Summary:
Remove headers flagged by facebook-unused-include-check over fbcode.quic.
+ format and autodeps
This is a codemod. It was automatically generated and will be landed once it is approved and tests are passing in sandcastle.
You have been added as a reviewer by Sentinel or Butterfly.
Autodiff project: uiq
Autodiff partition: fbcode.quic
Autodiff bookmark: ad.uiq.fbcode.quic
Reviewed By: hanidamlaj
Differential Revision: D69864370
fbshipit-source-id: fb8f85599e1e12429f00dc2817dfc5ecf55bc482
Summary: The `SendmmsgGSOInplacePacketBatchWriter` is equivalent to the `SendmmsgGSOPacketBatchWriter`, except that it operates on the in-place buffer.
Reviewed By: jbeshay
Differential Revision: D69410775
fbshipit-source-id: 32782f9797e7e2354cbafabf956985b96900f59b
Summary:
The existing batch writers do not handle failed writes to the AsyncUDPSocket. A packet that fails to be written is detected as a packet loss later when feedback is received from the peer. This negatively impacts the congestion controller because of the fake loss signal, and artificially inflates the number of retransmitted packets/bytes.
This change adds a new batch writer (SinglePacketBackpressuretBatchWriter) that retains the buffers when a write fails. For subsequent writes, the writer retries the same buffer. No new packets are scheduled until the retried buffer succeeds.
Notes:
- To make sure that retry writes are scheduled, the write callback is installed on the socket when a buffer needs to be retried.
- The retries are for an already scheduled packet. The connection state reflects the timing of the first attempt. This could still have an impact on rtt samples, etc. but it this is a milder impact compared to fake losses/retranmissions.
- Any changes outside of the batch writer only impact the new batch writer. Existing batch writers do not use the fields and are not affected by the changes in this diff.
Reviewed By: kvtsoy
Differential Revision: D57597576
fbshipit-source-id: 9476d71ce52e383c5946466f64bb5eecd4f5d549
Summary:
This is the major transition that updates mvfst code to use the new interfaces. The new Folly implementations of the interfaces maintain all the existing behavior of folly types so this should not introduce any functional change. The core changes are:
- Update the BatchWriters to use the new interfaces.
- Update the FunctionLooper to use the new interfaces.
- Change QuicServerTransport to take the folly types and wrap them in the new types for use in the QuicTransportBase.
The rest of the diff is for updating all the existing uses of the QuicTrasnport to initialize the necessary types and pass them to the QUIC transport instead of directly passing folly types.
Reviewed By: mjoras
Differential Revision: D51413481
fbshipit-source-id: 5ed607e12b9a52b96148ad9b4f8f43899655d936
Summary:
We've been using `--config mvfst.use_libev=true` to link in mvfst mobile instead of full mvfst into CLI tools etc. It allowed for fast initial development, but is a pain when integrating into actual apps (e.g. ig4a).
This change adds a separate set of "mobile" targets that can be used instead of the buck config option.
The main (new) target that will be used is `quic/client:client_mobile` - this is a high level one that will be included by MNS.
Here is a list of all of the new targets:
```
* quic/client:client_mobile
* quic/client:state_and_handshake_mobile
* quic/fizz/client:fizz_client_handshake_mobile
* quic/happyeyeballs:happyeyeballs_mobile
* quic/api:transport_mobile
* quic/api:quic_batch_writer_mobile
* quic/common:events_mobile
* quic/common:timers_mobile
* quic/common:looper_mobile
* quic/common:quic_async_udp_socket_wrapper_mobile
* quic/common:quic_async_udp_socket_impl_mobile
* quic/common:socket_util_mobile
```
Most of the new "*_mobile" targets share a lot of deps with existing non-mobile targets, and I'll collapse those in a separate diff.
Reviewed By: jbeshay, lhuang04
Differential Revision: D49779629
fbshipit-source-id: ec33d9f82244148f57d580d03894823ba6bb4947
Summary:
This diff:
- Adds `QuicAsyncUDPSocketWrapperImpl` and changes existing instantiatons of `QuicAsyncUDPSocketWrapper` to instead instantiate `QuicAsyncUDPSocketWrapperImpl`. In follow up diffs, pure virtual functions will be added to `QuicAsyncUDPSocketWrapper` and implemented in `QuicAsyncUDPSocketWrapperImpl`. See D48717388 for more information.
--
This diff is part of a larger stack focused on the following:
- **Cleaning up client and server UDP packet receive paths while improving testability.** We currently have multiple receive paths for client and server. Capabilities vary significantly and there are few tests. For instance:
- The server receive path supports socket RX timestamps, abet incorrectly in that it does not store timestamp per packet. In comparison, the client receive path does not currently support socket RX timestamps, although the code in `QuicClientTransport::recvmsg` and `QuicClientTransport::recvmmsg` makes reference to socket RX timestamps, making it confusing to understand the capabilities available when tracing through the code. This complicates the tests in `QuicTypedTransportTests`, as we have to disable test logic that depends on socket RX timestamps for client tests.
- The client currently has three receive paths, and none of them are well tested.
- **Modularize and abstract components in the receive path.** This will make it easier to mock/fake the UDP socket and network layers.
- `QuicClientTransport` and `QuicServerTransport` currently contain UDP socket handling logic that operates over lower layer primitives such `cmsg` and `io_vec` (see `QuicClientTransport::recvmmsg` and `...::recvmsg` as examples).
- Because this UDP socket handling logic is inside of the mvfst transport implementations, it is difficult to test this logic in isolation and mock/fake the underlying socket and network layers. For instance, injecting a user space network emulator that operates at the socket layer would require faking `folly::AsyncUDPSocket`, which is non-trivial given that `AsyncUDPSocket` does not abstract away intricacies arising from the aforementioned lower layer primitives.
- By shifting this logic into an intermediate layer between the transport and the underlying UDP socket, it will be easier to mock out the UDP socket layer when testing functionality at higher layers, and inject fake components when we want to emulate the network between a mvfst client and server. It will also be easier for us to have unit tests focused on testing interactions between the UDP socket implementation and this intermediate layer.
- **Improving receive path timestamping.** We only record a single timestamp per `NetworkData` at the moment, but (1) it is possible for a `NetworkData` to have multiple packets, each with their own timestamps, and (2) we should be able to record both userspace and socket timestamps.
Reviewed By: jbeshay, mjoras
Differential Revision: D48717592
fbshipit-source-id: e21368f5c1f3b37608fc1c88617e96b93a02f6e0
Summary:
This diff changes `QuicAsyncUDPSocketWrapper` so that it is an abstraction layer that inherits from `QuicAsyncUDPSocketType`, instead of simply being a container with aliases.
- Key changes in `QuicAsyncUDPSocketWrapper.h`, the rest of the updates switch us from using `QuicAsyncUDPSocketType` to `QuicAsyncUDPSocketWrapper`.
- It's difficult to mock the UDP socket today given that we expose the entire `folly::AsyncUDPSocket` type to the higher layers of the QUIC stack. This complicates testing and emulation because any mock / fake has to implement low level primitives like `recvmmsg`, and because the `folly::AsyncUDPSocket` interface can change over time.
- Pure virtual functions will be defined in `QuicAsyncUDPSocketWrapper` in a follow up diff to start creating an interface between the higher layers of the mvfst QUIC stack and the UDP socket, and this interface will abstract away lower layer details such as `cmsgs` and `io_vec`, and instead focus on populating higher layer structures such as `NetworkData` and `ReceivedPacket` (D48714615). This will make it easier for us to mock or fake the UDP socket.
This diff relies on changes to `folly::MockAsyncUDPSocket` introduced in D48717389.
--
This diff is part of a larger stack focused on the following:
- **Cleaning up client and server UDP packet receive paths while improving testability.** We currently have multiple receive paths for client and server. Capabilities vary significantly and there are few tests. For instance:
- The server receive path supports socket RX timestamps, abet incorrectly in that it does not store timestamp per packet. In comparison, the client receive path does not currently support socket RX timestamps, although the code in `QuicClientTransport::recvmsg` and `QuicClientTransport::recvmmsg` makes reference to socket RX timestamps, making it confusing to understand the capabilities available when tracing through the code. This complicates the tests in `QuicTypedTransportTests`, as we have to disable test logic that depends on socket RX timestamps for client tests.
- The client currently has three receive paths, and none of them are well tested.
- **Modularize and abstract components in the receive path.** This will make it easier to mock/fake the UDP socket and network layers.
- `QuicClientTransport` and `QuicServerTransport` currently contain UDP socket handling logic that operates over lower layer primitives such `cmsg` and `io_vec` (see `QuicClientTransport::recvmmsg` and `...::recvmsg` as examples).
- Because this UDP socket handling logic is inside of the mvfst transport implementations, it is difficult to test this logic in isolation and mock/fake the underlying socket and network layers. For instance, injecting a user space network emulator that operates at the socket layer would require faking `folly::AsyncUDPSocket`, which is non-trivial given that `AsyncUDPSocket` does not abstract away intricacies arising from the aforementioned lower layer primitives.
- By shifting this logic into an intermediate layer between the transport and the underlying UDP socket, it will be easier to mock out the UDP socket layer when testing functionality at higher layers, and inject fake components when we want to emulate the network between a mvfst client and server. It will also be easier for us to have unit tests focused on testing interactions between the UDP socket implementation and this intermediate layer.
- **Improving receive path timestamping.** We only record a single timestamp per `NetworkData` at the moment, but (1) it is possible for a `NetworkData` to have multiple packets, each with their own timestamps, and (2) we should be able to record both userspace and socket timestamps.
Reviewed By: jbeshay, hanidamlaj
Differential Revision: D48717388
fbshipit-source-id: 4f34182a69ab1e619e454da19e357a6a2ee2b9ab
Summary: Broke in one of the previous commits.
Reviewed By: hanidamlaj
Differential Revision: D47962468
fbshipit-source-id: 532e9356cb7e1bba2e45ac0a18440a12aed1eb25
Summary:
The new writer will use a single IOBuf for in-place writes via a
accessor.
Reviewed By: jbeshay, mjoras
Differential Revision: D47648606
fbshipit-source-id: c6094eb3445587337f8a03e203aeadb2954f76b1
Summary:
QuicBatchWriterFactoryMobile.cpp will be compiled for mvfst mobile,
QuicBatchWriterFactory.cpp will be used for normal mvfst.
Reviewed By: jbeshay, mjoras
Differential Revision: D47113897
fbshipit-source-id: eeda30f6205a9eec380f0304fc442464e10b8653