mirror of
				https://github.com/Mbed-TLS/mbedtls.git
				synced 2025-10-27 12:15:33 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			2629 lines
		
	
	
		
			71 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2629 lines
		
	
	
		
			71 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Multi-precision integer library
 | |
|  *
 | |
|  *  Copyright The Mbed TLS Contributors
 | |
|  *  SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 | |
|  *  not use this file except in compliance with the License.
 | |
|  *  You may obtain a copy of the License at
 | |
|  *
 | |
|  *  http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  *  Unless required by applicable law or agreed to in writing, software
 | |
|  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | |
|  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  *  See the License for the specific language governing permissions and
 | |
|  *  limitations under the License.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *  The following sources were referenced in the design of this Multi-precision
 | |
|  *  Integer library:
 | |
|  *
 | |
|  *  [1] Handbook of Applied Cryptography - 1997
 | |
|  *      Menezes, van Oorschot and Vanstone
 | |
|  *
 | |
|  *  [2] Multi-Precision Math
 | |
|  *      Tom St Denis
 | |
|  *      https://github.com/libtom/libtommath/blob/develop/tommath.pdf
 | |
|  *
 | |
|  *  [3] GNU Multi-Precision Arithmetic Library
 | |
|  *      https://gmplib.org/manual/index.html
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "common.h"
 | |
| 
 | |
| #if defined(MBEDTLS_BIGNUM_C)
 | |
| 
 | |
| #include "mbedtls/bignum.h"
 | |
| #include "bignum_core.h"
 | |
| #include "bn_mul.h"
 | |
| #include "mbedtls/platform_util.h"
 | |
| #include "mbedtls/error.h"
 | |
| #include "constant_time_internal.h"
 | |
| 
 | |
| #include <limits.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "mbedtls/platform.h"
 | |
| 
 | |
| #define MPI_VALIDATE_RET( cond )                                       \
 | |
|     MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
 | |
| #define MPI_VALIDATE( cond )                                           \
 | |
|     MBEDTLS_INTERNAL_VALIDATE( cond )
 | |
| 
 | |
| #define MPI_SIZE_T_MAX  ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
 | |
| 
 | |
| /* Implementation that should never be optimized out by the compiler */
 | |
| static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n )
 | |
| {
 | |
|     mbedtls_platform_zeroize( v, ciL * n );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize one MPI
 | |
|  */
 | |
| void mbedtls_mpi_init( mbedtls_mpi *X )
 | |
| {
 | |
|     MPI_VALIDATE( X != NULL );
 | |
| 
 | |
|     X->s = 1;
 | |
|     X->n = 0;
 | |
|     X->p = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unallocate one MPI
 | |
|  */
 | |
| void mbedtls_mpi_free( mbedtls_mpi *X )
 | |
| {
 | |
|     if( X == NULL )
 | |
|         return;
 | |
| 
 | |
|     if( X->p != NULL )
 | |
|     {
 | |
|         mbedtls_mpi_zeroize( X->p, X->n );
 | |
|         mbedtls_free( X->p );
 | |
|     }
 | |
| 
 | |
|     X->s = 1;
 | |
|     X->n = 0;
 | |
|     X->p = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enlarge to the specified number of limbs
 | |
|  */
 | |
| int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs )
 | |
| {
 | |
|     mbedtls_mpi_uint *p;
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
| 
 | |
|     if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
 | |
|         return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
 | |
| 
 | |
|     if( X->n < nblimbs )
 | |
|     {
 | |
|         if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL )
 | |
|             return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
 | |
| 
 | |
|         if( X->p != NULL )
 | |
|         {
 | |
|             memcpy( p, X->p, X->n * ciL );
 | |
|             mbedtls_mpi_zeroize( X->p, X->n );
 | |
|             mbedtls_free( X->p );
 | |
|         }
 | |
| 
 | |
|         X->n = nblimbs;
 | |
|         X->p = p;
 | |
|     }
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Resize down as much as possible,
 | |
|  * while keeping at least the specified number of limbs
 | |
|  */
 | |
| int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs )
 | |
| {
 | |
|     mbedtls_mpi_uint *p;
 | |
|     size_t i;
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
| 
 | |
|     if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
 | |
|         return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
 | |
| 
 | |
|     /* Actually resize up if there are currently fewer than nblimbs limbs. */
 | |
|     if( X->n <= nblimbs )
 | |
|         return( mbedtls_mpi_grow( X, nblimbs ) );
 | |
|     /* After this point, then X->n > nblimbs and in particular X->n > 0. */
 | |
| 
 | |
|     for( i = X->n - 1; i > 0; i-- )
 | |
|         if( X->p[i] != 0 )
 | |
|             break;
 | |
|     i++;
 | |
| 
 | |
|     if( i < nblimbs )
 | |
|         i = nblimbs;
 | |
| 
 | |
|     if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL )
 | |
|         return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
 | |
| 
 | |
|     if( X->p != NULL )
 | |
|     {
 | |
|         memcpy( p, X->p, i * ciL );
 | |
|         mbedtls_mpi_zeroize( X->p, X->n );
 | |
|         mbedtls_free( X->p );
 | |
|     }
 | |
| 
 | |
|     X->n = i;
 | |
|     X->p = p;
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| 
 | |
| /* Resize X to have exactly n limbs and set it to 0. */
 | |
| static int mbedtls_mpi_resize_clear( mbedtls_mpi *X, size_t limbs )
 | |
| {
 | |
|     if( limbs == 0 )
 | |
|     {
 | |
|         mbedtls_mpi_free( X );
 | |
|         return( 0 );
 | |
|     }
 | |
|     else if( X->n == limbs )
 | |
|     {
 | |
|         memset( X->p, 0, limbs * ciL );
 | |
|         X->s = 1;
 | |
|         return( 0 );
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         mbedtls_mpi_free( X );
 | |
|         return( mbedtls_mpi_grow( X, limbs ) );
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy the contents of Y into X.
 | |
|  *
 | |
|  * This function is not constant-time. Leading zeros in Y may be removed.
 | |
|  *
 | |
|  * Ensure that X does not shrink. This is not guaranteed by the public API,
 | |
|  * but some code in the bignum module relies on this property, for example
 | |
|  * in mbedtls_mpi_exp_mod().
 | |
|  */
 | |
| int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
 | |
| {
 | |
|     int ret = 0;
 | |
|     size_t i;
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
|     MPI_VALIDATE_RET( Y != NULL );
 | |
| 
 | |
|     if( X == Y )
 | |
|         return( 0 );
 | |
| 
 | |
|     if( Y->n == 0 )
 | |
|     {
 | |
|         if( X->n != 0 )
 | |
|         {
 | |
|             X->s = 1;
 | |
|             memset( X->p, 0, X->n * ciL );
 | |
|         }
 | |
|         return( 0 );
 | |
|     }
 | |
| 
 | |
|     for( i = Y->n - 1; i > 0; i-- )
 | |
|         if( Y->p[i] != 0 )
 | |
|             break;
 | |
|     i++;
 | |
| 
 | |
|     X->s = Y->s;
 | |
| 
 | |
|     if( X->n < i )
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         memset( X->p + i, 0, ( X->n - i ) * ciL );
 | |
|     }
 | |
| 
 | |
|     memcpy( X->p, Y->p, i * ciL );
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Swap the contents of X and Y
 | |
|  */
 | |
| void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y )
 | |
| {
 | |
|     mbedtls_mpi T;
 | |
|     MPI_VALIDATE( X != NULL );
 | |
|     MPI_VALIDATE( Y != NULL );
 | |
| 
 | |
|     memcpy( &T,  X, sizeof( mbedtls_mpi ) );
 | |
|     memcpy(  X,  Y, sizeof( mbedtls_mpi ) );
 | |
|     memcpy(  Y, &T, sizeof( mbedtls_mpi ) );
 | |
| }
 | |
| 
 | |
| static inline mbedtls_mpi_uint mpi_sint_abs( mbedtls_mpi_sint z )
 | |
| {
 | |
|     if( z >= 0 )
 | |
|         return( z );
 | |
|     /* Take care to handle the most negative value (-2^(biL-1)) correctly.
 | |
|      * A naive -z would have undefined behavior.
 | |
|      * Write this in a way that makes popular compilers happy (GCC, Clang,
 | |
|      * MSVC). */
 | |
|     return( (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set value from integer
 | |
|  */
 | |
| int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z )
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) );
 | |
|     memset( X->p, 0, X->n * ciL );
 | |
| 
 | |
|     X->p[0] = mpi_sint_abs( z );
 | |
|     X->s    = ( z < 0 ) ? -1 : 1;
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get a specific bit
 | |
|  */
 | |
| int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos )
 | |
| {
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
| 
 | |
|     if( X->n * biL <= pos )
 | |
|         return( 0 );
 | |
| 
 | |
|     return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set a bit to a specific value of 0 or 1
 | |
|  */
 | |
| int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val )
 | |
| {
 | |
|     int ret = 0;
 | |
|     size_t off = pos / biL;
 | |
|     size_t idx = pos % biL;
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
| 
 | |
|     if( val != 0 && val != 1 )
 | |
|         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
 | |
| 
 | |
|     if( X->n * biL <= pos )
 | |
|     {
 | |
|         if( val == 0 )
 | |
|             return( 0 );
 | |
| 
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) );
 | |
|     }
 | |
| 
 | |
|     X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx );
 | |
|     X->p[off] |= (mbedtls_mpi_uint) val << idx;
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of less significant zero-bits
 | |
|  */
 | |
| size_t mbedtls_mpi_lsb( const mbedtls_mpi *X )
 | |
| {
 | |
|     size_t i, j, count = 0;
 | |
|     MBEDTLS_INTERNAL_VALIDATE_RET( X != NULL, 0 );
 | |
| 
 | |
|     for( i = 0; i < X->n; i++ )
 | |
|         for( j = 0; j < biL; j++, count++ )
 | |
|             if( ( ( X->p[i] >> j ) & 1 ) != 0 )
 | |
|                 return( count );
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of bits
 | |
|  */
 | |
| size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X )
 | |
| {
 | |
|     return( mbedtls_mpi_core_bitlen( X->p, X->n ) );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the total size in bytes
 | |
|  */
 | |
| size_t mbedtls_mpi_size( const mbedtls_mpi *X )
 | |
| {
 | |
|     return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert an ASCII character to digit value
 | |
|  */
 | |
| static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c )
 | |
| {
 | |
|     *d = 255;
 | |
| 
 | |
|     if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
 | |
|     if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
 | |
|     if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
 | |
| 
 | |
|     if( *d >= (mbedtls_mpi_uint) radix )
 | |
|         return( MBEDTLS_ERR_MPI_INVALID_CHARACTER );
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Import from an ASCII string
 | |
|  */
 | |
| int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s )
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t i, j, slen, n;
 | |
|     int sign = 1;
 | |
|     mbedtls_mpi_uint d;
 | |
|     mbedtls_mpi T;
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
|     MPI_VALIDATE_RET( s != NULL );
 | |
| 
 | |
|     if( radix < 2 || radix > 16 )
 | |
|         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
 | |
| 
 | |
|     mbedtls_mpi_init( &T );
 | |
| 
 | |
|     if( s[0] == 0 )
 | |
|     {
 | |
|         mbedtls_mpi_free( X );
 | |
|         return( 0 );
 | |
|     }
 | |
| 
 | |
|     if( s[0] == '-' )
 | |
|     {
 | |
|         ++s;
 | |
|         sign = -1;
 | |
|     }
 | |
| 
 | |
|     slen = strlen( s );
 | |
| 
 | |
|     if( radix == 16 )
 | |
|     {
 | |
|         if( slen > MPI_SIZE_T_MAX >> 2 )
 | |
|             return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
 | |
| 
 | |
|         n = BITS_TO_LIMBS( slen << 2 );
 | |
| 
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
 | |
| 
 | |
|         for( i = slen, j = 0; i > 0; i--, j++ )
 | |
|         {
 | |
|             MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
 | |
|             X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
 | |
| 
 | |
|         for( i = 0; i < slen; i++ )
 | |
|         {
 | |
|             MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) );
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) );
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if( sign < 0 && mbedtls_mpi_bitlen( X ) != 0 )
 | |
|         X->s = -1;
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free( &T );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper to write the digits high-order first.
 | |
|  */
 | |
| static int mpi_write_hlp( mbedtls_mpi *X, int radix,
 | |
|                           char **p, const size_t buflen )
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     mbedtls_mpi_uint r;
 | |
|     size_t length = 0;
 | |
|     char *p_end = *p + buflen;
 | |
| 
 | |
|     do
 | |
|     {
 | |
|         if( length >= buflen )
 | |
|         {
 | |
|             return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
 | |
|         }
 | |
| 
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) );
 | |
|         /*
 | |
|          * Write the residue in the current position, as an ASCII character.
 | |
|          */
 | |
|         if( r < 0xA )
 | |
|             *(--p_end) = (char)( '0' + r );
 | |
|         else
 | |
|             *(--p_end) = (char)( 'A' + ( r - 0xA ) );
 | |
| 
 | |
|         length++;
 | |
|     } while( mbedtls_mpi_cmp_int( X, 0 ) != 0 );
 | |
| 
 | |
|     memmove( *p, p_end, length );
 | |
|     *p += length;
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Export into an ASCII string
 | |
|  */
 | |
| int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix,
 | |
|                               char *buf, size_t buflen, size_t *olen )
 | |
| {
 | |
|     int ret = 0;
 | |
|     size_t n;
 | |
|     char *p;
 | |
|     mbedtls_mpi T;
 | |
|     MPI_VALIDATE_RET( X    != NULL );
 | |
|     MPI_VALIDATE_RET( olen != NULL );
 | |
|     MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
 | |
| 
 | |
|     if( radix < 2 || radix > 16 )
 | |
|         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
 | |
| 
 | |
|     n = mbedtls_mpi_bitlen( X ); /* Number of bits necessary to present `n`. */
 | |
|     if( radix >=  4 ) n >>= 1;   /* Number of 4-adic digits necessary to present
 | |
|                                   * `n`. If radix > 4, this might be a strict
 | |
|                                   * overapproximation of the number of
 | |
|                                   * radix-adic digits needed to present `n`. */
 | |
|     if( radix >= 16 ) n >>= 1;   /* Number of hexadecimal digits necessary to
 | |
|                                   * present `n`. */
 | |
| 
 | |
|     n += 1; /* Terminating null byte */
 | |
|     n += 1; /* Compensate for the divisions above, which round down `n`
 | |
|              * in case it's not even. */
 | |
|     n += 1; /* Potential '-'-sign. */
 | |
|     n += ( n & 1 ); /* Make n even to have enough space for hexadecimal writing,
 | |
|                      * which always uses an even number of hex-digits. */
 | |
| 
 | |
|     if( buflen < n )
 | |
|     {
 | |
|         *olen = n;
 | |
|         return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
 | |
|     }
 | |
| 
 | |
|     p = buf;
 | |
|     mbedtls_mpi_init( &T );
 | |
| 
 | |
|     if( X->s == -1 )
 | |
|     {
 | |
|         *p++ = '-';
 | |
|         buflen--;
 | |
|     }
 | |
| 
 | |
|     if( radix == 16 )
 | |
|     {
 | |
|         int c;
 | |
|         size_t i, j, k;
 | |
| 
 | |
|         for( i = X->n, k = 0; i > 0; i-- )
 | |
|         {
 | |
|             for( j = ciL; j > 0; j-- )
 | |
|             {
 | |
|                 c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
 | |
| 
 | |
|                 if( c == 0 && k == 0 && ( i + j ) != 2 )
 | |
|                     continue;
 | |
| 
 | |
|                 *(p++) = "0123456789ABCDEF" [c / 16];
 | |
|                 *(p++) = "0123456789ABCDEF" [c % 16];
 | |
|                 k = 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) );
 | |
| 
 | |
|         if( T.s == -1 )
 | |
|             T.s = 1;
 | |
| 
 | |
|         MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p, buflen ) );
 | |
|     }
 | |
| 
 | |
|     *p++ = '\0';
 | |
|     *olen = p - buf;
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free( &T );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| #if defined(MBEDTLS_FS_IO)
 | |
| /*
 | |
|  * Read X from an opened file
 | |
|  */
 | |
| int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin )
 | |
| {
 | |
|     mbedtls_mpi_uint d;
 | |
|     size_t slen;
 | |
|     char *p;
 | |
|     /*
 | |
|      * Buffer should have space for (short) label and decimal formatted MPI,
 | |
|      * newline characters and '\0'
 | |
|      */
 | |
|     char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
 | |
| 
 | |
|     MPI_VALIDATE_RET( X   != NULL );
 | |
|     MPI_VALIDATE_RET( fin != NULL );
 | |
| 
 | |
|     if( radix < 2 || radix > 16 )
 | |
|         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
 | |
| 
 | |
|     memset( s, 0, sizeof( s ) );
 | |
|     if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
 | |
|         return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
 | |
| 
 | |
|     slen = strlen( s );
 | |
|     if( slen == sizeof( s ) - 2 )
 | |
|         return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
 | |
| 
 | |
|     if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
 | |
|     if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
 | |
| 
 | |
|     p = s + slen;
 | |
|     while( p-- > s )
 | |
|         if( mpi_get_digit( &d, radix, *p ) != 0 )
 | |
|             break;
 | |
| 
 | |
|     return( mbedtls_mpi_read_string( X, radix, p + 1 ) );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write X into an opened file (or stdout if fout == NULL)
 | |
|  */
 | |
| int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout )
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t n, slen, plen;
 | |
|     /*
 | |
|      * Buffer should have space for (short) label and decimal formatted MPI,
 | |
|      * newline characters and '\0'
 | |
|      */
 | |
|     char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
| 
 | |
|     if( radix < 2 || radix > 16 )
 | |
|         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
 | |
| 
 | |
|     memset( s, 0, sizeof( s ) );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) );
 | |
| 
 | |
|     if( p == NULL ) p = "";
 | |
| 
 | |
|     plen = strlen( p );
 | |
|     slen = strlen( s );
 | |
|     s[slen++] = '\r';
 | |
|     s[slen++] = '\n';
 | |
| 
 | |
|     if( fout != NULL )
 | |
|     {
 | |
|         if( fwrite( p, 1, plen, fout ) != plen ||
 | |
|             fwrite( s, 1, slen, fout ) != slen )
 | |
|             return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
 | |
|     }
 | |
|     else
 | |
|         mbedtls_printf( "%s%s", p, s );
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| #endif /* MBEDTLS_FS_IO */
 | |
| 
 | |
| /*
 | |
|  * Import X from unsigned binary data, little endian
 | |
|  *
 | |
|  * This function is guaranteed to return an MPI with exactly the necessary
 | |
|  * number of limbs (in particular, it does not skip 0s in the input).
 | |
|  */
 | |
| int mbedtls_mpi_read_binary_le( mbedtls_mpi *X,
 | |
|                                 const unsigned char *buf, size_t buflen )
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     const size_t limbs = CHARS_TO_LIMBS( buflen );
 | |
| 
 | |
|     /* Ensure that target MPI has exactly the necessary number of limbs */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_core_read_le( X->p, X->n, buf, buflen ) );
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     /*
 | |
|      * This function is also used to import keys. However, wiping the buffers
 | |
|      * upon failure is not necessary because failure only can happen before any
 | |
|      * input is copied.
 | |
|      */
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Import X from unsigned binary data, big endian
 | |
|  *
 | |
|  * This function is guaranteed to return an MPI with exactly the necessary
 | |
|  * number of limbs (in particular, it does not skip 0s in the input).
 | |
|  */
 | |
| int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen )
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     const size_t limbs = CHARS_TO_LIMBS( buflen );
 | |
| 
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
|     MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
 | |
| 
 | |
|     /* Ensure that target MPI has exactly the necessary number of limbs */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_core_read_be( X->p, X->n, buf, buflen ) );
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     /*
 | |
|      * This function is also used to import keys. However, wiping the buffers
 | |
|      * upon failure is not necessary because failure only can happen before any
 | |
|      * input is copied.
 | |
|      */
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Export X into unsigned binary data, little endian
 | |
|  */
 | |
| int mbedtls_mpi_write_binary_le( const mbedtls_mpi *X,
 | |
|                                  unsigned char *buf, size_t buflen )
 | |
| {
 | |
|     return( mbedtls_mpi_core_write_le( X->p, X->n, buf, buflen ) );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Export X into unsigned binary data, big endian
 | |
|  */
 | |
| int mbedtls_mpi_write_binary( const mbedtls_mpi *X,
 | |
|                               unsigned char *buf, size_t buflen )
 | |
| {
 | |
|     return( mbedtls_mpi_core_write_be( X->p, X->n, buf, buflen ) );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Left-shift: X <<= count
 | |
|  */
 | |
| int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count )
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t i, v0, t1;
 | |
|     mbedtls_mpi_uint r0 = 0, r1;
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
| 
 | |
|     v0 = count / (biL    );
 | |
|     t1 = count & (biL - 1);
 | |
| 
 | |
|     i = mbedtls_mpi_bitlen( X ) + count;
 | |
| 
 | |
|     if( X->n * biL < i )
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) );
 | |
| 
 | |
|     ret = 0;
 | |
| 
 | |
|     /*
 | |
|      * shift by count / limb_size
 | |
|      */
 | |
|     if( v0 > 0 )
 | |
|     {
 | |
|         for( i = X->n; i > v0; i-- )
 | |
|             X->p[i - 1] = X->p[i - v0 - 1];
 | |
| 
 | |
|         for( ; i > 0; i-- )
 | |
|             X->p[i - 1] = 0;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * shift by count % limb_size
 | |
|      */
 | |
|     if( t1 > 0 )
 | |
|     {
 | |
|         for( i = v0; i < X->n; i++ )
 | |
|         {
 | |
|             r1 = X->p[i] >> (biL - t1);
 | |
|             X->p[i] <<= t1;
 | |
|             X->p[i] |= r0;
 | |
|             r0 = r1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Right-shift: X >>= count
 | |
|  */
 | |
| int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count )
 | |
| {
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
|     if( X->n != 0 )
 | |
|         mbedtls_mpi_core_shift_r( X->p, X->n, count );
 | |
|     return( 0 );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compare unsigned values
 | |
|  */
 | |
| int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y )
 | |
| {
 | |
|     size_t i, j;
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
|     MPI_VALIDATE_RET( Y != NULL );
 | |
| 
 | |
|     for( i = X->n; i > 0; i-- )
 | |
|         if( X->p[i - 1] != 0 )
 | |
|             break;
 | |
| 
 | |
|     for( j = Y->n; j > 0; j-- )
 | |
|         if( Y->p[j - 1] != 0 )
 | |
|             break;
 | |
| 
 | |
|     if( i == 0 && j == 0 )
 | |
|         return( 0 );
 | |
| 
 | |
|     if( i > j ) return(  1 );
 | |
|     if( j > i ) return( -1 );
 | |
| 
 | |
|     for( ; i > 0; i-- )
 | |
|     {
 | |
|         if( X->p[i - 1] > Y->p[i - 1] ) return(  1 );
 | |
|         if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
 | |
|     }
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compare signed values
 | |
|  */
 | |
| int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
 | |
| {
 | |
|     size_t i, j;
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
|     MPI_VALIDATE_RET( Y != NULL );
 | |
| 
 | |
|     for( i = X->n; i > 0; i-- )
 | |
|         if( X->p[i - 1] != 0 )
 | |
|             break;
 | |
| 
 | |
|     for( j = Y->n; j > 0; j-- )
 | |
|         if( Y->p[j - 1] != 0 )
 | |
|             break;
 | |
| 
 | |
|     if( i == 0 && j == 0 )
 | |
|         return( 0 );
 | |
| 
 | |
|     if( i > j ) return(  X->s );
 | |
|     if( j > i ) return( -Y->s );
 | |
| 
 | |
|     if( X->s > 0 && Y->s < 0 ) return(  1 );
 | |
|     if( Y->s > 0 && X->s < 0 ) return( -1 );
 | |
| 
 | |
|     for( ; i > 0; i-- )
 | |
|     {
 | |
|         if( X->p[i - 1] > Y->p[i - 1] ) return(  X->s );
 | |
|         if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
 | |
|     }
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compare signed values
 | |
|  */
 | |
| int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z )
 | |
| {
 | |
|     mbedtls_mpi Y;
 | |
|     mbedtls_mpi_uint p[1];
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
| 
 | |
|     *p  = mpi_sint_abs( z );
 | |
|     Y.s = ( z < 0 ) ? -1 : 1;
 | |
|     Y.n = 1;
 | |
|     Y.p = p;
 | |
| 
 | |
|     return( mbedtls_mpi_cmp_mpi( X, &Y ) );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unsigned addition: X = |A| + |B|  (HAC 14.7)
 | |
|  */
 | |
| int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t j;
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
|     MPI_VALIDATE_RET( A != NULL );
 | |
|     MPI_VALIDATE_RET( B != NULL );
 | |
| 
 | |
|     if( X == B )
 | |
|     {
 | |
|         const mbedtls_mpi *T = A; A = X; B = T;
 | |
|     }
 | |
| 
 | |
|     if( X != A )
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
 | |
| 
 | |
|     /*
 | |
|      * X must always be positive as a result of unsigned additions.
 | |
|      */
 | |
|     X->s = 1;
 | |
| 
 | |
|     for( j = B->n; j > 0; j-- )
 | |
|         if( B->p[j - 1] != 0 )
 | |
|             break;
 | |
| 
 | |
|     /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
 | |
|      * and B is 0 (of any size). */
 | |
|     if( j == 0 )
 | |
|         return( 0 );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
 | |
| 
 | |
|     /* j is the number of non-zero limbs of B. Add those to X. */
 | |
| 
 | |
|     mbedtls_mpi_uint *p = X->p;
 | |
| 
 | |
|     mbedtls_mpi_uint c = mbedtls_mpi_core_add( p, p, B->p, j );
 | |
| 
 | |
|     p += j;
 | |
| 
 | |
|     /* Now propagate any carry */
 | |
| 
 | |
|     while( c != 0 )
 | |
|     {
 | |
|         if( j >= X->n )
 | |
|         {
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j + 1 ) );
 | |
|             p = X->p + j;
 | |
|         }
 | |
| 
 | |
|         *p += c; c = ( *p < c ); j++; p++;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unsigned subtraction: X = |A| - |B|  (HAC 14.9, 14.10)
 | |
|  */
 | |
| int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t n;
 | |
|     mbedtls_mpi_uint carry;
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
|     MPI_VALIDATE_RET( A != NULL );
 | |
|     MPI_VALIDATE_RET( B != NULL );
 | |
| 
 | |
|     for( n = B->n; n > 0; n-- )
 | |
|         if( B->p[n - 1] != 0 )
 | |
|             break;
 | |
|     if( n > A->n )
 | |
|     {
 | |
|         /* B >= (2^ciL)^n > A */
 | |
|         ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, A->n ) );
 | |
| 
 | |
|     /* Set the high limbs of X to match A. Don't touch the lower limbs
 | |
|      * because X might be aliased to B, and we must not overwrite the
 | |
|      * significant digits of B. */
 | |
|     if( A->n > n )
 | |
|         memcpy( X->p + n, A->p + n, ( A->n - n ) * ciL );
 | |
|     if( X->n > A->n )
 | |
|         memset( X->p + A->n, 0, ( X->n - A->n ) * ciL );
 | |
| 
 | |
|     carry = mbedtls_mpi_core_sub( X->p, A->p, B->p, n );
 | |
|     if( carry != 0 )
 | |
|     {
 | |
|         /* Propagate the carry through the rest of X. */
 | |
|         carry = mbedtls_mpi_core_sub_int( X->p + n, X->p + n, carry, X->n - n );
 | |
| 
 | |
|         /* If we have further carry/borrow, the result is negative. */
 | |
|         if( carry != 0 )
 | |
|         {
 | |
|             ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* X should always be positive as a result of unsigned subtractions. */
 | |
|     X->s = 1;
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /* Common function for signed addition and subtraction.
 | |
|  * Calculate A + B * flip_B where flip_B is 1 or -1.
 | |
|  */
 | |
| static int add_sub_mpi( mbedtls_mpi *X,
 | |
|                         const mbedtls_mpi *A, const mbedtls_mpi *B,
 | |
|                         int flip_B )
 | |
| {
 | |
|     int ret, s;
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
|     MPI_VALIDATE_RET( A != NULL );
 | |
|     MPI_VALIDATE_RET( B != NULL );
 | |
| 
 | |
|     s = A->s;
 | |
|     if( A->s * B->s * flip_B < 0 )
 | |
|     {
 | |
|         int cmp = mbedtls_mpi_cmp_abs( A, B );
 | |
|         if( cmp >= 0 )
 | |
|         {
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
 | |
|             /* If |A| = |B|, the result is 0 and we must set the sign bit
 | |
|              * to +1 regardless of which of A or B was negative. Otherwise,
 | |
|              * since |A| > |B|, the sign is the sign of A. */
 | |
|             X->s = cmp == 0 ? 1 : s;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
 | |
|             /* Since |A| < |B|, the sign is the opposite of A. */
 | |
|             X->s = -s;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
 | |
|         X->s = s;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Signed addition: X = A + B
 | |
|  */
 | |
| int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
 | |
| {
 | |
|     return( add_sub_mpi( X, A, B, 1 ) );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Signed subtraction: X = A - B
 | |
|  */
 | |
| int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
 | |
| {
 | |
|     return( add_sub_mpi( X, A, B, -1 ) );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Signed addition: X = A + b
 | |
|  */
 | |
| int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
 | |
| {
 | |
|     mbedtls_mpi B;
 | |
|     mbedtls_mpi_uint p[1];
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
|     MPI_VALIDATE_RET( A != NULL );
 | |
| 
 | |
|     p[0] = mpi_sint_abs( b );
 | |
|     B.s = ( b < 0 ) ? -1 : 1;
 | |
|     B.n = 1;
 | |
|     B.p = p;
 | |
| 
 | |
|     return( mbedtls_mpi_add_mpi( X, A, &B ) );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Signed subtraction: X = A - b
 | |
|  */
 | |
| int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
 | |
| {
 | |
|     mbedtls_mpi B;
 | |
|     mbedtls_mpi_uint p[1];
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
|     MPI_VALIDATE_RET( A != NULL );
 | |
| 
 | |
|     p[0] = mpi_sint_abs( b );
 | |
|     B.s = ( b < 0 ) ? -1 : 1;
 | |
|     B.n = 1;
 | |
|     B.p = p;
 | |
| 
 | |
|     return( mbedtls_mpi_sub_mpi( X, A, &B ) );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Baseline multiplication: X = A * B  (HAC 14.12)
 | |
|  */
 | |
| int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t i, j;
 | |
|     mbedtls_mpi TA, TB;
 | |
|     int result_is_zero = 0;
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
|     MPI_VALIDATE_RET( A != NULL );
 | |
|     MPI_VALIDATE_RET( B != NULL );
 | |
| 
 | |
|     mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
 | |
| 
 | |
|     if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }
 | |
|     if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }
 | |
| 
 | |
|     for( i = A->n; i > 0; i-- )
 | |
|         if( A->p[i - 1] != 0 )
 | |
|             break;
 | |
|     if( i == 0 )
 | |
|         result_is_zero = 1;
 | |
| 
 | |
|     for( j = B->n; j > 0; j-- )
 | |
|         if( B->p[j - 1] != 0 )
 | |
|             break;
 | |
|     if( j == 0 )
 | |
|         result_is_zero = 1;
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
 | |
| 
 | |
|     for( size_t k = 0; k < j; k++ )
 | |
|     {
 | |
|         /* We know that there cannot be any carry-out since we're
 | |
|          * iterating from bottom to top. */
 | |
|         (void) mbedtls_mpi_core_mla( X->p + k, i + 1,
 | |
|                                      A->p, i,
 | |
|                                      B->p[k] );
 | |
|     }
 | |
| 
 | |
|     /* If the result is 0, we don't shortcut the operation, which reduces
 | |
|      * but does not eliminate side channels leaking the zero-ness. We do
 | |
|      * need to take care to set the sign bit properly since the library does
 | |
|      * not fully support an MPI object with a value of 0 and s == -1. */
 | |
|     if( result_is_zero )
 | |
|         X->s = 1;
 | |
|     else
 | |
|         X->s = A->s * B->s;
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Baseline multiplication: X = A * b
 | |
|  */
 | |
| int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
 | |
| {
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
|     MPI_VALIDATE_RET( A != NULL );
 | |
| 
 | |
|     size_t n = A->n;
 | |
|     while( n > 0 && A->p[n - 1] == 0 )
 | |
|         --n;
 | |
| 
 | |
|     /* The general method below doesn't work if b==0. */
 | |
|     if( b == 0 || n == 0 )
 | |
|         return( mbedtls_mpi_lset( X, 0 ) );
 | |
| 
 | |
|     /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     /* In general, A * b requires 1 limb more than b. If
 | |
|      * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
 | |
|      * number of limbs as A and the call to grow() is not required since
 | |
|      * copy() will take care of the growth if needed. However, experimentally,
 | |
|      * making the call to grow() unconditional causes slightly fewer
 | |
|      * calls to calloc() in ECP code, presumably because it reuses the
 | |
|      * same mpi for a while and this way the mpi is more likely to directly
 | |
|      * grow to its final size.
 | |
|      *
 | |
|      * Note that calculating A*b as 0 + A*b doesn't work as-is because
 | |
|      * A,X can be the same. */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n + 1 ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
 | |
|     mbedtls_mpi_core_mla( X->p, X->n, A->p, n, b - 1 );
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
 | |
|  * mbedtls_mpi_uint divisor, d
 | |
|  */
 | |
| static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1,
 | |
|             mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r )
 | |
| {
 | |
| #if defined(MBEDTLS_HAVE_UDBL)
 | |
|     mbedtls_t_udbl dividend, quotient;
 | |
| #else
 | |
|     const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
 | |
|     const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1;
 | |
|     mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
 | |
|     mbedtls_mpi_uint u0_msw, u0_lsw;
 | |
|     size_t s;
 | |
| #endif
 | |
| 
 | |
|     /*
 | |
|      * Check for overflow
 | |
|      */
 | |
|     if( 0 == d || u1 >= d )
 | |
|     {
 | |
|         if (r != NULL) *r = ~0;
 | |
| 
 | |
|         return ( ~0 );
 | |
|     }
 | |
| 
 | |
| #if defined(MBEDTLS_HAVE_UDBL)
 | |
|     dividend  = (mbedtls_t_udbl) u1 << biL;
 | |
|     dividend |= (mbedtls_t_udbl) u0;
 | |
|     quotient = dividend / d;
 | |
|     if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
 | |
|         quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;
 | |
| 
 | |
|     if( r != NULL )
 | |
|         *r = (mbedtls_mpi_uint)( dividend - (quotient * d ) );
 | |
| 
 | |
|     return (mbedtls_mpi_uint) quotient;
 | |
| #else
 | |
| 
 | |
|     /*
 | |
|      * Algorithm D, Section 4.3.1 - The Art of Computer Programming
 | |
|      *   Vol. 2 - Seminumerical Algorithms, Knuth
 | |
|      */
 | |
| 
 | |
|     /*
 | |
|      * Normalize the divisor, d, and dividend, u0, u1
 | |
|      */
 | |
|     s = mbedtls_mpi_core_clz( d );
 | |
|     d = d << s;
 | |
| 
 | |
|     u1 = u1 << s;
 | |
|     u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) );
 | |
|     u0 =  u0 << s;
 | |
| 
 | |
|     d1 = d >> biH;
 | |
|     d0 = d & uint_halfword_mask;
 | |
| 
 | |
|     u0_msw = u0 >> biH;
 | |
|     u0_lsw = u0 & uint_halfword_mask;
 | |
| 
 | |
|     /*
 | |
|      * Find the first quotient and remainder
 | |
|      */
 | |
|     q1 = u1 / d1;
 | |
|     r0 = u1 - d1 * q1;
 | |
| 
 | |
|     while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )
 | |
|     {
 | |
|         q1 -= 1;
 | |
|         r0 += d1;
 | |
| 
 | |
|         if ( r0 >= radix ) break;
 | |
|     }
 | |
| 
 | |
|     rAX = ( u1 * radix ) + ( u0_msw - q1 * d );
 | |
|     q0 = rAX / d1;
 | |
|     r0 = rAX - q0 * d1;
 | |
| 
 | |
|     while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )
 | |
|     {
 | |
|         q0 -= 1;
 | |
|         r0 += d1;
 | |
| 
 | |
|         if ( r0 >= radix ) break;
 | |
|     }
 | |
| 
 | |
|     if (r != NULL)
 | |
|         *r = ( rAX * radix + u0_lsw - q0 * d ) >> s;
 | |
| 
 | |
|     quotient = q1 * radix + q0;
 | |
| 
 | |
|     return quotient;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Division by mbedtls_mpi: A = Q * B + R  (HAC 14.20)
 | |
|  */
 | |
| int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
 | |
|                          const mbedtls_mpi *B )
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t i, n, t, k;
 | |
|     mbedtls_mpi X, Y, Z, T1, T2;
 | |
|     mbedtls_mpi_uint TP2[3];
 | |
|     MPI_VALIDATE_RET( A != NULL );
 | |
|     MPI_VALIDATE_RET( B != NULL );
 | |
| 
 | |
|     if( mbedtls_mpi_cmp_int( B, 0 ) == 0 )
 | |
|         return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
 | |
| 
 | |
|     mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
 | |
|     mbedtls_mpi_init( &T1 );
 | |
|     /*
 | |
|      * Avoid dynamic memory allocations for constant-size T2.
 | |
|      *
 | |
|      * T2 is used for comparison only and the 3 limbs are assigned explicitly,
 | |
|      * so nobody increase the size of the MPI and we're safe to use an on-stack
 | |
|      * buffer.
 | |
|      */
 | |
|     T2.s = 1;
 | |
|     T2.n = sizeof( TP2 ) / sizeof( *TP2 );
 | |
|     T2.p = TP2;
 | |
| 
 | |
|     if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
 | |
|     {
 | |
|         if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) );
 | |
|         if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) );
 | |
|         return( 0 );
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) );
 | |
|     X.s = Y.s = 1;
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z,  0 ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, A->n + 2 ) );
 | |
| 
 | |
|     k = mbedtls_mpi_bitlen( &Y ) % biL;
 | |
|     if( k < biL - 1 )
 | |
|     {
 | |
|         k = biL - 1 - k;
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) );
 | |
|     }
 | |
|     else k = 0;
 | |
| 
 | |
|     n = X.n - 1;
 | |
|     t = Y.n - 1;
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) );
 | |
| 
 | |
|     while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 )
 | |
|     {
 | |
|         Z.p[n - t]++;
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) );
 | |
|     }
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) );
 | |
| 
 | |
|     for( i = n; i > t ; i-- )
 | |
|     {
 | |
|         if( X.p[i] >= Y.p[t] )
 | |
|             Z.p[i - t - 1] = ~0;
 | |
|         else
 | |
|         {
 | |
|             Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],
 | |
|                                                             Y.p[t], NULL);
 | |
|         }
 | |
| 
 | |
|         T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];
 | |
|         T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];
 | |
|         T2.p[2] = X.p[i];
 | |
| 
 | |
|         Z.p[i - t - 1]++;
 | |
|         do
 | |
|         {
 | |
|             Z.p[i - t - 1]--;
 | |
| 
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) );
 | |
|             T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];
 | |
|             T1.p[1] = Y.p[t];
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
 | |
|         }
 | |
|         while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 );
 | |
| 
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1,  biL * ( i - t - 1 ) ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) );
 | |
| 
 | |
|         if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 )
 | |
|         {
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) );
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) );
 | |
|             Z.p[i - t - 1]--;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if( Q != NULL )
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) );
 | |
|         Q->s = A->s * B->s;
 | |
|     }
 | |
| 
 | |
|     if( R != NULL )
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) );
 | |
|         X.s = A->s;
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) );
 | |
| 
 | |
|         if( mbedtls_mpi_cmp_int( R, 0 ) == 0 )
 | |
|             R->s = 1;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
 | |
|     mbedtls_mpi_free( &T1 );
 | |
|     mbedtls_platform_zeroize( TP2, sizeof( TP2 ) );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Division by int: A = Q * b + R
 | |
|  */
 | |
| int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R,
 | |
|                          const mbedtls_mpi *A,
 | |
|                          mbedtls_mpi_sint b )
 | |
| {
 | |
|     mbedtls_mpi B;
 | |
|     mbedtls_mpi_uint p[1];
 | |
|     MPI_VALIDATE_RET( A != NULL );
 | |
| 
 | |
|     p[0] = mpi_sint_abs( b );
 | |
|     B.s = ( b < 0 ) ? -1 : 1;
 | |
|     B.n = 1;
 | |
|     B.p = p;
 | |
| 
 | |
|     return( mbedtls_mpi_div_mpi( Q, R, A, &B ) );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Modulo: R = A mod B
 | |
|  */
 | |
| int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     MPI_VALIDATE_RET( R != NULL );
 | |
|     MPI_VALIDATE_RET( A != NULL );
 | |
|     MPI_VALIDATE_RET( B != NULL );
 | |
| 
 | |
|     if( mbedtls_mpi_cmp_int( B, 0 ) < 0 )
 | |
|         return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) );
 | |
| 
 | |
|     while( mbedtls_mpi_cmp_int( R, 0 ) < 0 )
 | |
|       MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) );
 | |
| 
 | |
|     while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 )
 | |
|       MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) );
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Modulo: r = A mod b
 | |
|  */
 | |
| int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b )
 | |
| {
 | |
|     size_t i;
 | |
|     mbedtls_mpi_uint x, y, z;
 | |
|     MPI_VALIDATE_RET( r != NULL );
 | |
|     MPI_VALIDATE_RET( A != NULL );
 | |
| 
 | |
|     if( b == 0 )
 | |
|         return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
 | |
| 
 | |
|     if( b < 0 )
 | |
|         return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
 | |
| 
 | |
|     /*
 | |
|      * handle trivial cases
 | |
|      */
 | |
|     if( b == 1 || A->n == 0 )
 | |
|     {
 | |
|         *r = 0;
 | |
|         return( 0 );
 | |
|     }
 | |
| 
 | |
|     if( b == 2 )
 | |
|     {
 | |
|         *r = A->p[0] & 1;
 | |
|         return( 0 );
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * general case
 | |
|      */
 | |
|     for( i = A->n, y = 0; i > 0; i-- )
 | |
|     {
 | |
|         x  = A->p[i - 1];
 | |
|         y  = ( y << biH ) | ( x >> biH );
 | |
|         z  = y / b;
 | |
|         y -= z * b;
 | |
| 
 | |
|         x <<= biH;
 | |
|         y  = ( y << biH ) | ( x >> biH );
 | |
|         z  = y / b;
 | |
|         y -= z * b;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * If A is negative, then the current y represents a negative value.
 | |
|      * Flipping it to the positive side.
 | |
|      */
 | |
|     if( A->s < 0 && y != 0 )
 | |
|         y = b - y;
 | |
| 
 | |
|     *r = y;
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| 
 | |
| static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
 | |
| {
 | |
|     *mm = mbedtls_mpi_core_montmul_init( N->p );
 | |
| }
 | |
| 
 | |
| /** Montgomery multiplication: A = A * B * R^-1 mod N  (HAC 14.36)
 | |
|  *
 | |
|  * \param[in,out]   A   One of the numbers to multiply.
 | |
|  *                      It must have at least as many limbs as N
 | |
|  *                      (A->n >= N->n), and any limbs beyond n are ignored.
 | |
|  *                      On successful completion, A contains the result of
 | |
|  *                      the multiplication A * B * R^-1 mod N where
 | |
|  *                      R = (2^ciL)^n.
 | |
|  * \param[in]       B   One of the numbers to multiply.
 | |
|  *                      It must be nonzero and must not have more limbs than N
 | |
|  *                      (B->n <= N->n).
 | |
|  * \param[in]       N   The modulus. \p N must be odd.
 | |
|  * \param           mm  The value calculated by `mpi_montg_init(&mm, N)`.
 | |
|  *                      This is -N^-1 mod 2^ciL.
 | |
|  * \param[in,out]   T   A bignum for temporary storage.
 | |
|  *                      It must be at least twice the limb size of N plus 1
 | |
|  *                      (T->n >= 2 * N->n + 1).
 | |
|  *                      Its initial content is unused and
 | |
|  *                      its final content is indeterminate.
 | |
|  *                      It does not get reallocated.
 | |
|  */
 | |
| static void mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B,
 | |
|                          const mbedtls_mpi *N, mbedtls_mpi_uint mm,
 | |
|                          mbedtls_mpi *T )
 | |
| {
 | |
|     mbedtls_mpi_core_montmul( A->p, A->p, B->p, B->n, N->p, N->n, mm, T->p );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Montgomery reduction: A = A * R^-1 mod N
 | |
|  *
 | |
|  * See mpi_montmul() regarding constraints and guarantees on the parameters.
 | |
|  */
 | |
| static void mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N,
 | |
|                          mbedtls_mpi_uint mm, mbedtls_mpi *T )
 | |
| {
 | |
|     mbedtls_mpi_uint z = 1;
 | |
|     mbedtls_mpi U;
 | |
| 
 | |
|     U.n = U.s = (int) z;
 | |
|     U.p = &z;
 | |
| 
 | |
|     mpi_montmul( A, &U, N, mm, T );
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Select an MPI from a table without leaking the index.
 | |
|  *
 | |
|  * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
 | |
|  * reads the entire table in order to avoid leaking the value of idx to an
 | |
|  * attacker able to observe memory access patterns.
 | |
|  *
 | |
|  * \param[out] R        Where to write the selected MPI.
 | |
|  * \param[in] T         The table to read from.
 | |
|  * \param[in] T_size    The number of elements in the table.
 | |
|  * \param[in] idx       The index of the element to select;
 | |
|  *                      this must satisfy 0 <= idx < T_size.
 | |
|  *
 | |
|  * \return \c 0 on success, or a negative error code.
 | |
|  */
 | |
| static int mpi_select( mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx )
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
| 
 | |
|     for( size_t i = 0; i < T_size; i++ )
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( R, &T[i],
 | |
|                         (unsigned char) mbedtls_ct_size_bool_eq( i, idx ) ) );
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sliding-window exponentiation: X = A^E mod N  (HAC 14.85)
 | |
|  */
 | |
| int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
 | |
|                          const mbedtls_mpi *E, const mbedtls_mpi *N,
 | |
|                          mbedtls_mpi *prec_RR )
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t wbits, wsize, one = 1;
 | |
|     size_t i, j, nblimbs;
 | |
|     size_t bufsize, nbits;
 | |
|     mbedtls_mpi_uint ei, mm, state;
 | |
|     mbedtls_mpi RR, T, W[ 1 << MBEDTLS_MPI_WINDOW_SIZE ], WW, Apos;
 | |
|     int neg;
 | |
| 
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
|     MPI_VALIDATE_RET( A != NULL );
 | |
|     MPI_VALIDATE_RET( E != NULL );
 | |
|     MPI_VALIDATE_RET( N != NULL );
 | |
| 
 | |
|     if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || ( N->p[0] & 1 ) == 0 )
 | |
|         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
 | |
| 
 | |
|     if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
 | |
|         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
 | |
| 
 | |
|     if( mbedtls_mpi_bitlen( E ) > MBEDTLS_MPI_MAX_BITS ||
 | |
|         mbedtls_mpi_bitlen( N ) > MBEDTLS_MPI_MAX_BITS )
 | |
|         return ( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
 | |
| 
 | |
|     /*
 | |
|      * Init temps and window size
 | |
|      */
 | |
|     mpi_montg_init( &mm, N );
 | |
|     mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
 | |
|     mbedtls_mpi_init( &Apos );
 | |
|     mbedtls_mpi_init( &WW );
 | |
|     memset( W, 0, sizeof( W ) );
 | |
| 
 | |
|     i = mbedtls_mpi_bitlen( E );
 | |
| 
 | |
|     wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
 | |
|             ( i >  79 ) ? 4 : ( i >  23 ) ? 3 : 1;
 | |
| 
 | |
| #if( MBEDTLS_MPI_WINDOW_SIZE < 6 )
 | |
|     if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
 | |
|         wsize = MBEDTLS_MPI_WINDOW_SIZE;
 | |
| #endif
 | |
| 
 | |
|     j = N->n + 1;
 | |
|     /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
 | |
|      * and mpi_montred() calls later. Here we ensure that W[1] and X are
 | |
|      * large enough, and later we'll grow other W[i] to the same length.
 | |
|      * They must not be shrunk midway through this function!
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1],  j ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
 | |
| 
 | |
|     /*
 | |
|      * Compensate for negative A (and correct at the end)
 | |
|      */
 | |
|     neg = ( A->s == -1 );
 | |
|     if( neg )
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
 | |
|         Apos.s = 1;
 | |
|         A = &Apos;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * If 1st call, pre-compute R^2 mod N
 | |
|      */
 | |
|     if( prec_RR == NULL || prec_RR->p == NULL )
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
 | |
| 
 | |
|         if( prec_RR != NULL )
 | |
|             memcpy( prec_RR, &RR, sizeof( mbedtls_mpi ) );
 | |
|     }
 | |
|     else
 | |
|         memcpy( &RR, prec_RR, sizeof( mbedtls_mpi ) );
 | |
| 
 | |
|     /*
 | |
|      * W[1] = A * R^2 * R^-1 mod N = A * R mod N
 | |
|      */
 | |
|     if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
 | |
|         /* This should be a no-op because W[1] is already that large before
 | |
|          * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
 | |
|          * in mpi_montmul() below, so let's make sure. */
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], N->n + 1 ) );
 | |
|     }
 | |
|     else
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
 | |
| 
 | |
|     /* Note that this is safe because W[1] always has at least N->n limbs
 | |
|      * (it grew above and was preserved by mbedtls_mpi_copy()). */
 | |
|     mpi_montmul( &W[1], &RR, N, mm, &T );
 | |
| 
 | |
|     /*
 | |
|      * X = R^2 * R^-1 mod N = R mod N
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) );
 | |
|     mpi_montred( X, N, mm, &T );
 | |
| 
 | |
|     if( wsize > 1 )
 | |
|     {
 | |
|         /*
 | |
|          * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
 | |
|          */
 | |
|         j =  one << ( wsize - 1 );
 | |
| 
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1]    ) );
 | |
| 
 | |
|         for( i = 0; i < wsize - 1; i++ )
 | |
|             mpi_montmul( &W[j], &W[j], N, mm, &T );
 | |
| 
 | |
|         /*
 | |
|          * W[i] = W[i - 1] * W[1]
 | |
|          */
 | |
|         for( i = j + 1; i < ( one << wsize ); i++ )
 | |
|         {
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
 | |
| 
 | |
|             mpi_montmul( &W[i], &W[1], N, mm, &T );
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     nblimbs = E->n;
 | |
|     bufsize = 0;
 | |
|     nbits   = 0;
 | |
|     wbits   = 0;
 | |
|     state   = 0;
 | |
| 
 | |
|     while( 1 )
 | |
|     {
 | |
|         if( bufsize == 0 )
 | |
|         {
 | |
|             if( nblimbs == 0 )
 | |
|                 break;
 | |
| 
 | |
|             nblimbs--;
 | |
| 
 | |
|             bufsize = sizeof( mbedtls_mpi_uint ) << 3;
 | |
|         }
 | |
| 
 | |
|         bufsize--;
 | |
| 
 | |
|         ei = (E->p[nblimbs] >> bufsize) & 1;
 | |
| 
 | |
|         /*
 | |
|          * skip leading 0s
 | |
|          */
 | |
|         if( ei == 0 && state == 0 )
 | |
|             continue;
 | |
| 
 | |
|         if( ei == 0 && state == 1 )
 | |
|         {
 | |
|             /*
 | |
|              * out of window, square X
 | |
|              */
 | |
|             mpi_montmul( X, X, N, mm, &T );
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * add ei to current window
 | |
|          */
 | |
|         state = 2;
 | |
| 
 | |
|         nbits++;
 | |
|         wbits |= ( ei << ( wsize - nbits ) );
 | |
| 
 | |
|         if( nbits == wsize )
 | |
|         {
 | |
|             /*
 | |
|              * X = X^wsize R^-1 mod N
 | |
|              */
 | |
|             for( i = 0; i < wsize; i++ )
 | |
|                 mpi_montmul( X, X, N, mm, &T );
 | |
| 
 | |
|             /*
 | |
|              * X = X * W[wbits] R^-1 mod N
 | |
|              */
 | |
|             MBEDTLS_MPI_CHK( mpi_select( &WW, W, (size_t) 1 << wsize, wbits ) );
 | |
|             mpi_montmul( X, &WW, N, mm, &T );
 | |
| 
 | |
|             state--;
 | |
|             nbits = 0;
 | |
|             wbits = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * process the remaining bits
 | |
|      */
 | |
|     for( i = 0; i < nbits; i++ )
 | |
|     {
 | |
|         mpi_montmul( X, X, N, mm, &T );
 | |
| 
 | |
|         wbits <<= 1;
 | |
| 
 | |
|         if( ( wbits & ( one << wsize ) ) != 0 )
 | |
|             mpi_montmul( X, &W[1], N, mm, &T );
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * X = A^E * R * R^-1 mod N = A^E mod N
 | |
|      */
 | |
|     mpi_montred( X, N, mm, &T );
 | |
| 
 | |
|     if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 )
 | |
|     {
 | |
|         X->s = -1;
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) );
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )
 | |
|         mbedtls_mpi_free( &W[i] );
 | |
| 
 | |
|     mbedtls_mpi_free( &W[1] ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &Apos );
 | |
|     mbedtls_mpi_free( &WW );
 | |
| 
 | |
|     if( prec_RR == NULL || prec_RR->p == NULL )
 | |
|         mbedtls_mpi_free( &RR );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Greatest common divisor: G = gcd(A, B)  (HAC 14.54)
 | |
|  */
 | |
| int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B )
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t lz, lzt;
 | |
|     mbedtls_mpi TA, TB;
 | |
| 
 | |
|     MPI_VALIDATE_RET( G != NULL );
 | |
|     MPI_VALIDATE_RET( A != NULL );
 | |
|     MPI_VALIDATE_RET( B != NULL );
 | |
| 
 | |
|     mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
 | |
| 
 | |
|     lz = mbedtls_mpi_lsb( &TA );
 | |
|     lzt = mbedtls_mpi_lsb( &TB );
 | |
| 
 | |
|     /* The loop below gives the correct result when A==0 but not when B==0.
 | |
|      * So have a special case for B==0. Leverage the fact that we just
 | |
|      * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
 | |
|      * slightly more efficient than cmp_int(). */
 | |
|     if( lzt == 0 && mbedtls_mpi_get_bit( &TB, 0 ) == 0 )
 | |
|     {
 | |
|         ret = mbedtls_mpi_copy( G, A );
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if( lzt < lz )
 | |
|         lz = lzt;
 | |
| 
 | |
|     TA.s = TB.s = 1;
 | |
| 
 | |
|     /* We mostly follow the procedure described in HAC 14.54, but with some
 | |
|      * minor differences:
 | |
|      * - Sequences of multiplications or divisions by 2 are grouped into a
 | |
|      *   single shift operation.
 | |
|      * - The procedure in HAC assumes that 0 < TB <= TA.
 | |
|      *     - The condition TB <= TA is not actually necessary for correctness.
 | |
|      *       TA and TB have symmetric roles except for the loop termination
 | |
|      *       condition, and the shifts at the beginning of the loop body
 | |
|      *       remove any significance from the ordering of TA vs TB before
 | |
|      *       the shifts.
 | |
|      *     - If TA = 0, the loop goes through 0 iterations and the result is
 | |
|      *       correctly TB.
 | |
|      *     - The case TB = 0 was short-circuited above.
 | |
|      *
 | |
|      * For the correctness proof below, decompose the original values of
 | |
|      * A and B as
 | |
|      *   A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
 | |
|      *   B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
 | |
|      * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
 | |
|      * and gcd(A',B') is odd or 0.
 | |
|      *
 | |
|      * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
 | |
|      * The code maintains the following invariant:
 | |
|      *     gcd(A,B) = 2^k * gcd(TA,TB) for some k   (I)
 | |
|      */
 | |
| 
 | |
|     /* Proof that the loop terminates:
 | |
|      * At each iteration, either the right-shift by 1 is made on a nonzero
 | |
|      * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
 | |
|      * by at least 1, or the right-shift by 1 is made on zero and then
 | |
|      * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
 | |
|      * since in that case TB is calculated from TB-TA with the condition TB>TA).
 | |
|      */
 | |
|     while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 )
 | |
|     {
 | |
|         /* Divisions by 2 preserve the invariant (I). */
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) );
 | |
| 
 | |
|         /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
 | |
|          * TA-TB is even so the division by 2 has an integer result.
 | |
|          * Invariant (I) is preserved since any odd divisor of both TA and TB
 | |
|          * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
 | |
|          * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
 | |
|          * divides TA.
 | |
|          */
 | |
|         if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 )
 | |
|         {
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) );
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) );
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) );
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) );
 | |
|         }
 | |
|         /* Note that one of TA or TB is still odd. */
 | |
|     }
 | |
| 
 | |
|     /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
 | |
|      * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
 | |
|      * - If there was at least one loop iteration, then one of TA or TB is odd,
 | |
|      *   and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
 | |
|      *   lz = min(a,b) so gcd(A,B) = 2^lz * TB.
 | |
|      * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
 | |
|      *   In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
 | |
|      */
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) );
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fill X with size bytes of random.
 | |
|  * The bytes returned from the RNG are used in a specific order which
 | |
|  * is suitable for deterministic ECDSA (see the specification of
 | |
|  * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()).
 | |
|  */
 | |
| int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size,
 | |
|                      int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                      void *p_rng )
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     const size_t limbs = CHARS_TO_LIMBS( size );
 | |
| 
 | |
|     MPI_VALIDATE_RET( X     != NULL );
 | |
|     MPI_VALIDATE_RET( f_rng != NULL );
 | |
| 
 | |
|     /* Ensure that target MPI has exactly the necessary number of limbs */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
 | |
|     if( size == 0 )
 | |
|         return( 0 );
 | |
| 
 | |
|     ret = mbedtls_mpi_core_fill_random( X->p, X->n, size, f_rng, p_rng );
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| int mbedtls_mpi_random( mbedtls_mpi *X,
 | |
|                         mbedtls_mpi_sint min,
 | |
|                         const mbedtls_mpi *N,
 | |
|                         int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                         void *p_rng )
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|     int count;
 | |
|     unsigned lt_lower = 1, lt_upper = 0;
 | |
|     size_t n_bits = mbedtls_mpi_bitlen( N );
 | |
|     size_t n_bytes = ( n_bits + 7 ) / 8;
 | |
|     mbedtls_mpi lower_bound;
 | |
| 
 | |
|     if( min < 0 )
 | |
|         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
 | |
|     if( mbedtls_mpi_cmp_int( N, min ) <= 0 )
 | |
|         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
 | |
| 
 | |
|     /*
 | |
|      * When min == 0, each try has at worst a probability 1/2 of failing
 | |
|      * (the msb has a probability 1/2 of being 0, and then the result will
 | |
|      * be < N), so after 30 tries failure probability is a most 2**(-30).
 | |
|      *
 | |
|      * When N is just below a power of 2, as is the case when generating
 | |
|      * a random scalar on most elliptic curves, 1 try is enough with
 | |
|      * overwhelming probability. When N is just above a power of 2,
 | |
|      * as when generating a random scalar on secp224k1, each try has
 | |
|      * a probability of failing that is almost 1/2.
 | |
|      *
 | |
|      * The probabilities are almost the same if min is nonzero but negligible
 | |
|      * compared to N. This is always the case when N is crypto-sized, but
 | |
|      * it's convenient to support small N for testing purposes. When N
 | |
|      * is small, use a higher repeat count, otherwise the probability of
 | |
|      * failure is macroscopic.
 | |
|      */
 | |
|     count = ( n_bytes > 4 ? 30 : 250 );
 | |
| 
 | |
|     mbedtls_mpi_init( &lower_bound );
 | |
| 
 | |
|     /* Ensure that target MPI has exactly the same number of limbs
 | |
|      * as the upper bound, even if the upper bound has leading zeros.
 | |
|      * This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, N->n ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &lower_bound, N->n ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &lower_bound, min ) );
 | |
| 
 | |
|     /*
 | |
|      * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
 | |
|      * when f_rng is a suitably parametrized instance of HMAC_DRBG:
 | |
|      * - use the same byte ordering;
 | |
|      * - keep the leftmost n_bits bits of the generated octet string;
 | |
|      * - try until result is in the desired range.
 | |
|      * This also avoids any bias, which is especially important for ECDSA.
 | |
|      */
 | |
|     do
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_core_fill_random( X->p, X->n,
 | |
|                                                        n_bytes,
 | |
|                                                        f_rng, p_rng ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, 8 * n_bytes - n_bits ) );
 | |
| 
 | |
|         if( --count == 0 )
 | |
|         {
 | |
|             ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, &lower_bound, <_lower ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, N, <_upper ) );
 | |
|     }
 | |
|     while( lt_lower != 0 || lt_upper == 0 );
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free( &lower_bound );
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Modular inverse: X = A^-1 mod N  (HAC 14.61 / 14.64)
 | |
|  */
 | |
| int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N )
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
 | |
|     MPI_VALIDATE_RET( X != NULL );
 | |
|     MPI_VALIDATE_RET( A != NULL );
 | |
|     MPI_VALIDATE_RET( N != NULL );
 | |
| 
 | |
|     if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 )
 | |
|         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
 | |
| 
 | |
|     mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 );
 | |
|     mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV );
 | |
|     mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) );
 | |
| 
 | |
|     if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
 | |
|     {
 | |
|         ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) );
 | |
| 
 | |
|     do
 | |
|     {
 | |
|         while( ( TU.p[0] & 1 ) == 0 )
 | |
|         {
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) );
 | |
| 
 | |
|             if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
 | |
|             {
 | |
|                 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) );
 | |
|                 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) );
 | |
|             }
 | |
| 
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) );
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) );
 | |
|         }
 | |
| 
 | |
|         while( ( TV.p[0] & 1 ) == 0 )
 | |
|         {
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) );
 | |
| 
 | |
|             if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
 | |
|             {
 | |
|                 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) );
 | |
|                 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) );
 | |
|             }
 | |
| 
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) );
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) );
 | |
|         }
 | |
| 
 | |
|         if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 )
 | |
|         {
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) );
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) );
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) );
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) );
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) );
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) );
 | |
|         }
 | |
|     }
 | |
|     while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 );
 | |
| 
 | |
|     while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 )
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) );
 | |
| 
 | |
|     while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 )
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) );
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 );
 | |
|     mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV );
 | |
|     mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| #if defined(MBEDTLS_GENPRIME)
 | |
| 
 | |
| static const int small_prime[] =
 | |
| {
 | |
|         3,    5,    7,   11,   13,   17,   19,   23,
 | |
|        29,   31,   37,   41,   43,   47,   53,   59,
 | |
|        61,   67,   71,   73,   79,   83,   89,   97,
 | |
|       101,  103,  107,  109,  113,  127,  131,  137,
 | |
|       139,  149,  151,  157,  163,  167,  173,  179,
 | |
|       181,  191,  193,  197,  199,  211,  223,  227,
 | |
|       229,  233,  239,  241,  251,  257,  263,  269,
 | |
|       271,  277,  281,  283,  293,  307,  311,  313,
 | |
|       317,  331,  337,  347,  349,  353,  359,  367,
 | |
|       373,  379,  383,  389,  397,  401,  409,  419,
 | |
|       421,  431,  433,  439,  443,  449,  457,  461,
 | |
|       463,  467,  479,  487,  491,  499,  503,  509,
 | |
|       521,  523,  541,  547,  557,  563,  569,  571,
 | |
|       577,  587,  593,  599,  601,  607,  613,  617,
 | |
|       619,  631,  641,  643,  647,  653,  659,  661,
 | |
|       673,  677,  683,  691,  701,  709,  719,  727,
 | |
|       733,  739,  743,  751,  757,  761,  769,  773,
 | |
|       787,  797,  809,  811,  821,  823,  827,  829,
 | |
|       839,  853,  857,  859,  863,  877,  881,  883,
 | |
|       887,  907,  911,  919,  929,  937,  941,  947,
 | |
|       953,  967,  971,  977,  983,  991,  997, -103
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Small divisors test (X must be positive)
 | |
|  *
 | |
|  * Return values:
 | |
|  * 0: no small factor (possible prime, more tests needed)
 | |
|  * 1: certain prime
 | |
|  * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
 | |
|  * other negative: error
 | |
|  */
 | |
| static int mpi_check_small_factors( const mbedtls_mpi *X )
 | |
| {
 | |
|     int ret = 0;
 | |
|     size_t i;
 | |
|     mbedtls_mpi_uint r;
 | |
| 
 | |
|     if( ( X->p[0] & 1 ) == 0 )
 | |
|         return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
 | |
| 
 | |
|     for( i = 0; small_prime[i] > 0; i++ )
 | |
|     {
 | |
|         if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 )
 | |
|             return( 1 );
 | |
| 
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) );
 | |
| 
 | |
|         if( r == 0 )
 | |
|             return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Miller-Rabin pseudo-primality test  (HAC 4.24)
 | |
|  */
 | |
| static int mpi_miller_rabin( const mbedtls_mpi *X, size_t rounds,
 | |
|                              int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                              void *p_rng )
 | |
| {
 | |
|     int ret, count;
 | |
|     size_t i, j, k, s;
 | |
|     mbedtls_mpi W, R, T, A, RR;
 | |
| 
 | |
|     MPI_VALIDATE_RET( X     != NULL );
 | |
|     MPI_VALIDATE_RET( f_rng != NULL );
 | |
| 
 | |
|     mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R );
 | |
|     mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A );
 | |
|     mbedtls_mpi_init( &RR );
 | |
| 
 | |
|     /*
 | |
|      * W = |X| - 1
 | |
|      * R = W >> lsb( W )
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) );
 | |
|     s = mbedtls_mpi_lsb( &W );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
 | |
| 
 | |
|     for( i = 0; i < rounds; i++ )
 | |
|     {
 | |
|         /*
 | |
|          * pick a random A, 1 < A < |X| - 1
 | |
|          */
 | |
|         count = 0;
 | |
|         do {
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
 | |
| 
 | |
|             j = mbedtls_mpi_bitlen( &A );
 | |
|             k = mbedtls_mpi_bitlen( &W );
 | |
|             if (j > k) {
 | |
|                 A.p[A.n - 1] &= ( (mbedtls_mpi_uint) 1 << ( k - ( A.n - 1 ) * biL - 1 ) ) - 1;
 | |
|             }
 | |
| 
 | |
|             if (count++ > 30) {
 | |
|                 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | |
|                 goto cleanup;
 | |
|             }
 | |
| 
 | |
|         } while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 ||
 | |
|                   mbedtls_mpi_cmp_int( &A, 1 )  <= 0    );
 | |
| 
 | |
|         /*
 | |
|          * A = A^R mod |X|
 | |
|          */
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) );
 | |
| 
 | |
|         if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 ||
 | |
|             mbedtls_mpi_cmp_int( &A,  1 ) == 0 )
 | |
|             continue;
 | |
| 
 | |
|         j = 1;
 | |
|         while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 )
 | |
|         {
 | |
|             /*
 | |
|              * A = A * A mod |X|
 | |
|              */
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) );
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X  ) );
 | |
| 
 | |
|             if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
 | |
|                 break;
 | |
| 
 | |
|             j++;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * not prime if A != |X| - 1 or A == 1
 | |
|          */
 | |
|         if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ||
 | |
|             mbedtls_mpi_cmp_int( &A,  1 ) == 0 )
 | |
|         {
 | |
|             ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R );
 | |
|     mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A );
 | |
|     mbedtls_mpi_free( &RR );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pseudo-primality test: small factors, then Miller-Rabin
 | |
|  */
 | |
| int mbedtls_mpi_is_prime_ext( const mbedtls_mpi *X, int rounds,
 | |
|                               int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                               void *p_rng )
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     mbedtls_mpi XX;
 | |
|     MPI_VALIDATE_RET( X     != NULL );
 | |
|     MPI_VALIDATE_RET( f_rng != NULL );
 | |
| 
 | |
|     XX.s = 1;
 | |
|     XX.n = X->n;
 | |
|     XX.p = X->p;
 | |
| 
 | |
|     if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 ||
 | |
|         mbedtls_mpi_cmp_int( &XX, 1 ) == 0 )
 | |
|         return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
 | |
| 
 | |
|     if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 )
 | |
|         return( 0 );
 | |
| 
 | |
|     if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )
 | |
|     {
 | |
|         if( ret == 1 )
 | |
|             return( 0 );
 | |
| 
 | |
|         return( ret );
 | |
|     }
 | |
| 
 | |
|     return( mpi_miller_rabin( &XX, rounds, f_rng, p_rng ) );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prime number generation
 | |
|  *
 | |
|  * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
 | |
|  * be either 1024 bits or 1536 bits long, and flags must contain
 | |
|  * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
 | |
|  */
 | |
| int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
 | |
|                    int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                    void *p_rng )
 | |
| {
 | |
| #ifdef MBEDTLS_HAVE_INT64
 | |
| // ceil(2^63.5)
 | |
| #define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
 | |
| #else
 | |
| // ceil(2^31.5)
 | |
| #define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
 | |
| #endif
 | |
|     int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | |
|     size_t k, n;
 | |
|     int rounds;
 | |
|     mbedtls_mpi_uint r;
 | |
|     mbedtls_mpi Y;
 | |
| 
 | |
|     MPI_VALIDATE_RET( X     != NULL );
 | |
|     MPI_VALIDATE_RET( f_rng != NULL );
 | |
| 
 | |
|     if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS )
 | |
|         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
 | |
| 
 | |
|     mbedtls_mpi_init( &Y );
 | |
| 
 | |
|     n = BITS_TO_LIMBS( nbits );
 | |
| 
 | |
|     if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR ) == 0 )
 | |
|     {
 | |
|         /*
 | |
|          * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
 | |
|          */
 | |
|         rounds = ( ( nbits >= 1300 ) ?  2 : ( nbits >=  850 ) ?  3 :
 | |
|                    ( nbits >=  650 ) ?  4 : ( nbits >=  350 ) ?  8 :
 | |
|                    ( nbits >=  250 ) ? 12 : ( nbits >=  150 ) ? 18 : 27 );
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         /*
 | |
|          * 2^-100 error probability, number of rounds computed based on HAC,
 | |
|          * fact 4.48
 | |
|          */
 | |
|         rounds = ( ( nbits >= 1450 ) ?  4 : ( nbits >=  1150 ) ?  5 :
 | |
|                    ( nbits >= 1000 ) ?  6 : ( nbits >=   850 ) ?  7 :
 | |
|                    ( nbits >=  750 ) ?  8 : ( nbits >=   500 ) ? 13 :
 | |
|                    ( nbits >=  250 ) ? 28 : ( nbits >=   150 ) ? 40 : 51 );
 | |
|     }
 | |
| 
 | |
|     while( 1 )
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
 | |
|         /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
 | |
|         if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue;
 | |
| 
 | |
|         k = n * biL;
 | |
|         if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) );
 | |
|         X->p[0] |= 1;
 | |
| 
 | |
|         if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH ) == 0 )
 | |
|         {
 | |
|             ret = mbedtls_mpi_is_prime_ext( X, rounds, f_rng, p_rng );
 | |
| 
 | |
|             if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
 | |
|                 goto cleanup;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             /*
 | |
|              * A necessary condition for Y and X = 2Y + 1 to be prime
 | |
|              * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
 | |
|              * Make sure it is satisfied, while keeping X = 3 mod 4
 | |
|              */
 | |
| 
 | |
|             X->p[0] |= 2;
 | |
| 
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
 | |
|             if( r == 0 )
 | |
|                 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
 | |
|             else if( r == 1 )
 | |
|                 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
 | |
| 
 | |
|             /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
 | |
| 
 | |
|             while( 1 )
 | |
|             {
 | |
|                 /*
 | |
|                  * First, check small factors for X and Y
 | |
|                  * before doing Miller-Rabin on any of them
 | |
|                  */
 | |
|                 if( ( ret = mpi_check_small_factors(  X         ) ) == 0 &&
 | |
|                     ( ret = mpi_check_small_factors( &Y         ) ) == 0 &&
 | |
|                     ( ret = mpi_miller_rabin(  X, rounds, f_rng, p_rng  ) )
 | |
|                                                                     == 0 &&
 | |
|                     ( ret = mpi_miller_rabin( &Y, rounds, f_rng, p_rng  ) )
 | |
|                                                                     == 0 )
 | |
|                     goto cleanup;
 | |
| 
 | |
|                 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
 | |
|                     goto cleanup;
 | |
| 
 | |
|                 /*
 | |
|                  * Next candidates. We want to preserve Y = (X-1) / 2 and
 | |
|                  * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
 | |
|                  * so up Y by 6 and X by 12.
 | |
|                  */
 | |
|                 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int(  X,  X, 12 ) );
 | |
|                 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6  ) );
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free( &Y );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| #endif /* MBEDTLS_GENPRIME */
 | |
| 
 | |
| #if defined(MBEDTLS_SELF_TEST)
 | |
| 
 | |
| #define GCD_PAIR_COUNT  3
 | |
| 
 | |
| static const int gcd_pairs[GCD_PAIR_COUNT][3] =
 | |
| {
 | |
|     { 693, 609, 21 },
 | |
|     { 1764, 868, 28 },
 | |
|     { 768454923, 542167814, 1 }
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Checkup routine
 | |
|  */
 | |
| int mbedtls_mpi_self_test( int verbose )
 | |
| {
 | |
|     int ret, i;
 | |
|     mbedtls_mpi A, E, N, X, Y, U, V;
 | |
| 
 | |
|     mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X );
 | |
|     mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16,
 | |
|         "EFE021C2645FD1DC586E69184AF4A31E" \
 | |
|         "D5F53E93B5F123FA41680867BA110131" \
 | |
|         "944FE7952E2517337780CB0DB80E61AA" \
 | |
|         "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16,
 | |
|         "B2E7EFD37075B9F03FF989C7C5051C20" \
 | |
|         "34D2A323810251127E7BF8625A4F49A5" \
 | |
|         "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
 | |
|         "5B5C25763222FEFCCFC38B832366C29E" ) );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16,
 | |
|         "0066A198186C18C10B2F5ED9B522752A" \
 | |
|         "9830B69916E535C8F047518A889A43A5" \
 | |
|         "94B6BED27A168D31D4A52F88925AA8F5" ) );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
 | |
|         "602AB7ECA597A3D6B56FF9829A5E8B85" \
 | |
|         "9E857EA95A03512E2BAE7391688D264A" \
 | |
|         "A5663B0341DB9CCFD2C4C5F421FEC814" \
 | |
|         "8001B72E848A38CAE1C65F78E56ABDEF" \
 | |
|         "E12D3C039B8A02D6BE593F0BBBDA56F1" \
 | |
|         "ECF677152EF804370C1A305CAF3B5BF1" \
 | |
|         "30879B56C61DE584A0F53A2447A51E" ) );
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         mbedtls_printf( "  MPI test #1 (mul_mpi): " );
 | |
| 
 | |
|     if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
 | |
|     {
 | |
|         if( verbose != 0 )
 | |
|             mbedtls_printf( "failed\n" );
 | |
| 
 | |
|         ret = 1;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         mbedtls_printf( "passed\n" );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
 | |
|         "256567336059E52CAE22925474705F39A94" ) );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16,
 | |
|         "6613F26162223DF488E9CD48CC132C7A" \
 | |
|         "0AC93C701B001B092E4E5B9F73BCD27B" \
 | |
|         "9EE50D0657C77F374E903CDFA4C642" ) );
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         mbedtls_printf( "  MPI test #2 (div_mpi): " );
 | |
| 
 | |
|     if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ||
 | |
|         mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 )
 | |
|     {
 | |
|         if( verbose != 0 )
 | |
|             mbedtls_printf( "failed\n" );
 | |
| 
 | |
|         ret = 1;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         mbedtls_printf( "passed\n" );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
 | |
|         "36E139AEA55215609D2816998ED020BB" \
 | |
|         "BD96C37890F65171D948E9BC7CBAA4D9" \
 | |
|         "325D24D6A3C12710F10A09FA08AB87" ) );
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         mbedtls_printf( "  MPI test #3 (exp_mod): " );
 | |
| 
 | |
|     if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
 | |
|     {
 | |
|         if( verbose != 0 )
 | |
|             mbedtls_printf( "failed\n" );
 | |
| 
 | |
|         ret = 1;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         mbedtls_printf( "passed\n" );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
 | |
|         "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
 | |
|         "C3DBA76456363A10869622EAC2DD84EC" \
 | |
|         "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         mbedtls_printf( "  MPI test #4 (inv_mod): " );
 | |
| 
 | |
|     if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
 | |
|     {
 | |
|         if( verbose != 0 )
 | |
|             mbedtls_printf( "failed\n" );
 | |
| 
 | |
|         ret = 1;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         mbedtls_printf( "passed\n" );
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         mbedtls_printf( "  MPI test #5 (simple gcd): " );
 | |
| 
 | |
|     for( i = 0; i < GCD_PAIR_COUNT; i++ )
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) );
 | |
| 
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) );
 | |
| 
 | |
|         if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
 | |
|         {
 | |
|             if( verbose != 0 )
 | |
|                 mbedtls_printf( "failed at %d\n", i );
 | |
| 
 | |
|             ret = 1;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         mbedtls_printf( "passed\n" );
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     if( ret != 0 && verbose != 0 )
 | |
|         mbedtls_printf( "Unexpected error, return code = %08X\n", (unsigned int) ret );
 | |
| 
 | |
|     mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X );
 | |
|     mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V );
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         mbedtls_printf( "\n" );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| #endif /* MBEDTLS_SELF_TEST */
 | |
| 
 | |
| #endif /* MBEDTLS_BIGNUM_C */
 |