryptoEventAvailable() error " << ex.what() << " " << *this; closeImpl( std::make_pair(QuicErrorCode(ex.errorCode()), std::string(ex.what()))); } catch (const std::exception& ex) { VLOG(4) << "read() error " << ex.what() << " " << *this; closeImpl(std::make_pair( QuicErrorCode(TransportErrorCode::INTERNAL_ERROR), std::string(ex.what()))); } } void QuicServerTransport::handleTransportKnobParams( const TransportKnobParams& params) { for (const auto& param : params) { auto maybeParamHandler = transportKnobParamHandlers_.find(param.id); if (maybeParamHandler != transportKnobParamHandlers_.end()) { (maybeParamHandler->second)(serverConn_, param.val); QUIC_STATS( conn_->statsCallback, onTransportKnobApplied, QuicTransportStatsCallback::paramIdToTransportKnobType(param.id)); } else { QUIC_STATS( conn_->statsCallback, onTransportKnobError, QuicTransportStatsCallback::paramIdToTransportKnobType(param.id)); } } } void QuicServerTransport::processPendingData(bool async) { // The case when both 0-rtt and 1-rtt pending data are ready to be processed // but neither had been shouldn't happen std::unique_ptr> pendingData; if (conn_->readCodec && conn_->readCodec->getOneRttReadCipher()) { pendingData = std::move(serverConn_->pendingOneRttData); // It's possible that 0-rtt packets are received after CFIN, we are not // dealing with that much level of reordering. serverConn_->pendingZeroRttData.reset(); } else if (conn_->readCodec && conn_->readCodec->getZeroRttReadCipher()) { pendingData = std::move(serverConn_->pendingZeroRttData); } if (pendingData) { // Move the pending data out so that we don't ever add new data to the // pending data. VLOG_IF(10, !pendingData->empty()) << "Processing pending data size=" << pendingData->size() << " " << *this; auto func = [pendingData = std::move(pendingData)](auto self) { auto serverPtr = static_cast(self.get()); for (auto& pendingPacket : *pendingData) { serverPtr->onNetworkData( pendingPacket.peer, NetworkData( std::move(pendingPacket.networkData.data), pendingPacket.networkData.receiveTimePoint)); if (serverPtr->closeState_ == CloseState::CLOSED) { // The pending data could potentially contain a connection close, or // the app could have triggered a connection close with an error. It // is not useful to continue the handshake. return; } // The app could have triggered a graceful close from the callbacks, // in which case we should continue with the handshake and processing // the reamining data because it could potentially have a FIN which // could end the graceful close. } }; if (async) { runOnEvbAsync(std::move(func)); } else { func(shared_from_this()); } } } void QuicServerTransport::maybeWriteNewSessionTicket() { if (!newSessionTicketWritten_ && !ctx_->getSendNewSessionTicket() && serverConn_->serverHandshakeLayer->isHandshakeDone()) { if (conn_->qLogger) { conn_->qLogger->addTransportStateUpdate(kWriteNst); } QUIC_TRACE(fst_trace, *conn_, "write nst"); newSessionTicketWritten_ = true; AppToken appToken; appToken.transportParams = createTicketTransportParameters( conn_->transportSettings.idleTimeout.count(), conn_->transportSettings.maxRecvPacketSize, conn_->transportSettings.advertisedInitialConnectionWindowSize, conn_->transportSettings.advertisedInitialBidiLocalStreamWindowSize, conn_->transportSettings.advertisedInitialBidiRemoteStreamWindowSize, conn_->transportSettings.advertisedInitialUniStreamWindowSize, conn_->transportSettings.advertisedInitialMaxStreamsBidi, conn_->transportSettings.advertisedInitialMaxStreamsUni); appToken.sourceAddresses = serverConn_->tokenSourceAddresses; appToken.version = conn_->version.value(); // If a client connects to server for the first time and doesn't attempt // early data, tokenSourceAddresses will not be set because // validateAndUpdateSourceAddressToken is not called in this case. // So checking if source address token is empty here and adding peerAddr // if so. // TODO accumulate recent source tokens if (appToken.sourceAddresses.empty()) { appToken.sourceAddresses.push_back(conn_->peerAddress.getIPAddress()); } if (conn_->earlyDataAppParamsGetter) { appToken.appParams = conn_->earlyDataAppParamsGetter(); } serverConn_->serverHandshakeLayer->writeNewSessionTicket(appToken); } } void QuicServerTransport::maybeNotifyConnectionIdBound() { // make this connId bound only when the keys are available if (!notifiedConnIdBound_ && routingCb_ && conn_->serverConnectionId && serverConn_->serverHandshakeLayer->isHandshakeDone()) { notifiedConnIdBound_ = true; routingCb_->onConnectionIdBound(shared_from_this()); } } void QuicServerTransport::maybeIssueConnectionIds() { if (!conn_->transportSettings.disableMigration && !connectionIdsIssued_ && serverConn_->serverHandshakeLayer->isHandshakeDone()) { connectionIdsIssued_ = true; CHECK(conn_->transportSettings.statelessResetTokenSecret.has_value()); // If the peer specifies that they have a limit of 1,000,000 connection // ids then only issue a small number at first, since the server still // needs to be able to search through all issued ids for routing. const uint64_t maximumIdsToIssue = std::min( conn_->peerActiveConnectionIdLimit, kDefaultActiveConnectionIdLimit); // Make sure size of selfConnectionIds is not larger than maximumIdsToIssue for (size_t i = conn_->selfConnectionIds.size(); i < maximumIdsToIssue; ++i) { auto newConnIdData = serverConn_->createAndAddNewSelfConnId(); if (!newConnIdData.has_value()) { return; } CHECK(routingCb_); routingCb_->onConnectionIdAvailable( shared_from_this(), newConnIdData->connId); NewConnectionIdFrame frame( newConnIdData->sequenceNumber, 0, newConnIdData->connId, *newConnIdData->token); sendSimpleFrame(*conn_, std::move(frame)); } } } void QuicServerTransport::maybeNotifyTransportReady() { if (!transportReadyNotified_ && connCallback_ && hasWriteCipher()) { if (conn_->qLogger) { conn_->qLogger->addTransportStateUpdate(kTransportReady); } QUIC_TRACE(fst_trace, *conn_, "transport ready"); transportReadyNotified_ = true; connCallback_->onTransportReady(); } } void QuicServerTransport::maybeStartD6DProbing() { if (!d6dProbingStarted_ && hasReadCipher() && conn_->d6d.state == D6DMachineState::BASE) { QUIC_TRACE(fst_trace, *conn_, "start d6d probing"); d6dProbingStarted_ = true; auto& d6d = conn_->d6d; switch (conn_->transportSettings.d6dConfig.raiserType) { case ProbeSizeRaiserType::ConstantStep: d6d.raiser = std::make_unique( conn_->transportSettings.d6dConfig.probeRaiserConstantStepSize); break; case ProbeSizeRaiserType::BinarySearch: d6d.raiser = std::make_unique( kMinMaxUDPPayload, d6d.maxPMTU); } d6d.thresholdCounter = std::make_unique>( std::chrono::microseconds(kDefaultD6DBlackholeDetectionWindow) .count(), kDefaultD6DBlackholeDetectionThreshold); d6d.currentProbeSize = d6d.basePMTU; // Start probing after some delay. This filters out short-lived // connections, for which probing is relatively expensive and less // valuable conn_->pendingEvents.d6d.sendProbeDelay = kDefaultD6DKickStartDelay; QUIC_STATS(conn_->statsCallback, onConnectionD6DStarted); for (const auto& cb : *(conn_->observers)) { if (cb->getConfig().pmtuEvents) { cb->pmtuProbingStarted(this); } } } } void QuicServerTransport::registerTransportKnobParamHandler( uint64_t paramId, std::function&& handler) { transportKnobParamHandlers_.emplace(paramId, std::move(handler)); } void QuicServerTransport::setBufAccessor(BufAccessor* bufAccessor) { CHECK(bufAccessor); conn_->bufAccessor = bufAccessor; } #ifdef CCP_ENABLED void QuicServerTransport::setCcpDatapath(struct ccp_datapath* datapath) { serverConn_->ccpDatapath = datapath; } #endif const std::shared_ptr QuicServerTransport::getPeerCertificate() const { const auto handshakeLayer = serverConn_->serverHandshakeLayer; if (handshakeLayer) { return handshakeLayer->getState().clientCert(); } return nullptr; } void QuicServerTransport::onTransportKnobs(Buf knobBlob) { if (knobBlob->length() > 0) { std::string serializedKnobs = std::string( reinterpret_cast(knobBlob->data()), knobBlob->length()); VLOG(4) << "Received transport knobs: " << serializedKnobs; auto params = parseTransportKnobs(serializedKnobs); if (params.hasValue()) { handleTransportKnobParams(*params); } else { QUIC_STATS( conn_->statsCallback, onTransportKnobError, QuicTransportStatsCallback::TransportKnobType::UNKNOWN); } } } void QuicServerTransport::registerAllTransportKnobParamHandlers() { registerTransportKnobParamHandler( static_cast( TransportKnobParamId::ZERO_PMTU_BLACKHOLE_DETECTION), [](QuicServerConnectionState* server_conn, uint64_t val) { CHECK(server_conn); if (static_cast(val)) { server_conn->d6d.noBlackholeDetection = true; LOG(INFO) << "Knob param received, pmtu blackhole detection is turned off"; } }); registerTransportKnobParamHandler( static_cast( TransportKnobParamId::FORCIBLY_SET_UDP_PAYLOAD_SIZE), [](QuicServerConnectionState* server_conn, uint64_t val) { CHECK(server_conn); if (static_cast(val)) { server_conn->udpSendPacketLen = server_conn->peerMaxUdpPayloadSize; LOG(INFO) << "Knob param received, udpSendPacketLen is forcibly set to max UDP payload size advertised by peer"; } }); } QuicConnectionStats QuicServerTransport::getConnectionsStats() const { QuicConnectionStats connStats = QuicTransportBase::getConnectionsStats(); if (serverConn_) { connStats.localAddress = serverConn_->serverAddr; } return connStats; } } // namespace quic