mirror of
				https://github.com/Mbed-TLS/mbedtls.git
				synced 2025-11-03 20:33:16 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			258 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			258 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  Arm64 crypto extension support functions
 | 
						|
 *
 | 
						|
 *  Copyright The Mbed TLS Contributors
 | 
						|
 *  SPDX-License-Identifier: Apache-2.0
 | 
						|
 *
 | 
						|
 *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 | 
						|
 *  not use this file except in compliance with the License.
 | 
						|
 *  You may obtain a copy of the License at
 | 
						|
 *
 | 
						|
 *  http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 *
 | 
						|
 *  Unless required by applicable law or agreed to in writing, software
 | 
						|
 *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | 
						|
 *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
 *  See the License for the specific language governing permissions and
 | 
						|
 *  limitations under the License.
 | 
						|
 */
 | 
						|
 | 
						|
#include <string.h>
 | 
						|
#include "common.h"
 | 
						|
 | 
						|
#if defined(MBEDTLS_AESCE_C)
 | 
						|
 | 
						|
#include "aesce.h"
 | 
						|
 | 
						|
#if defined(MBEDTLS_HAVE_ARM64)
 | 
						|
 | 
						|
#if defined(__clang__)
 | 
						|
#   if __clang_major__ < 4
 | 
						|
#       error "A more recent Clang is required for MBEDTLS_AESCE_C"
 | 
						|
#   endif
 | 
						|
#elif defined(__GNUC__)
 | 
						|
#   if __GNUC__ < 6
 | 
						|
#       error "A more recent GCC is required for MBEDTLS_AESCE_C"
 | 
						|
#   endif
 | 
						|
#else
 | 
						|
#    error "Only GCC and Clang supported for MBEDTLS_AESCE_C"
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(__ARM_FEATURE_CRYPTO)
 | 
						|
#   error "`crypto` feature moddifier MUST be enabled for MBEDTLS_AESCE_C."
 | 
						|
#   error "Typical option for GCC and Clang is `-march=armv8-a+crypto`."
 | 
						|
#endif /* !__ARM_FEATURE_CRYPTO */
 | 
						|
 | 
						|
#include <arm_neon.h>
 | 
						|
 | 
						|
#if defined(__linux__)
 | 
						|
#include <asm/hwcap.h>
 | 
						|
#include <sys/auxv.h>
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * AES instruction support detection routine
 | 
						|
 */
 | 
						|
int mbedtls_aesce_has_support(void)
 | 
						|
{
 | 
						|
#if defined(__linux__)
 | 
						|
    unsigned long auxval = getauxval(AT_HWCAP);
 | 
						|
    return (auxval & (HWCAP_ASIMD | HWCAP_AES)) ==
 | 
						|
           (HWCAP_ASIMD | HWCAP_AES);
 | 
						|
#else
 | 
						|
    /* Assume AES instructions are supported. */
 | 
						|
    return 1;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static uint8x16_t aesce_encrypt_block(uint8x16_t block,
 | 
						|
                                      unsigned char *keys,
 | 
						|
                                      int rounds)
 | 
						|
{
 | 
						|
    for (int i = 0; i < rounds - 1; i++) {
 | 
						|
        /* AES AddRoundKey, SubBytes, ShiftRows (in this order).
 | 
						|
         * AddRoundKey adds the round key for the previous round. */
 | 
						|
        block = vaeseq_u8(block, vld1q_u8(keys + i * 16));
 | 
						|
        /* AES mix columns */
 | 
						|
        block = vaesmcq_u8(block);
 | 
						|
    }
 | 
						|
 | 
						|
    /* AES AddRoundKey for the previous round.
 | 
						|
     * SubBytes, ShiftRows for the final round.  */
 | 
						|
    block = vaeseq_u8(block, vld1q_u8(keys + (rounds -1) * 16));
 | 
						|
 | 
						|
    /* Final round: no MixColumns */
 | 
						|
 | 
						|
    /* Final AddRoundKey */
 | 
						|
    block = veorq_u8(block, vld1q_u8(keys + rounds  * 16));
 | 
						|
 | 
						|
    return block;
 | 
						|
}
 | 
						|
 | 
						|
static uint8x16_t aesce_decrypt_block(uint8x16_t block,
 | 
						|
                                      unsigned char *keys,
 | 
						|
                                      int rounds)
 | 
						|
{
 | 
						|
 | 
						|
    for (int i = 0; i < rounds - 1; i++) {
 | 
						|
        /* AES AddRoundKey, SubBytes, ShiftRows */
 | 
						|
        block = vaesdq_u8(block, vld1q_u8(keys + i * 16));
 | 
						|
        /* AES inverse MixColumns for the next round.
 | 
						|
         *
 | 
						|
         * This means that we switch the order of the inverse AddRoundKey and
 | 
						|
         * inverse MixColumns operations. We have to do this as AddRoundKey is
 | 
						|
         * done in an atomic instruction together with the inverses of SubBytes
 | 
						|
         * and ShiftRows.
 | 
						|
         *
 | 
						|
         * It works because MixColumns is a linear operation over GF(2^8) and
 | 
						|
         * AddRoundKey is an exclusive or, which is equivalent to addition over
 | 
						|
         * GF(2^8). (The inverse of MixColumns needs to be applied to the
 | 
						|
         * affected round keys separately which has been done when the
 | 
						|
         * decryption round keys were calculated.) */
 | 
						|
        block = vaesimcq_u8(block);
 | 
						|
    }
 | 
						|
 | 
						|
    /* The inverses of AES AddRoundKey, SubBytes, ShiftRows finishing up the
 | 
						|
     * last full round. */
 | 
						|
    block = vaesdq_u8(block, vld1q_u8(keys + (rounds - 1) * 16));
 | 
						|
 | 
						|
    /* Inverse AddRoundKey for inverting the initial round key addition. */
 | 
						|
    block = veorq_u8(block, vld1q_u8(keys + rounds * 16));
 | 
						|
 | 
						|
    return block;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * AES-ECB block en(de)cryption
 | 
						|
 */
 | 
						|
int mbedtls_aesce_crypt_ecb(mbedtls_aes_context *ctx,
 | 
						|
                            int mode,
 | 
						|
                            const unsigned char input[16],
 | 
						|
                            unsigned char output[16])
 | 
						|
{
 | 
						|
    uint8x16_t block = vld1q_u8(&input[0]);
 | 
						|
    unsigned char *keys = (unsigned char *) (ctx->buf + ctx->rk_offset);
 | 
						|
 | 
						|
    if (mode == MBEDTLS_AES_ENCRYPT) {
 | 
						|
        block = aesce_encrypt_block(block, keys, ctx->nr);
 | 
						|
    } else {
 | 
						|
        block = aesce_decrypt_block(block, keys, ctx->nr);
 | 
						|
    }
 | 
						|
    vst1q_u8(&output[0], block);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Compute decryption round keys from encryption round keys
 | 
						|
 */
 | 
						|
void mbedtls_aesce_inverse_key(unsigned char *invkey,
 | 
						|
                               const unsigned char *fwdkey,
 | 
						|
                               int nr)
 | 
						|
{
 | 
						|
    int i, j;
 | 
						|
    j = nr;
 | 
						|
    vst1q_u8(invkey, vld1q_u8(fwdkey + j * 16));
 | 
						|
    for (i = 1, j--; j > 0; i++, j--) {
 | 
						|
        vst1q_u8(invkey + i * 16,
 | 
						|
                 vaesimcq_u8(vld1q_u8(fwdkey + j * 16)));
 | 
						|
    }
 | 
						|
    vst1q_u8(invkey + i * 16, vld1q_u8(fwdkey + j * 16));
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static inline uint32_t aes_rot_word(uint32_t word)
 | 
						|
{
 | 
						|
    return (word << (32 - 8)) | (word >> 8);
 | 
						|
}
 | 
						|
 | 
						|
static inline uint32_t aes_sub_word(uint32_t in)
 | 
						|
{
 | 
						|
    uint8x16_t v = vreinterpretq_u8_u32(vdupq_n_u32(in));
 | 
						|
    uint8x16_t zero = vdupq_n_u8(0);
 | 
						|
 | 
						|
    /* vaeseq_u8 does both SubBytes and ShiftRows. Taking the first row yields
 | 
						|
     * the correct result as ShiftRows doesn't change the first row. */
 | 
						|
    v = vaeseq_u8(zero, v);
 | 
						|
    return vgetq_lane_u32(vreinterpretq_u32_u8(v), 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Key expansion function
 | 
						|
 */
 | 
						|
static void aesce_setkey_enc(unsigned char *rk,
 | 
						|
                             const unsigned char *key,
 | 
						|
                             const size_t key_bit_length)
 | 
						|
{
 | 
						|
    static uint8_t const rcon[] = { 0x01, 0x02, 0x04, 0x08, 0x10,
 | 
						|
                                    0x20, 0x40, 0x80, 0x1b, 0x36 };
 | 
						|
    /* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
 | 
						|
     *   - Section 5, Nr = Nk + 6
 | 
						|
     *   - Section 5.2, the key expansion size is Nb*(Nr+1)
 | 
						|
     */
 | 
						|
    const uint32_t key_len_in_words = key_bit_length / 32;  /* Nk */
 | 
						|
    const size_t round_key_len_in_words = 4;                /* Nb */
 | 
						|
    const size_t round_keys_needed = key_len_in_words + 6;  /* Nr */
 | 
						|
    const size_t key_expansion_size_in_words =
 | 
						|
        round_key_len_in_words * (round_keys_needed + 1);   /* Nb*(Nr+1) */
 | 
						|
    const uint32_t *rko_end = (uint32_t *) rk + key_expansion_size_in_words;
 | 
						|
 | 
						|
    memcpy(rk, key, key_len_in_words * 4);
 | 
						|
 | 
						|
    for (uint32_t *rki = (uint32_t *) rk;
 | 
						|
         rki + key_len_in_words < rko_end;
 | 
						|
         rki += key_len_in_words) {
 | 
						|
 | 
						|
        size_t iteration = (rki - (uint32_t *) rk) / key_len_in_words;
 | 
						|
        uint32_t *rko;
 | 
						|
        rko = rki + key_len_in_words;
 | 
						|
        rko[0] = aes_rot_word(aes_sub_word(rki[key_len_in_words - 1]));
 | 
						|
        rko[0] ^= rcon[iteration] ^ rki[0];
 | 
						|
        rko[1] = rko[0] ^ rki[1];
 | 
						|
        rko[2] = rko[1] ^ rki[2];
 | 
						|
        rko[3] = rko[2] ^ rki[3];
 | 
						|
        if (rko + key_len_in_words > rko_end) {
 | 
						|
            /* Do not write overflow words.*/
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        switch (key_bit_length) {
 | 
						|
            case 128:
 | 
						|
                break;
 | 
						|
            case 192:
 | 
						|
                rko[4] = rko[3] ^ rki[4];
 | 
						|
                rko[5] = rko[4] ^ rki[5];
 | 
						|
                break;
 | 
						|
            case 256:
 | 
						|
                rko[4] = aes_sub_word(rko[3]) ^ rki[4];
 | 
						|
                rko[5] = rko[4] ^ rki[5];
 | 
						|
                rko[6] = rko[5] ^ rki[6];
 | 
						|
                rko[7] = rko[6] ^ rki[7];
 | 
						|
                break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Key expansion, wrapper
 | 
						|
 */
 | 
						|
int mbedtls_aesce_setkey_enc(unsigned char *rk,
 | 
						|
                             const unsigned char *key,
 | 
						|
                             size_t bits)
 | 
						|
{
 | 
						|
    switch (bits) {
 | 
						|
        case 128:
 | 
						|
        case 192:
 | 
						|
        case 256:
 | 
						|
            aesce_setkey_enc(rk, key, bits);
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* MBEDTLS_HAVE_ARM64 */
 | 
						|
 | 
						|
#endif /* MBEDTLS_AESCE_C */
 |