mirror of
				https://github.com/Mbed-TLS/mbedtls.git
				synced 2025-10-24 13:32:59 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			2617 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2617 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  The RSA public-key cryptosystem
 | |
|  *
 | |
|  *  Copyright The Mbed TLS Contributors
 | |
|  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *  The following sources were referenced in the design of this implementation
 | |
|  *  of the RSA algorithm:
 | |
|  *
 | |
|  *  [1] A method for obtaining digital signatures and public-key cryptosystems
 | |
|  *      R Rivest, A Shamir, and L Adleman
 | |
|  *      http://people.csail.mit.edu/rivest/pubs.html#RSA78
 | |
|  *
 | |
|  *  [2] Handbook of Applied Cryptography - 1997, Chapter 8
 | |
|  *      Menezes, van Oorschot and Vanstone
 | |
|  *
 | |
|  *  [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks
 | |
|  *      Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice and
 | |
|  *      Stefan Mangard
 | |
|  *      https://arxiv.org/abs/1702.08719v2
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "common.h"
 | |
| 
 | |
| #if defined(MBEDTLS_RSA_C)
 | |
| 
 | |
| #include "mbedtls/rsa.h"
 | |
| #include "mbedtls/rsa_internal.h"
 | |
| #include "mbedtls/oid.h"
 | |
| #include "mbedtls/platform_util.h"
 | |
| #include "mbedtls/error.h"
 | |
| #include "constant_time_internal.h"
 | |
| #include "mbedtls/constant_time.h"
 | |
| 
 | |
| #include <string.h>
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V21)
 | |
| #include "mbedtls/md.h"
 | |
| #endif
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V15) && !defined(__OpenBSD__) && !defined(__NetBSD__)
 | |
| #include <stdlib.h>
 | |
| #endif
 | |
| 
 | |
| #include "mbedtls/platform.h"
 | |
| 
 | |
| #if !defined(MBEDTLS_RSA_ALT)
 | |
| 
 | |
| /* Parameter validation macros */
 | |
| #define RSA_VALIDATE_RET(cond)                                       \
 | |
|     MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_RSA_BAD_INPUT_DATA)
 | |
| #define RSA_VALIDATE(cond)                                           \
 | |
|     MBEDTLS_INTERNAL_VALIDATE(cond)
 | |
| 
 | |
| int mbedtls_rsa_import(mbedtls_rsa_context *ctx,
 | |
|                        const mbedtls_mpi *N,
 | |
|                        const mbedtls_mpi *P, const mbedtls_mpi *Q,
 | |
|                        const mbedtls_mpi *D, const mbedtls_mpi *E)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
| 
 | |
|     if ((N != NULL && (ret = mbedtls_mpi_copy(&ctx->N, N)) != 0) ||
 | |
|         (P != NULL && (ret = mbedtls_mpi_copy(&ctx->P, P)) != 0) ||
 | |
|         (Q != NULL && (ret = mbedtls_mpi_copy(&ctx->Q, Q)) != 0) ||
 | |
|         (D != NULL && (ret = mbedtls_mpi_copy(&ctx->D, D)) != 0) ||
 | |
|         (E != NULL && (ret = mbedtls_mpi_copy(&ctx->E, E)) != 0)) {
 | |
|         return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
 | |
|     }
 | |
| 
 | |
|     if (N != NULL) {
 | |
|         ctx->len = mbedtls_mpi_size(&ctx->N);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int mbedtls_rsa_import_raw(mbedtls_rsa_context *ctx,
 | |
|                            unsigned char const *N, size_t N_len,
 | |
|                            unsigned char const *P, size_t P_len,
 | |
|                            unsigned char const *Q, size_t Q_len,
 | |
|                            unsigned char const *D, size_t D_len,
 | |
|                            unsigned char const *E, size_t E_len)
 | |
| {
 | |
|     int ret = 0;
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
| 
 | |
|     if (N != NULL) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->N, N, N_len));
 | |
|         ctx->len = mbedtls_mpi_size(&ctx->N);
 | |
|     }
 | |
| 
 | |
|     if (P != NULL) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->P, P, P_len));
 | |
|     }
 | |
| 
 | |
|     if (Q != NULL) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->Q, Q, Q_len));
 | |
|     }
 | |
| 
 | |
|     if (D != NULL) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->D, D, D_len));
 | |
|     }
 | |
| 
 | |
|     if (E != NULL) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->E, E, E_len));
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     if (ret != 0) {
 | |
|         return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checks whether the context fields are set in such a way
 | |
|  * that the RSA primitives will be able to execute without error.
 | |
|  * It does *not* make guarantees for consistency of the parameters.
 | |
|  */
 | |
| static int rsa_check_context(mbedtls_rsa_context const *ctx, int is_priv,
 | |
|                              int blinding_needed)
 | |
| {
 | |
| #if !defined(MBEDTLS_RSA_NO_CRT)
 | |
|     /* blinding_needed is only used for NO_CRT to decide whether
 | |
|      * P,Q need to be present or not. */
 | |
|     ((void) blinding_needed);
 | |
| #endif
 | |
| 
 | |
|     if (ctx->len != mbedtls_mpi_size(&ctx->N) ||
 | |
|         ctx->len > MBEDTLS_MPI_MAX_SIZE) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * 1. Modular exponentiation needs positive, odd moduli.
 | |
|      */
 | |
| 
 | |
|     /* Modular exponentiation wrt. N is always used for
 | |
|      * RSA public key operations. */
 | |
|     if (mbedtls_mpi_cmp_int(&ctx->N, 0) <= 0 ||
 | |
|         mbedtls_mpi_get_bit(&ctx->N, 0) == 0) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
| #if !defined(MBEDTLS_RSA_NO_CRT)
 | |
|     /* Modular exponentiation for P and Q is only
 | |
|      * used for private key operations and if CRT
 | |
|      * is used. */
 | |
|     if (is_priv &&
 | |
|         (mbedtls_mpi_cmp_int(&ctx->P, 0) <= 0 ||
 | |
|          mbedtls_mpi_get_bit(&ctx->P, 0) == 0 ||
 | |
|          mbedtls_mpi_cmp_int(&ctx->Q, 0) <= 0 ||
 | |
|          mbedtls_mpi_get_bit(&ctx->Q, 0) == 0)) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| #endif /* !MBEDTLS_RSA_NO_CRT */
 | |
| 
 | |
|     /*
 | |
|      * 2. Exponents must be positive
 | |
|      */
 | |
| 
 | |
|     /* Always need E for public key operations */
 | |
|     if (mbedtls_mpi_cmp_int(&ctx->E, 0) <= 0) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
| #if defined(MBEDTLS_RSA_NO_CRT)
 | |
|     /* For private key operations, use D or DP & DQ
 | |
|      * as (unblinded) exponents. */
 | |
|     if (is_priv && mbedtls_mpi_cmp_int(&ctx->D, 0) <= 0) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| #else
 | |
|     if (is_priv &&
 | |
|         (mbedtls_mpi_cmp_int(&ctx->DP, 0) <= 0 ||
 | |
|          mbedtls_mpi_cmp_int(&ctx->DQ, 0) <= 0)) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| #endif /* MBEDTLS_RSA_NO_CRT */
 | |
| 
 | |
|     /* Blinding shouldn't make exponents negative either,
 | |
|      * so check that P, Q >= 1 if that hasn't yet been
 | |
|      * done as part of 1. */
 | |
| #if defined(MBEDTLS_RSA_NO_CRT)
 | |
|     if (is_priv && blinding_needed &&
 | |
|         (mbedtls_mpi_cmp_int(&ctx->P, 0) <= 0 ||
 | |
|          mbedtls_mpi_cmp_int(&ctx->Q, 0) <= 0)) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* It wouldn't lead to an error if it wasn't satisfied,
 | |
|      * but check for QP >= 1 nonetheless. */
 | |
| #if !defined(MBEDTLS_RSA_NO_CRT)
 | |
|     if (is_priv &&
 | |
|         mbedtls_mpi_cmp_int(&ctx->QP, 0) <= 0) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int mbedtls_rsa_complete(mbedtls_rsa_context *ctx)
 | |
| {
 | |
|     int ret = 0;
 | |
|     int have_N, have_P, have_Q, have_D, have_E;
 | |
| #if !defined(MBEDTLS_RSA_NO_CRT)
 | |
|     int have_DP, have_DQ, have_QP;
 | |
| #endif
 | |
|     int n_missing, pq_missing, d_missing, is_pub, is_priv;
 | |
| 
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
| 
 | |
|     have_N = (mbedtls_mpi_cmp_int(&ctx->N, 0) != 0);
 | |
|     have_P = (mbedtls_mpi_cmp_int(&ctx->P, 0) != 0);
 | |
|     have_Q = (mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0);
 | |
|     have_D = (mbedtls_mpi_cmp_int(&ctx->D, 0) != 0);
 | |
|     have_E = (mbedtls_mpi_cmp_int(&ctx->E, 0) != 0);
 | |
| 
 | |
| #if !defined(MBEDTLS_RSA_NO_CRT)
 | |
|     have_DP = (mbedtls_mpi_cmp_int(&ctx->DP, 0) != 0);
 | |
|     have_DQ = (mbedtls_mpi_cmp_int(&ctx->DQ, 0) != 0);
 | |
|     have_QP = (mbedtls_mpi_cmp_int(&ctx->QP, 0) != 0);
 | |
| #endif
 | |
| 
 | |
|     /*
 | |
|      * Check whether provided parameters are enough
 | |
|      * to deduce all others. The following incomplete
 | |
|      * parameter sets for private keys are supported:
 | |
|      *
 | |
|      * (1) P, Q missing.
 | |
|      * (2) D and potentially N missing.
 | |
|      *
 | |
|      */
 | |
| 
 | |
|     n_missing  =              have_P &&  have_Q &&  have_D && have_E;
 | |
|     pq_missing =   have_N && !have_P && !have_Q &&  have_D && have_E;
 | |
|     d_missing  =              have_P &&  have_Q && !have_D && have_E;
 | |
|     is_pub     =   have_N && !have_P && !have_Q && !have_D && have_E;
 | |
| 
 | |
|     /* These three alternatives are mutually exclusive */
 | |
|     is_priv = n_missing || pq_missing || d_missing;
 | |
| 
 | |
|     if (!is_priv && !is_pub) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Step 1: Deduce N if P, Q are provided.
 | |
|      */
 | |
| 
 | |
|     if (!have_N && have_P && have_Q) {
 | |
|         if ((ret = mbedtls_mpi_mul_mpi(&ctx->N, &ctx->P,
 | |
|                                        &ctx->Q)) != 0) {
 | |
|             return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
 | |
|         }
 | |
| 
 | |
|         ctx->len = mbedtls_mpi_size(&ctx->N);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Step 2: Deduce and verify all remaining core parameters.
 | |
|      */
 | |
| 
 | |
|     if (pq_missing) {
 | |
|         ret = mbedtls_rsa_deduce_primes(&ctx->N, &ctx->E, &ctx->D,
 | |
|                                         &ctx->P, &ctx->Q);
 | |
|         if (ret != 0) {
 | |
|             return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
 | |
|         }
 | |
| 
 | |
|     } else if (d_missing) {
 | |
|         if ((ret = mbedtls_rsa_deduce_private_exponent(&ctx->P,
 | |
|                                                        &ctx->Q,
 | |
|                                                        &ctx->E,
 | |
|                                                        &ctx->D)) != 0) {
 | |
|             return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Step 3: Deduce all additional parameters specific
 | |
|      *         to our current RSA implementation.
 | |
|      */
 | |
| 
 | |
| #if !defined(MBEDTLS_RSA_NO_CRT)
 | |
|     if (is_priv && !(have_DP && have_DQ && have_QP)) {
 | |
|         ret = mbedtls_rsa_deduce_crt(&ctx->P,  &ctx->Q,  &ctx->D,
 | |
|                                      &ctx->DP, &ctx->DQ, &ctx->QP);
 | |
|         if (ret != 0) {
 | |
|             return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
 | |
|         }
 | |
|     }
 | |
| #endif /* MBEDTLS_RSA_NO_CRT */
 | |
| 
 | |
|     /*
 | |
|      * Step 3: Basic sanity checks
 | |
|      */
 | |
| 
 | |
|     return rsa_check_context(ctx, is_priv, 1);
 | |
| }
 | |
| 
 | |
| int mbedtls_rsa_export_raw(const mbedtls_rsa_context *ctx,
 | |
|                            unsigned char *N, size_t N_len,
 | |
|                            unsigned char *P, size_t P_len,
 | |
|                            unsigned char *Q, size_t Q_len,
 | |
|                            unsigned char *D, size_t D_len,
 | |
|                            unsigned char *E, size_t E_len)
 | |
| {
 | |
|     int ret = 0;
 | |
|     int is_priv;
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
| 
 | |
|     /* Check if key is private or public */
 | |
|     is_priv =
 | |
|         mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 &&
 | |
|         mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 &&
 | |
|         mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 &&
 | |
|         mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 &&
 | |
|         mbedtls_mpi_cmp_int(&ctx->E, 0) != 0;
 | |
| 
 | |
|     if (!is_priv) {
 | |
|         /* If we're trying to export private parameters for a public key,
 | |
|          * something must be wrong. */
 | |
|         if (P != NULL || Q != NULL || D != NULL) {
 | |
|             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|         }
 | |
| 
 | |
|     }
 | |
| 
 | |
|     if (N != NULL) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->N, N, N_len));
 | |
|     }
 | |
| 
 | |
|     if (P != NULL) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->P, P, P_len));
 | |
|     }
 | |
| 
 | |
|     if (Q != NULL) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->Q, Q, Q_len));
 | |
|     }
 | |
| 
 | |
|     if (D != NULL) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->D, D, D_len));
 | |
|     }
 | |
| 
 | |
|     if (E != NULL) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->E, E, E_len));
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int mbedtls_rsa_export(const mbedtls_rsa_context *ctx,
 | |
|                        mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q,
 | |
|                        mbedtls_mpi *D, mbedtls_mpi *E)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     int is_priv;
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
| 
 | |
|     /* Check if key is private or public */
 | |
|     is_priv =
 | |
|         mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 &&
 | |
|         mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 &&
 | |
|         mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 &&
 | |
|         mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 &&
 | |
|         mbedtls_mpi_cmp_int(&ctx->E, 0) != 0;
 | |
| 
 | |
|     if (!is_priv) {
 | |
|         /* If we're trying to export private parameters for a public key,
 | |
|          * something must be wrong. */
 | |
|         if (P != NULL || Q != NULL || D != NULL) {
 | |
|             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|         }
 | |
| 
 | |
|     }
 | |
| 
 | |
|     /* Export all requested core parameters. */
 | |
| 
 | |
|     if ((N != NULL && (ret = mbedtls_mpi_copy(N, &ctx->N)) != 0) ||
 | |
|         (P != NULL && (ret = mbedtls_mpi_copy(P, &ctx->P)) != 0) ||
 | |
|         (Q != NULL && (ret = mbedtls_mpi_copy(Q, &ctx->Q)) != 0) ||
 | |
|         (D != NULL && (ret = mbedtls_mpi_copy(D, &ctx->D)) != 0) ||
 | |
|         (E != NULL && (ret = mbedtls_mpi_copy(E, &ctx->E)) != 0)) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Export CRT parameters
 | |
|  * This must also be implemented if CRT is not used, for being able to
 | |
|  * write DER encoded RSA keys. The helper function mbedtls_rsa_deduce_crt
 | |
|  * can be used in this case.
 | |
|  */
 | |
| int mbedtls_rsa_export_crt(const mbedtls_rsa_context *ctx,
 | |
|                            mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     int is_priv;
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
| 
 | |
|     /* Check if key is private or public */
 | |
|     is_priv =
 | |
|         mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 &&
 | |
|         mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 &&
 | |
|         mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 &&
 | |
|         mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 &&
 | |
|         mbedtls_mpi_cmp_int(&ctx->E, 0) != 0;
 | |
| 
 | |
|     if (!is_priv) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
| #if !defined(MBEDTLS_RSA_NO_CRT)
 | |
|     /* Export all requested blinding parameters. */
 | |
|     if ((DP != NULL && (ret = mbedtls_mpi_copy(DP, &ctx->DP)) != 0) ||
 | |
|         (DQ != NULL && (ret = mbedtls_mpi_copy(DQ, &ctx->DQ)) != 0) ||
 | |
|         (QP != NULL && (ret = mbedtls_mpi_copy(QP, &ctx->QP)) != 0)) {
 | |
|         return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
 | |
|     }
 | |
| #else
 | |
|     if ((ret = mbedtls_rsa_deduce_crt(&ctx->P, &ctx->Q, &ctx->D,
 | |
|                                       DP, DQ, QP)) != 0) {
 | |
|         return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize an RSA context
 | |
|  */
 | |
| void mbedtls_rsa_init(mbedtls_rsa_context *ctx,
 | |
|                       int padding,
 | |
|                       int hash_id)
 | |
| {
 | |
|     RSA_VALIDATE(ctx != NULL);
 | |
|     RSA_VALIDATE(padding == MBEDTLS_RSA_PKCS_V15 ||
 | |
|                  padding == MBEDTLS_RSA_PKCS_V21);
 | |
| 
 | |
|     memset(ctx, 0, sizeof(mbedtls_rsa_context));
 | |
| 
 | |
|     mbedtls_rsa_set_padding(ctx, padding, hash_id);
 | |
| 
 | |
| #if defined(MBEDTLS_THREADING_C)
 | |
|     /* Set ctx->ver to nonzero to indicate that the mutex has been
 | |
|      * initialized and will need to be freed. */
 | |
|     ctx->ver = 1;
 | |
|     mbedtls_mutex_init(&ctx->mutex);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set padding for an existing RSA context
 | |
|  */
 | |
| void mbedtls_rsa_set_padding(mbedtls_rsa_context *ctx, int padding,
 | |
|                              int hash_id)
 | |
| {
 | |
|     RSA_VALIDATE(ctx != NULL);
 | |
|     RSA_VALIDATE(padding == MBEDTLS_RSA_PKCS_V15 ||
 | |
|                  padding == MBEDTLS_RSA_PKCS_V21);
 | |
| 
 | |
|     ctx->padding = padding;
 | |
|     ctx->hash_id = hash_id;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get length in bytes of RSA modulus
 | |
|  */
 | |
| 
 | |
| size_t mbedtls_rsa_get_len(const mbedtls_rsa_context *ctx)
 | |
| {
 | |
|     return ctx->len;
 | |
| }
 | |
| 
 | |
| 
 | |
| #if defined(MBEDTLS_GENPRIME)
 | |
| 
 | |
| /*
 | |
|  * Generate an RSA keypair
 | |
|  *
 | |
|  * This generation method follows the RSA key pair generation procedure of
 | |
|  * FIPS 186-4 if 2^16 < exponent < 2^256 and nbits = 2048 or nbits = 3072.
 | |
|  */
 | |
| int mbedtls_rsa_gen_key(mbedtls_rsa_context *ctx,
 | |
|                         int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                         void *p_rng,
 | |
|                         unsigned int nbits, int exponent)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     mbedtls_mpi H, G, L;
 | |
|     int prime_quality = 0;
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
|     RSA_VALIDATE_RET(f_rng != NULL);
 | |
| 
 | |
|     /*
 | |
|      * If the modulus is 1024 bit long or shorter, then the security strength of
 | |
|      * the RSA algorithm is less than or equal to 80 bits and therefore an error
 | |
|      * rate of 2^-80 is sufficient.
 | |
|      */
 | |
|     if (nbits > 1024) {
 | |
|         prime_quality = MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR;
 | |
|     }
 | |
| 
 | |
|     mbedtls_mpi_init(&H);
 | |
|     mbedtls_mpi_init(&G);
 | |
|     mbedtls_mpi_init(&L);
 | |
| 
 | |
|     if (nbits < 128 || exponent < 3 || nbits % 2 != 0) {
 | |
|         ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * find primes P and Q with Q < P so that:
 | |
|      * 1.  |P-Q| > 2^( nbits / 2 - 100 )
 | |
|      * 2.  GCD( E, (P-1)*(Q-1) ) == 1
 | |
|      * 3.  E^-1 mod LCM(P-1, Q-1) > 2^( nbits / 2 )
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&ctx->E, exponent));
 | |
| 
 | |
|     do {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_gen_prime(&ctx->P, nbits >> 1,
 | |
|                                               prime_quality, f_rng, p_rng));
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_gen_prime(&ctx->Q, nbits >> 1,
 | |
|                                               prime_quality, f_rng, p_rng));
 | |
| 
 | |
|         /* make sure the difference between p and q is not too small (FIPS 186-4 §B.3.3 step 5.4) */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&H, &ctx->P, &ctx->Q));
 | |
|         if (mbedtls_mpi_bitlen(&H) <= ((nbits >= 200) ? ((nbits >> 1) - 99) : 0)) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         /* not required by any standards, but some users rely on the fact that P > Q */
 | |
|         if (H.s < 0) {
 | |
|             mbedtls_mpi_swap(&ctx->P, &ctx->Q);
 | |
|         }
 | |
| 
 | |
|         /* Temporarily replace P,Q by P-1, Q-1 */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&ctx->P, &ctx->P, 1));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&ctx->Q, &ctx->Q, 1));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&H, &ctx->P, &ctx->Q));
 | |
| 
 | |
|         /* check GCD( E, (P-1)*(Q-1) ) == 1 (FIPS 186-4 §B.3.1 criterion 2(a)) */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, &ctx->E, &H));
 | |
|         if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         /* compute smallest possible D = E^-1 mod LCM(P-1, Q-1) (FIPS 186-4 §B.3.1 criterion 3(b)) */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, &ctx->P, &ctx->Q));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&L, NULL, &H, &G));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&ctx->D, &ctx->E, &L));
 | |
| 
 | |
|         if (mbedtls_mpi_bitlen(&ctx->D) <= ((nbits + 1) / 2)) {      // (FIPS 186-4 §B.3.1 criterion 3(a))
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
|     } while (1);
 | |
| 
 | |
|     /* Restore P,Q */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&ctx->P,  &ctx->P, 1));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&ctx->Q,  &ctx->Q, 1));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->N, &ctx->P, &ctx->Q));
 | |
| 
 | |
|     ctx->len = mbedtls_mpi_size(&ctx->N);
 | |
| 
 | |
| #if !defined(MBEDTLS_RSA_NO_CRT)
 | |
|     /*
 | |
|      * DP = D mod (P - 1)
 | |
|      * DQ = D mod (Q - 1)
 | |
|      * QP = Q^-1 mod P
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_rsa_deduce_crt(&ctx->P, &ctx->Q, &ctx->D,
 | |
|                                            &ctx->DP, &ctx->DQ, &ctx->QP));
 | |
| #endif /* MBEDTLS_RSA_NO_CRT */
 | |
| 
 | |
|     /* Double-check */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_rsa_check_privkey(ctx));
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free(&H);
 | |
|     mbedtls_mpi_free(&G);
 | |
|     mbedtls_mpi_free(&L);
 | |
| 
 | |
|     if (ret != 0) {
 | |
|         mbedtls_rsa_free(ctx);
 | |
| 
 | |
|         if ((-ret & ~0x7f) == 0) {
 | |
|             ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_KEY_GEN_FAILED, ret);
 | |
|         }
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #endif /* MBEDTLS_GENPRIME */
 | |
| 
 | |
| /*
 | |
|  * Check a public RSA key
 | |
|  */
 | |
| int mbedtls_rsa_check_pubkey(const mbedtls_rsa_context *ctx)
 | |
| {
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
| 
 | |
|     if (rsa_check_context(ctx, 0 /* public */, 0 /* no blinding */) != 0) {
 | |
|         return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|     }
 | |
| 
 | |
|     if (mbedtls_mpi_bitlen(&ctx->N) < 128) {
 | |
|         return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|     }
 | |
| 
 | |
|     if (mbedtls_mpi_get_bit(&ctx->E, 0) == 0 ||
 | |
|         mbedtls_mpi_bitlen(&ctx->E)     < 2  ||
 | |
|         mbedtls_mpi_cmp_mpi(&ctx->E, &ctx->N) >= 0) {
 | |
|         return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for the consistency of all fields in an RSA private key context
 | |
|  */
 | |
| int mbedtls_rsa_check_privkey(const mbedtls_rsa_context *ctx)
 | |
| {
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
| 
 | |
|     if (mbedtls_rsa_check_pubkey(ctx) != 0 ||
 | |
|         rsa_check_context(ctx, 1 /* private */, 1 /* blinding */) != 0) {
 | |
|         return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|     }
 | |
| 
 | |
|     if (mbedtls_rsa_validate_params(&ctx->N, &ctx->P, &ctx->Q,
 | |
|                                     &ctx->D, &ctx->E, NULL, NULL) != 0) {
 | |
|         return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|     }
 | |
| 
 | |
| #if !defined(MBEDTLS_RSA_NO_CRT)
 | |
|     else if (mbedtls_rsa_validate_crt(&ctx->P, &ctx->Q, &ctx->D,
 | |
|                                       &ctx->DP, &ctx->DQ, &ctx->QP) != 0) {
 | |
|         return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if contexts holding a public and private key match
 | |
|  */
 | |
| int mbedtls_rsa_check_pub_priv(const mbedtls_rsa_context *pub,
 | |
|                                const mbedtls_rsa_context *prv)
 | |
| {
 | |
|     RSA_VALIDATE_RET(pub != NULL);
 | |
|     RSA_VALIDATE_RET(prv != NULL);
 | |
| 
 | |
|     if (mbedtls_rsa_check_pubkey(pub)  != 0 ||
 | |
|         mbedtls_rsa_check_privkey(prv) != 0) {
 | |
|         return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|     }
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_mpi(&pub->N, &prv->N) != 0 ||
 | |
|         mbedtls_mpi_cmp_mpi(&pub->E, &prv->E) != 0) {
 | |
|         return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do an RSA public key operation
 | |
|  */
 | |
| int mbedtls_rsa_public(mbedtls_rsa_context *ctx,
 | |
|                        const unsigned char *input,
 | |
|                        unsigned char *output)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t olen;
 | |
|     mbedtls_mpi T;
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
|     RSA_VALIDATE_RET(input != NULL);
 | |
|     RSA_VALIDATE_RET(output != NULL);
 | |
| 
 | |
|     if (rsa_check_context(ctx, 0 /* public */, 0 /* no blinding */)) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     mbedtls_mpi_init(&T);
 | |
| 
 | |
| #if defined(MBEDTLS_THREADING_C)
 | |
|     if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
 | |
|         return ret;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&T, input, ctx->len));
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_mpi(&T, &ctx->N) >= 0) {
 | |
|         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     olen = ctx->len;
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&T, &T, &ctx->E, &ctx->N, &ctx->RN));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&T, output, olen));
 | |
| 
 | |
| cleanup:
 | |
| #if defined(MBEDTLS_THREADING_C)
 | |
|     if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
 | |
|         return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     mbedtls_mpi_free(&T);
 | |
| 
 | |
|     if (ret != 0) {
 | |
|         return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_PUBLIC_FAILED, ret);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generate or update blinding values, see section 10 of:
 | |
|  *  KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
 | |
|  *  DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer
 | |
|  *  Berlin Heidelberg, 1996. p. 104-113.
 | |
|  */
 | |
| static int rsa_prepare_blinding(mbedtls_rsa_context *ctx,
 | |
|                                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
 | |
| {
 | |
|     int ret, count = 0;
 | |
|     mbedtls_mpi R;
 | |
| 
 | |
|     mbedtls_mpi_init(&R);
 | |
| 
 | |
|     if (ctx->Vf.p != NULL) {
 | |
|         /* We already have blinding values, just update them by squaring */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vi, &ctx->Vi));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vf, &ctx->Vf, &ctx->Vf));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vf, &ctx->Vf, &ctx->N));
 | |
| 
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     /* Unblinding value: Vf = random number, invertible mod N */
 | |
|     do {
 | |
|         if (count++ > 10) {
 | |
|             ret = MBEDTLS_ERR_RSA_RNG_FAILED;
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&ctx->Vf, ctx->len - 1, f_rng, p_rng));
 | |
| 
 | |
|         /* Compute Vf^-1 as R * (R Vf)^-1 to avoid leaks from inv_mod. */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, ctx->len - 1, f_rng, p_rng));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vf, &R));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N));
 | |
| 
 | |
|         /* At this point, Vi is invertible mod N if and only if both Vf and R
 | |
|          * are invertible mod N. If one of them isn't, we don't need to know
 | |
|          * which one, we just loop and choose new values for both of them.
 | |
|          * (Each iteration succeeds with overwhelming probability.) */
 | |
|         ret = mbedtls_mpi_inv_mod(&ctx->Vi, &ctx->Vi, &ctx->N);
 | |
|         if (ret != 0 && ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|     } while (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE);
 | |
| 
 | |
|     /* Finish the computation of Vf^-1 = R * (R Vf)^-1 */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vi, &R));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N));
 | |
| 
 | |
|     /* Blinding value: Vi = Vf^(-e) mod N
 | |
|      * (Vi already contains Vf^-1 at this point) */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN));
 | |
| 
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free(&R);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Exponent blinding supposed to prevent side-channel attacks using multiple
 | |
|  * traces of measurements to recover the RSA key. The more collisions are there,
 | |
|  * the more bits of the key can be recovered. See [3].
 | |
|  *
 | |
|  * Collecting n collisions with m bit long blinding value requires 2^(m-m/n)
 | |
|  * observations on average.
 | |
|  *
 | |
|  * For example with 28 byte blinding to achieve 2 collisions the adversary has
 | |
|  * to make 2^112 observations on average.
 | |
|  *
 | |
|  * (With the currently (as of 2017 April) known best algorithms breaking 2048
 | |
|  * bit RSA requires approximately as much time as trying out 2^112 random keys.
 | |
|  * Thus in this sense with 28 byte blinding the security is not reduced by
 | |
|  * side-channel attacks like the one in [3])
 | |
|  *
 | |
|  * This countermeasure does not help if the key recovery is possible with a
 | |
|  * single trace.
 | |
|  */
 | |
| #define RSA_EXPONENT_BLINDING 28
 | |
| 
 | |
| /*
 | |
|  * Do an RSA private key operation
 | |
|  */
 | |
| int mbedtls_rsa_private(mbedtls_rsa_context *ctx,
 | |
|                         int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                         void *p_rng,
 | |
|                         const unsigned char *input,
 | |
|                         unsigned char *output)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t olen;
 | |
| 
 | |
|     /* Temporary holding the result */
 | |
|     mbedtls_mpi T;
 | |
| 
 | |
|     /* Temporaries holding P-1, Q-1 and the
 | |
|      * exponent blinding factor, respectively. */
 | |
|     mbedtls_mpi P1, Q1, R;
 | |
| 
 | |
| #if !defined(MBEDTLS_RSA_NO_CRT)
 | |
|     /* Temporaries holding the results mod p resp. mod q. */
 | |
|     mbedtls_mpi TP, TQ;
 | |
| 
 | |
|     /* Temporaries holding the blinded exponents for
 | |
|      * the mod p resp. mod q computation (if used). */
 | |
|     mbedtls_mpi DP_blind, DQ_blind;
 | |
| 
 | |
|     /* Pointers to actual exponents to be used - either the unblinded
 | |
|      * or the blinded ones, depending on the presence of a PRNG. */
 | |
|     mbedtls_mpi *DP = &ctx->DP;
 | |
|     mbedtls_mpi *DQ = &ctx->DQ;
 | |
| #else
 | |
|     /* Temporary holding the blinded exponent (if used). */
 | |
|     mbedtls_mpi D_blind;
 | |
| 
 | |
|     /* Pointer to actual exponent to be used - either the unblinded
 | |
|      * or the blinded one, depending on the presence of a PRNG. */
 | |
|     mbedtls_mpi *D = &ctx->D;
 | |
| #endif /* MBEDTLS_RSA_NO_CRT */
 | |
| 
 | |
|     /* Temporaries holding the initial input and the double
 | |
|      * checked result; should be the same in the end. */
 | |
|     mbedtls_mpi I, C;
 | |
| 
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
|     RSA_VALIDATE_RET(input  != NULL);
 | |
|     RSA_VALIDATE_RET(output != NULL);
 | |
| 
 | |
|     if (rsa_check_context(ctx, 1 /* private key checks */,
 | |
|                           f_rng != NULL /* blinding y/n       */) != 0) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
| #if defined(MBEDTLS_THREADING_C)
 | |
|     if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
 | |
|         return ret;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* MPI Initialization */
 | |
|     mbedtls_mpi_init(&T);
 | |
| 
 | |
|     mbedtls_mpi_init(&P1);
 | |
|     mbedtls_mpi_init(&Q1);
 | |
|     mbedtls_mpi_init(&R);
 | |
| 
 | |
|     if (f_rng != NULL) {
 | |
| #if defined(MBEDTLS_RSA_NO_CRT)
 | |
|         mbedtls_mpi_init(&D_blind);
 | |
| #else
 | |
|         mbedtls_mpi_init(&DP_blind);
 | |
|         mbedtls_mpi_init(&DQ_blind);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
| #if !defined(MBEDTLS_RSA_NO_CRT)
 | |
|     mbedtls_mpi_init(&TP); mbedtls_mpi_init(&TQ);
 | |
| #endif
 | |
| 
 | |
|     mbedtls_mpi_init(&I);
 | |
|     mbedtls_mpi_init(&C);
 | |
| 
 | |
|     /* End of MPI initialization */
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&T, input, ctx->len));
 | |
|     if (mbedtls_mpi_cmp_mpi(&T, &ctx->N) >= 0) {
 | |
|         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&I, &T));
 | |
| 
 | |
|     if (f_rng != NULL) {
 | |
|         /*
 | |
|          * Blinding
 | |
|          * T = T * Vi mod N
 | |
|          */
 | |
|         MBEDTLS_MPI_CHK(rsa_prepare_blinding(ctx, f_rng, p_rng));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &T, &ctx->Vi));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T, &T, &ctx->N));
 | |
| 
 | |
|         /*
 | |
|          * Exponent blinding
 | |
|          */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&P1, &ctx->P, 1));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&Q1, &ctx->Q, 1));
 | |
| 
 | |
| #if defined(MBEDTLS_RSA_NO_CRT)
 | |
|         /*
 | |
|          * D_blind = ( P - 1 ) * ( Q - 1 ) * R + D
 | |
|          */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING,
 | |
|                                                 f_rng, p_rng));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&D_blind, &P1, &Q1));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&D_blind, &D_blind, &R));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&D_blind, &D_blind, &ctx->D));
 | |
| 
 | |
|         D = &D_blind;
 | |
| #else
 | |
|         /*
 | |
|          * DP_blind = ( P - 1 ) * R + DP
 | |
|          */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING,
 | |
|                                                 f_rng, p_rng));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&DP_blind, &P1, &R));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&DP_blind, &DP_blind,
 | |
|                                             &ctx->DP));
 | |
| 
 | |
|         DP = &DP_blind;
 | |
| 
 | |
|         /*
 | |
|          * DQ_blind = ( Q - 1 ) * R + DQ
 | |
|          */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING,
 | |
|                                                 f_rng, p_rng));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&DQ_blind, &Q1, &R));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&DQ_blind, &DQ_blind,
 | |
|                                             &ctx->DQ));
 | |
| 
 | |
|         DQ = &DQ_blind;
 | |
| #endif /* MBEDTLS_RSA_NO_CRT */
 | |
|     }
 | |
| 
 | |
| #if defined(MBEDTLS_RSA_NO_CRT)
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&T, &T, D, &ctx->N, &ctx->RN));
 | |
| #else
 | |
|     /*
 | |
|      * Faster decryption using the CRT
 | |
|      *
 | |
|      * TP = input ^ dP mod P
 | |
|      * TQ = input ^ dQ mod Q
 | |
|      */
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&TP, &T, DP, &ctx->P, &ctx->RP));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&TQ, &T, DQ, &ctx->Q, &ctx->RQ));
 | |
| 
 | |
|     /*
 | |
|      * T = (TP - TQ) * (Q^-1 mod P) mod P
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&T, &TP, &TQ));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&TP, &T, &ctx->QP));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T, &TP, &ctx->P));
 | |
| 
 | |
|     /*
 | |
|      * T = TQ + T * Q
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&TP, &T, &ctx->Q));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&T, &TQ, &TP));
 | |
| #endif /* MBEDTLS_RSA_NO_CRT */
 | |
| 
 | |
|     if (f_rng != NULL) {
 | |
|         /*
 | |
|          * Unblind
 | |
|          * T = T * Vf mod N
 | |
|          */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &T, &ctx->Vf));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T, &T, &ctx->N));
 | |
|     }
 | |
| 
 | |
|     /* Verify the result to prevent glitching attacks. */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&C, &T, &ctx->E,
 | |
|                                         &ctx->N, &ctx->RN));
 | |
|     if (mbedtls_mpi_cmp_mpi(&C, &I) != 0) {
 | |
|         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     olen = ctx->len;
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&T, output, olen));
 | |
| 
 | |
| cleanup:
 | |
| #if defined(MBEDTLS_THREADING_C)
 | |
|     if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
 | |
|         return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     mbedtls_mpi_free(&P1);
 | |
|     mbedtls_mpi_free(&Q1);
 | |
|     mbedtls_mpi_free(&R);
 | |
| 
 | |
|     if (f_rng != NULL) {
 | |
| #if defined(MBEDTLS_RSA_NO_CRT)
 | |
|         mbedtls_mpi_free(&D_blind);
 | |
| #else
 | |
|         mbedtls_mpi_free(&DP_blind);
 | |
|         mbedtls_mpi_free(&DQ_blind);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     mbedtls_mpi_free(&T);
 | |
| 
 | |
| #if !defined(MBEDTLS_RSA_NO_CRT)
 | |
|     mbedtls_mpi_free(&TP); mbedtls_mpi_free(&TQ);
 | |
| #endif
 | |
| 
 | |
|     mbedtls_mpi_free(&C);
 | |
|     mbedtls_mpi_free(&I);
 | |
| 
 | |
|     if (ret != 0 && ret >= -0x007f) {
 | |
|         return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_PRIVATE_FAILED, ret);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V21)
 | |
| /**
 | |
|  * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
 | |
|  *
 | |
|  * \param dst       buffer to mask
 | |
|  * \param dlen      length of destination buffer
 | |
|  * \param src       source of the mask generation
 | |
|  * \param slen      length of the source buffer
 | |
|  * \param md_ctx    message digest context to use
 | |
|  */
 | |
| static int mgf_mask(unsigned char *dst, size_t dlen, unsigned char *src,
 | |
|                     size_t slen, mbedtls_md_context_t *md_ctx)
 | |
| {
 | |
|     unsigned char mask[MBEDTLS_MD_MAX_SIZE];
 | |
|     unsigned char counter[4];
 | |
|     unsigned char *p;
 | |
|     unsigned int hlen;
 | |
|     size_t i, use_len;
 | |
|     int ret = 0;
 | |
| 
 | |
|     memset(mask, 0, MBEDTLS_MD_MAX_SIZE);
 | |
|     memset(counter, 0, 4);
 | |
| 
 | |
|     hlen = mbedtls_md_get_size(md_ctx->md_info);
 | |
| 
 | |
|     /* Generate and apply dbMask */
 | |
|     p = dst;
 | |
| 
 | |
|     while (dlen > 0) {
 | |
|         use_len = hlen;
 | |
|         if (dlen < hlen) {
 | |
|             use_len = dlen;
 | |
|         }
 | |
| 
 | |
|         if ((ret = mbedtls_md_starts(md_ctx)) != 0) {
 | |
|             goto exit;
 | |
|         }
 | |
|         if ((ret = mbedtls_md_update(md_ctx, src, slen)) != 0) {
 | |
|             goto exit;
 | |
|         }
 | |
|         if ((ret = mbedtls_md_update(md_ctx, counter, 4)) != 0) {
 | |
|             goto exit;
 | |
|         }
 | |
|         if ((ret = mbedtls_md_finish(md_ctx, mask)) != 0) {
 | |
|             goto exit;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < use_len; ++i) {
 | |
|             *p++ ^= mask[i];
 | |
|         }
 | |
| 
 | |
|         counter[3]++;
 | |
| 
 | |
|         dlen -= use_len;
 | |
|     }
 | |
| 
 | |
| exit:
 | |
|     mbedtls_platform_zeroize(mask, sizeof(mask));
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| #endif /* MBEDTLS_PKCS1_V21 */
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V21)
 | |
| /*
 | |
|  * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
 | |
|  */
 | |
| int mbedtls_rsa_rsaes_oaep_encrypt(mbedtls_rsa_context *ctx,
 | |
|                                    int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                                    void *p_rng,
 | |
|                                    int mode,
 | |
|                                    const unsigned char *label, size_t label_len,
 | |
|                                    size_t ilen,
 | |
|                                    const unsigned char *input,
 | |
|                                    unsigned char *output)
 | |
| {
 | |
|     size_t olen;
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     unsigned char *p = output;
 | |
|     unsigned int hlen;
 | |
|     const mbedtls_md_info_t *md_info;
 | |
|     mbedtls_md_context_t md_ctx;
 | |
| 
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
|     RSA_VALIDATE_RET(mode == MBEDTLS_RSA_PRIVATE ||
 | |
|                      mode == MBEDTLS_RSA_PUBLIC);
 | |
|     RSA_VALIDATE_RET(output != NULL);
 | |
|     RSA_VALIDATE_RET(ilen == 0 || input != NULL);
 | |
|     RSA_VALIDATE_RET(label_len == 0 || label != NULL);
 | |
| 
 | |
|     if (mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if (f_rng == NULL) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     md_info = mbedtls_md_info_from_type((mbedtls_md_type_t) ctx->hash_id);
 | |
|     if (md_info == NULL) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     olen = ctx->len;
 | |
|     hlen = mbedtls_md_get_size(md_info);
 | |
| 
 | |
|     /* first comparison checks for overflow */
 | |
|     if (ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     memset(output, 0, olen);
 | |
| 
 | |
|     *p++ = 0;
 | |
| 
 | |
|     /* Generate a random octet string seed */
 | |
|     if ((ret = f_rng(p_rng, p, hlen)) != 0) {
 | |
|         return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret);
 | |
|     }
 | |
| 
 | |
|     p += hlen;
 | |
| 
 | |
|     /* Construct DB */
 | |
|     if ((ret = mbedtls_md(md_info, label, label_len, p)) != 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     p += hlen;
 | |
|     p += olen - 2 * hlen - 2 - ilen;
 | |
|     *p++ = 1;
 | |
|     if (ilen != 0) {
 | |
|         memcpy(p, input, ilen);
 | |
|     }
 | |
| 
 | |
|     mbedtls_md_init(&md_ctx);
 | |
|     if ((ret = mbedtls_md_setup(&md_ctx, md_info, 0)) != 0) {
 | |
|         goto exit;
 | |
|     }
 | |
| 
 | |
|     /* maskedDB: Apply dbMask to DB */
 | |
|     if ((ret = mgf_mask(output + hlen + 1, olen - hlen - 1, output + 1, hlen,
 | |
|                         &md_ctx)) != 0) {
 | |
|         goto exit;
 | |
|     }
 | |
| 
 | |
|     /* maskedSeed: Apply seedMask to seed */
 | |
|     if ((ret = mgf_mask(output + 1, hlen, output + hlen + 1, olen - hlen - 1,
 | |
|                         &md_ctx)) != 0) {
 | |
|         goto exit;
 | |
|     }
 | |
| 
 | |
| exit:
 | |
|     mbedtls_md_free(&md_ctx);
 | |
| 
 | |
|     if (ret != 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     return (mode == MBEDTLS_RSA_PUBLIC)
 | |
|             ? mbedtls_rsa_public(ctx, output, output)
 | |
|             : mbedtls_rsa_private(ctx, f_rng, p_rng, output, output);
 | |
| }
 | |
| #endif /* MBEDTLS_PKCS1_V21 */
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V15)
 | |
| /*
 | |
|  * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function
 | |
|  */
 | |
| int mbedtls_rsa_rsaes_pkcs1_v15_encrypt(mbedtls_rsa_context *ctx,
 | |
|                                         int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                                         void *p_rng,
 | |
|                                         int mode, size_t ilen,
 | |
|                                         const unsigned char *input,
 | |
|                                         unsigned char *output)
 | |
| {
 | |
|     size_t nb_pad, olen;
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     unsigned char *p = output;
 | |
| 
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
|     RSA_VALIDATE_RET(mode == MBEDTLS_RSA_PRIVATE ||
 | |
|                      mode == MBEDTLS_RSA_PUBLIC);
 | |
|     RSA_VALIDATE_RET(output != NULL);
 | |
|     RSA_VALIDATE_RET(ilen == 0 || input != NULL);
 | |
| 
 | |
|     if (mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     olen = ctx->len;
 | |
| 
 | |
|     /* first comparison checks for overflow */
 | |
|     if (ilen + 11 < ilen || olen < ilen + 11) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     nb_pad = olen - 3 - ilen;
 | |
| 
 | |
|     *p++ = 0;
 | |
|     if (mode == MBEDTLS_RSA_PUBLIC) {
 | |
|         if (f_rng == NULL) {
 | |
|             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|         }
 | |
| 
 | |
|         *p++ = MBEDTLS_RSA_CRYPT;
 | |
| 
 | |
|         while (nb_pad-- > 0) {
 | |
|             int rng_dl = 100;
 | |
| 
 | |
|             do {
 | |
|                 ret = f_rng(p_rng, p, 1);
 | |
|             } while (*p == 0 && --rng_dl && ret == 0);
 | |
| 
 | |
|             /* Check if RNG failed to generate data */
 | |
|             if (rng_dl == 0 || ret != 0) {
 | |
|                 return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret);
 | |
|             }
 | |
| 
 | |
|             p++;
 | |
|         }
 | |
|     } else {
 | |
|         *p++ = MBEDTLS_RSA_SIGN;
 | |
| 
 | |
|         while (nb_pad-- > 0) {
 | |
|             *p++ = 0xFF;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     *p++ = 0;
 | |
|     if (ilen != 0) {
 | |
|         memcpy(p, input, ilen);
 | |
|     }
 | |
| 
 | |
|     return (mode == MBEDTLS_RSA_PUBLIC)
 | |
|             ? mbedtls_rsa_public(ctx, output, output)
 | |
|             : mbedtls_rsa_private(ctx, f_rng, p_rng, output, output);
 | |
| }
 | |
| #endif /* MBEDTLS_PKCS1_V15 */
 | |
| 
 | |
| /*
 | |
|  * Add the message padding, then do an RSA operation
 | |
|  */
 | |
| int mbedtls_rsa_pkcs1_encrypt(mbedtls_rsa_context *ctx,
 | |
|                               int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                               void *p_rng,
 | |
|                               int mode, size_t ilen,
 | |
|                               const unsigned char *input,
 | |
|                               unsigned char *output)
 | |
| {
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
|     RSA_VALIDATE_RET(mode == MBEDTLS_RSA_PRIVATE ||
 | |
|                      mode == MBEDTLS_RSA_PUBLIC);
 | |
|     RSA_VALIDATE_RET(output != NULL);
 | |
|     RSA_VALIDATE_RET(ilen == 0 || input != NULL);
 | |
| 
 | |
|     switch (ctx->padding) {
 | |
| #if defined(MBEDTLS_PKCS1_V15)
 | |
|         case MBEDTLS_RSA_PKCS_V15:
 | |
|             return mbedtls_rsa_rsaes_pkcs1_v15_encrypt(ctx, f_rng, p_rng, mode, ilen,
 | |
|                                                        input, output);
 | |
| #endif
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V21)
 | |
|         case MBEDTLS_RSA_PKCS_V21:
 | |
|             return mbedtls_rsa_rsaes_oaep_encrypt(ctx, f_rng, p_rng, mode, NULL, 0,
 | |
|                                                   ilen, input, output);
 | |
| #endif
 | |
| 
 | |
|         default:
 | |
|             return MBEDTLS_ERR_RSA_INVALID_PADDING;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V21)
 | |
| /*
 | |
|  * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
 | |
|  */
 | |
| int mbedtls_rsa_rsaes_oaep_decrypt(mbedtls_rsa_context *ctx,
 | |
|                                    int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                                    void *p_rng,
 | |
|                                    int mode,
 | |
|                                    const unsigned char *label, size_t label_len,
 | |
|                                    size_t *olen,
 | |
|                                    const unsigned char *input,
 | |
|                                    unsigned char *output,
 | |
|                                    size_t output_max_len)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t ilen, i, pad_len;
 | |
|     unsigned char *p, pad_done;
 | |
|     int bad;
 | |
|     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
 | |
|     unsigned char lhash[MBEDTLS_MD_MAX_SIZE];
 | |
|     unsigned int hlen;
 | |
|     const mbedtls_md_info_t *md_info;
 | |
|     mbedtls_md_context_t md_ctx;
 | |
| 
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
|     RSA_VALIDATE_RET(mode == MBEDTLS_RSA_PRIVATE ||
 | |
|                      mode == MBEDTLS_RSA_PUBLIC);
 | |
|     RSA_VALIDATE_RET(output_max_len == 0 || output != NULL);
 | |
|     RSA_VALIDATE_RET(label_len == 0 || label != NULL);
 | |
|     RSA_VALIDATE_RET(input != NULL);
 | |
|     RSA_VALIDATE_RET(olen != NULL);
 | |
| 
 | |
|     /*
 | |
|      * Parameters sanity checks
 | |
|      */
 | |
|     if (mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     ilen = ctx->len;
 | |
| 
 | |
|     if (ilen < 16 || ilen > sizeof(buf)) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     md_info = mbedtls_md_info_from_type((mbedtls_md_type_t) ctx->hash_id);
 | |
|     if (md_info == NULL) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     hlen = mbedtls_md_get_size(md_info);
 | |
| 
 | |
|     // checking for integer underflow
 | |
|     if (2 * hlen + 2 > ilen) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * RSA operation
 | |
|      */
 | |
|     ret = (mode == MBEDTLS_RSA_PUBLIC)
 | |
|           ? mbedtls_rsa_public(ctx, input, buf)
 | |
|           : mbedtls_rsa_private(ctx, f_rng, p_rng, input, buf);
 | |
| 
 | |
|     if (ret != 0) {
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Unmask data and generate lHash
 | |
|      */
 | |
|     mbedtls_md_init(&md_ctx);
 | |
|     if ((ret = mbedtls_md_setup(&md_ctx, md_info, 0)) != 0) {
 | |
|         mbedtls_md_free(&md_ctx);
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     /* seed: Apply seedMask to maskedSeed */
 | |
|     if ((ret = mgf_mask(buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
 | |
|                         &md_ctx)) != 0 ||
 | |
|         /* DB: Apply dbMask to maskedDB */
 | |
|         (ret = mgf_mask(buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
 | |
|                         &md_ctx)) != 0) {
 | |
|         mbedtls_md_free(&md_ctx);
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     mbedtls_md_free(&md_ctx);
 | |
| 
 | |
|     /* Generate lHash */
 | |
|     if ((ret = mbedtls_md(md_info, label, label_len, lhash)) != 0) {
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Check contents, in "constant-time"
 | |
|      */
 | |
|     p = buf;
 | |
|     bad = 0;
 | |
| 
 | |
|     bad |= *p++; /* First byte must be 0 */
 | |
| 
 | |
|     p += hlen; /* Skip seed */
 | |
| 
 | |
|     /* Check lHash */
 | |
|     bad |= mbedtls_ct_memcmp(lhash, p, hlen);
 | |
|     p += hlen;
 | |
| 
 | |
|     /* Get zero-padding len, but always read till end of buffer
 | |
|      * (minus one, for the 01 byte) */
 | |
|     pad_len = 0;
 | |
|     pad_done = 0;
 | |
|     for (i = 0; i < ilen - 2 * hlen - 2; i++) {
 | |
|         pad_done |= p[i];
 | |
|         pad_len += ((pad_done | (unsigned char) -pad_done) >> 7) ^ 1;
 | |
|     }
 | |
| 
 | |
|     p += pad_len;
 | |
|     bad |= *p++ ^ 0x01;
 | |
| 
 | |
|     /*
 | |
|      * The only information "leaked" is whether the padding was correct or not
 | |
|      * (eg, no data is copied if it was not correct). This meets the
 | |
|      * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between
 | |
|      * the different error conditions.
 | |
|      */
 | |
|     if (bad != 0) {
 | |
|         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if (ilen - (p - buf) > output_max_len) {
 | |
|         ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     *olen = ilen - (p - buf);
 | |
|     if (*olen != 0) {
 | |
|         memcpy(output, p, *olen);
 | |
|     }
 | |
|     ret = 0;
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_platform_zeroize(buf, sizeof(buf));
 | |
|     mbedtls_platform_zeroize(lhash, sizeof(lhash));
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| #endif /* MBEDTLS_PKCS1_V21 */
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V15)
 | |
| /*
 | |
|  * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
 | |
|  */
 | |
| int mbedtls_rsa_rsaes_pkcs1_v15_decrypt(mbedtls_rsa_context *ctx,
 | |
|                                         int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                                         void *p_rng,
 | |
|                                         int mode,
 | |
|                                         size_t *olen,
 | |
|                                         const unsigned char *input,
 | |
|                                         unsigned char *output,
 | |
|                                         size_t output_max_len)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t ilen;
 | |
|     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
 | |
| 
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
|     RSA_VALIDATE_RET(mode == MBEDTLS_RSA_PRIVATE ||
 | |
|                      mode == MBEDTLS_RSA_PUBLIC);
 | |
|     RSA_VALIDATE_RET(output_max_len == 0 || output != NULL);
 | |
|     RSA_VALIDATE_RET(input != NULL);
 | |
|     RSA_VALIDATE_RET(olen != NULL);
 | |
| 
 | |
|     ilen = ctx->len;
 | |
| 
 | |
|     if (mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if (ilen < 16 || ilen > sizeof(buf)) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     ret = (mode == MBEDTLS_RSA_PUBLIC)
 | |
|           ? mbedtls_rsa_public(ctx, input, buf)
 | |
|           : mbedtls_rsa_private(ctx, f_rng, p_rng, input, buf);
 | |
| 
 | |
|     if (ret != 0) {
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     ret = mbedtls_ct_rsaes_pkcs1_v15_unpadding(mode, buf, ilen,
 | |
|                                                output, output_max_len, olen);
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_platform_zeroize(buf, sizeof(buf));
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| #endif /* MBEDTLS_PKCS1_V15 */
 | |
| 
 | |
| /*
 | |
|  * Do an RSA operation, then remove the message padding
 | |
|  */
 | |
| int mbedtls_rsa_pkcs1_decrypt(mbedtls_rsa_context *ctx,
 | |
|                               int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                               void *p_rng,
 | |
|                               int mode, size_t *olen,
 | |
|                               const unsigned char *input,
 | |
|                               unsigned char *output,
 | |
|                               size_t output_max_len)
 | |
| {
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
|     RSA_VALIDATE_RET(mode == MBEDTLS_RSA_PRIVATE ||
 | |
|                      mode == MBEDTLS_RSA_PUBLIC);
 | |
|     RSA_VALIDATE_RET(output_max_len == 0 || output != NULL);
 | |
|     RSA_VALIDATE_RET(input != NULL);
 | |
|     RSA_VALIDATE_RET(olen != NULL);
 | |
| 
 | |
|     switch (ctx->padding) {
 | |
| #if defined(MBEDTLS_PKCS1_V15)
 | |
|         case MBEDTLS_RSA_PKCS_V15:
 | |
|             return mbedtls_rsa_rsaes_pkcs1_v15_decrypt(ctx, f_rng, p_rng, mode, olen,
 | |
|                                                        input, output, output_max_len);
 | |
| #endif
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V21)
 | |
|         case MBEDTLS_RSA_PKCS_V21:
 | |
|             return mbedtls_rsa_rsaes_oaep_decrypt(ctx, f_rng, p_rng, mode, NULL, 0,
 | |
|                                                   olen, input, output,
 | |
|                                                   output_max_len);
 | |
| #endif
 | |
| 
 | |
|         default:
 | |
|             return MBEDTLS_ERR_RSA_INVALID_PADDING;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V21)
 | |
| static int rsa_rsassa_pss_sign(mbedtls_rsa_context *ctx,
 | |
|                                int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                                void *p_rng,
 | |
|                                int mode,
 | |
|                                mbedtls_md_type_t md_alg,
 | |
|                                unsigned int hashlen,
 | |
|                                const unsigned char *hash,
 | |
|                                int saltlen,
 | |
|                                unsigned char *sig)
 | |
| {
 | |
|     size_t olen;
 | |
|     unsigned char *p = sig;
 | |
|     unsigned char *salt = NULL;
 | |
|     size_t slen, min_slen, hlen, offset = 0;
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t msb;
 | |
|     const mbedtls_md_info_t *md_info;
 | |
|     mbedtls_md_context_t md_ctx;
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
|     RSA_VALIDATE_RET(mode == MBEDTLS_RSA_PRIVATE ||
 | |
|                      mode == MBEDTLS_RSA_PUBLIC);
 | |
|     RSA_VALIDATE_RET((md_alg  == MBEDTLS_MD_NONE &&
 | |
|                       hashlen == 0) ||
 | |
|                      hash != NULL);
 | |
|     RSA_VALIDATE_RET(sig != NULL);
 | |
| 
 | |
|     if (mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if (f_rng == NULL) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     olen = ctx->len;
 | |
| 
 | |
|     if (md_alg != MBEDTLS_MD_NONE) {
 | |
|         /* Gather length of hash to sign */
 | |
|         md_info = mbedtls_md_info_from_type(md_alg);
 | |
|         if (md_info == NULL) {
 | |
|             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|         }
 | |
| 
 | |
|         hashlen = mbedtls_md_get_size(md_info);
 | |
|     }
 | |
| 
 | |
|     md_info = mbedtls_md_info_from_type((mbedtls_md_type_t) ctx->hash_id);
 | |
|     if (md_info == NULL) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     hlen = mbedtls_md_get_size(md_info);
 | |
| 
 | |
|     if (saltlen == MBEDTLS_RSA_SALT_LEN_ANY) {
 | |
|         /* Calculate the largest possible salt length, up to the hash size.
 | |
|          * Normally this is the hash length, which is the maximum salt length
 | |
|          * according to FIPS 185-4 §5.5 (e) and common practice. If there is not
 | |
|          * enough room, use the maximum salt length that fits. The constraint is
 | |
|          * that the hash length plus the salt length plus 2 bytes must be at most
 | |
|          * the key length. This complies with FIPS 186-4 §5.5 (e) and RFC 8017
 | |
|          * (PKCS#1 v2.2) §9.1.1 step 3. */
 | |
|         min_slen = hlen - 2;
 | |
|         if (olen < hlen + min_slen + 2) {
 | |
|             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|         } else if (olen >= hlen + hlen + 2) {
 | |
|             slen = hlen;
 | |
|         } else {
 | |
|             slen = olen - hlen - 2;
 | |
|         }
 | |
|     } else if ((saltlen < 0) || (saltlen + hlen + 2 > olen)) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     } else {
 | |
|         slen = (size_t) saltlen;
 | |
|     }
 | |
| 
 | |
|     memset(sig, 0, olen);
 | |
| 
 | |
|     /* Note: EMSA-PSS encoding is over the length of N - 1 bits */
 | |
|     msb = mbedtls_mpi_bitlen(&ctx->N) - 1;
 | |
|     p += olen - hlen - slen - 2;
 | |
|     *p++ = 0x01;
 | |
| 
 | |
|     /* Generate salt of length slen in place in the encoded message */
 | |
|     salt = p;
 | |
|     if ((ret = f_rng(p_rng, salt, slen)) != 0) {
 | |
|         return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret);
 | |
|     }
 | |
| 
 | |
|     p += slen;
 | |
| 
 | |
|     mbedtls_md_init(&md_ctx);
 | |
|     if ((ret = mbedtls_md_setup(&md_ctx, md_info, 0)) != 0) {
 | |
|         goto exit;
 | |
|     }
 | |
| 
 | |
|     /* Generate H = Hash( M' ) */
 | |
|     if ((ret = mbedtls_md_starts(&md_ctx)) != 0) {
 | |
|         goto exit;
 | |
|     }
 | |
|     if ((ret = mbedtls_md_update(&md_ctx, p, 8)) != 0) {
 | |
|         goto exit;
 | |
|     }
 | |
|     if ((ret = mbedtls_md_update(&md_ctx, hash, hashlen)) != 0) {
 | |
|         goto exit;
 | |
|     }
 | |
|     if ((ret = mbedtls_md_update(&md_ctx, salt, slen)) != 0) {
 | |
|         goto exit;
 | |
|     }
 | |
|     if ((ret = mbedtls_md_finish(&md_ctx, p)) != 0) {
 | |
|         goto exit;
 | |
|     }
 | |
| 
 | |
|     /* Compensate for boundary condition when applying mask */
 | |
|     if (msb % 8 == 0) {
 | |
|         offset = 1;
 | |
|     }
 | |
| 
 | |
|     /* maskedDB: Apply dbMask to DB */
 | |
|     if ((ret = mgf_mask(sig + offset, olen - hlen - 1 - offset, p, hlen,
 | |
|                         &md_ctx)) != 0) {
 | |
|         goto exit;
 | |
|     }
 | |
| 
 | |
|     msb = mbedtls_mpi_bitlen(&ctx->N) - 1;
 | |
|     sig[0] &= 0xFF >> (olen * 8 - msb);
 | |
| 
 | |
|     p += hlen;
 | |
|     *p++ = 0xBC;
 | |
| 
 | |
| exit:
 | |
|     mbedtls_md_free(&md_ctx);
 | |
| 
 | |
|     if (ret != 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     return (mode == MBEDTLS_RSA_PUBLIC)
 | |
|             ? mbedtls_rsa_public(ctx, sig, sig)
 | |
|             : mbedtls_rsa_private(ctx, f_rng, p_rng, sig, sig);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function with
 | |
|  * the option to pass in the salt length.
 | |
|  */
 | |
| int mbedtls_rsa_rsassa_pss_sign_ext(mbedtls_rsa_context *ctx,
 | |
|                                     int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                                     void *p_rng,
 | |
|                                     mbedtls_md_type_t md_alg,
 | |
|                                     unsigned int hashlen,
 | |
|                                     const unsigned char *hash,
 | |
|                                     int saltlen,
 | |
|                                     unsigned char *sig)
 | |
| {
 | |
|     return rsa_rsassa_pss_sign(ctx, f_rng, p_rng, MBEDTLS_RSA_PRIVATE, md_alg,
 | |
|                                hashlen, hash, saltlen, sig);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
 | |
|  */
 | |
| int mbedtls_rsa_rsassa_pss_sign(mbedtls_rsa_context *ctx,
 | |
|                                 int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                                 void *p_rng,
 | |
|                                 int mode,
 | |
|                                 mbedtls_md_type_t md_alg,
 | |
|                                 unsigned int hashlen,
 | |
|                                 const unsigned char *hash,
 | |
|                                 unsigned char *sig)
 | |
| {
 | |
|     return rsa_rsassa_pss_sign(ctx, f_rng, p_rng, mode, md_alg,
 | |
|                                hashlen, hash, MBEDTLS_RSA_SALT_LEN_ANY, sig);
 | |
| }
 | |
| #endif /* MBEDTLS_PKCS1_V21 */
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V15)
 | |
| /*
 | |
|  * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function
 | |
|  */
 | |
| 
 | |
| /* Construct a PKCS v1.5 encoding of a hashed message
 | |
|  *
 | |
|  * This is used both for signature generation and verification.
 | |
|  *
 | |
|  * Parameters:
 | |
|  * - md_alg:  Identifies the hash algorithm used to generate the given hash;
 | |
|  *            MBEDTLS_MD_NONE if raw data is signed.
 | |
|  * - hashlen: Length of hash in case hashlen is MBEDTLS_MD_NONE.
 | |
|  * - hash:    Buffer containing the hashed message or the raw data.
 | |
|  * - dst_len: Length of the encoded message.
 | |
|  * - dst:     Buffer to hold the encoded message.
 | |
|  *
 | |
|  * Assumptions:
 | |
|  * - hash has size hashlen if md_alg == MBEDTLS_MD_NONE.
 | |
|  * - hash has size corresponding to md_alg if md_alg != MBEDTLS_MD_NONE.
 | |
|  * - dst points to a buffer of size at least dst_len.
 | |
|  *
 | |
|  */
 | |
| static int rsa_rsassa_pkcs1_v15_encode(mbedtls_md_type_t md_alg,
 | |
|                                        unsigned int hashlen,
 | |
|                                        const unsigned char *hash,
 | |
|                                        size_t dst_len,
 | |
|                                        unsigned char *dst)
 | |
| {
 | |
|     size_t oid_size  = 0;
 | |
|     size_t nb_pad    = dst_len;
 | |
|     unsigned char *p = dst;
 | |
|     const char *oid  = NULL;
 | |
| 
 | |
|     /* Are we signing hashed or raw data? */
 | |
|     if (md_alg != MBEDTLS_MD_NONE) {
 | |
|         const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type(md_alg);
 | |
|         if (md_info == NULL) {
 | |
|             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|         }
 | |
| 
 | |
|         if (mbedtls_oid_get_oid_by_md(md_alg, &oid, &oid_size) != 0) {
 | |
|             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|         }
 | |
| 
 | |
|         hashlen = mbedtls_md_get_size(md_info);
 | |
| 
 | |
|         /* Double-check that 8 + hashlen + oid_size can be used as a
 | |
|          * 1-byte ASN.1 length encoding and that there's no overflow. */
 | |
|         if (8 + hashlen + oid_size  >= 0x80         ||
 | |
|             10 + hashlen            <  hashlen      ||
 | |
|             10 + hashlen + oid_size <  10 + hashlen) {
 | |
|             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * Static bounds check:
 | |
|          * - Need 10 bytes for five tag-length pairs.
 | |
|          *   (Insist on 1-byte length encodings to protect against variants of
 | |
|          *    Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification)
 | |
|          * - Need hashlen bytes for hash
 | |
|          * - Need oid_size bytes for hash alg OID.
 | |
|          */
 | |
|         if (nb_pad < 10 + hashlen + oid_size) {
 | |
|             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|         }
 | |
|         nb_pad -= 10 + hashlen + oid_size;
 | |
|     } else {
 | |
|         if (nb_pad < hashlen) {
 | |
|             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|         }
 | |
| 
 | |
|         nb_pad -= hashlen;
 | |
|     }
 | |
| 
 | |
|     /* Need space for signature header and padding delimiter (3 bytes),
 | |
|      * and 8 bytes for the minimal padding */
 | |
|     if (nb_pad < 3 + 8) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
|     nb_pad -= 3;
 | |
| 
 | |
|     /* Now nb_pad is the amount of memory to be filled
 | |
|      * with padding, and at least 8 bytes long. */
 | |
| 
 | |
|     /* Write signature header and padding */
 | |
|     *p++ = 0;
 | |
|     *p++ = MBEDTLS_RSA_SIGN;
 | |
|     memset(p, 0xFF, nb_pad);
 | |
|     p += nb_pad;
 | |
|     *p++ = 0;
 | |
| 
 | |
|     /* Are we signing raw data? */
 | |
|     if (md_alg == MBEDTLS_MD_NONE) {
 | |
|         memcpy(p, hash, hashlen);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* Signing hashed data, add corresponding ASN.1 structure
 | |
|      *
 | |
|      * DigestInfo ::= SEQUENCE {
 | |
|      *   digestAlgorithm DigestAlgorithmIdentifier,
 | |
|      *   digest Digest }
 | |
|      * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
 | |
|      * Digest ::= OCTET STRING
 | |
|      *
 | |
|      * Schematic:
 | |
|      * TAG-SEQ + LEN [ TAG-SEQ + LEN [ TAG-OID  + LEN [ OID  ]
 | |
|      *                                 TAG-NULL + LEN [ NULL ] ]
 | |
|      *                 TAG-OCTET + LEN [ HASH ] ]
 | |
|      */
 | |
|     *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
 | |
|     *p++ = (unsigned char) (0x08 + oid_size + hashlen);
 | |
|     *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
 | |
|     *p++ = (unsigned char) (0x04 + oid_size);
 | |
|     *p++ = MBEDTLS_ASN1_OID;
 | |
|     *p++ = (unsigned char) oid_size;
 | |
|     memcpy(p, oid, oid_size);
 | |
|     p += oid_size;
 | |
|     *p++ = MBEDTLS_ASN1_NULL;
 | |
|     *p++ = 0x00;
 | |
|     *p++ = MBEDTLS_ASN1_OCTET_STRING;
 | |
|     *p++ = (unsigned char) hashlen;
 | |
|     memcpy(p, hash, hashlen);
 | |
|     p += hashlen;
 | |
| 
 | |
|     /* Just a sanity-check, should be automatic
 | |
|      * after the initial bounds check. */
 | |
|     if (p != dst + dst_len) {
 | |
|         mbedtls_platform_zeroize(dst, dst_len);
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do an RSA operation to sign the message digest
 | |
|  */
 | |
| int mbedtls_rsa_rsassa_pkcs1_v15_sign(mbedtls_rsa_context *ctx,
 | |
|                                       int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                                       void *p_rng,
 | |
|                                       int mode,
 | |
|                                       mbedtls_md_type_t md_alg,
 | |
|                                       unsigned int hashlen,
 | |
|                                       const unsigned char *hash,
 | |
|                                       unsigned char *sig)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     unsigned char *sig_try = NULL, *verif = NULL;
 | |
| 
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
|     RSA_VALIDATE_RET(mode == MBEDTLS_RSA_PRIVATE ||
 | |
|                      mode == MBEDTLS_RSA_PUBLIC);
 | |
|     RSA_VALIDATE_RET((md_alg  == MBEDTLS_MD_NONE &&
 | |
|                       hashlen == 0) ||
 | |
|                      hash != NULL);
 | |
|     RSA_VALIDATE_RET(sig != NULL);
 | |
| 
 | |
|     if (mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Prepare PKCS1-v1.5 encoding (padding and hash identifier)
 | |
|      */
 | |
| 
 | |
|     if ((ret = rsa_rsassa_pkcs1_v15_encode(md_alg, hashlen, hash,
 | |
|                                            ctx->len, sig)) != 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Call respective RSA primitive
 | |
|      */
 | |
| 
 | |
|     if (mode == MBEDTLS_RSA_PUBLIC) {
 | |
|         /* Skip verification on a public key operation */
 | |
|         return mbedtls_rsa_public(ctx, sig, sig);
 | |
|     }
 | |
| 
 | |
|     /* Private key operation
 | |
|      *
 | |
|      * In order to prevent Lenstra's attack, make the signature in a
 | |
|      * temporary buffer and check it before returning it.
 | |
|      */
 | |
| 
 | |
|     sig_try = mbedtls_calloc(1, ctx->len);
 | |
|     if (sig_try == NULL) {
 | |
|         return MBEDTLS_ERR_MPI_ALLOC_FAILED;
 | |
|     }
 | |
| 
 | |
|     verif = mbedtls_calloc(1, ctx->len);
 | |
|     if (verif == NULL) {
 | |
|         mbedtls_free(sig_try);
 | |
|         return MBEDTLS_ERR_MPI_ALLOC_FAILED;
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_rsa_private(ctx, f_rng, p_rng, sig, sig_try));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_rsa_public(ctx, sig_try, verif));
 | |
| 
 | |
|     if (mbedtls_ct_memcmp(verif, sig, ctx->len) != 0) {
 | |
|         ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     memcpy(sig, sig_try, ctx->len);
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_platform_zeroize(sig_try, ctx->len);
 | |
|     mbedtls_platform_zeroize(verif, ctx->len);
 | |
|     mbedtls_free(sig_try);
 | |
|     mbedtls_free(verif);
 | |
| 
 | |
|     if (ret != 0) {
 | |
|         memset(sig, '!', ctx->len);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| #endif /* MBEDTLS_PKCS1_V15 */
 | |
| 
 | |
| /*
 | |
|  * Do an RSA operation to sign the message digest
 | |
|  */
 | |
| int mbedtls_rsa_pkcs1_sign(mbedtls_rsa_context *ctx,
 | |
|                            int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                            void *p_rng,
 | |
|                            int mode,
 | |
|                            mbedtls_md_type_t md_alg,
 | |
|                            unsigned int hashlen,
 | |
|                            const unsigned char *hash,
 | |
|                            unsigned char *sig)
 | |
| {
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
|     RSA_VALIDATE_RET(mode == MBEDTLS_RSA_PRIVATE ||
 | |
|                      mode == MBEDTLS_RSA_PUBLIC);
 | |
|     RSA_VALIDATE_RET((md_alg  == MBEDTLS_MD_NONE &&
 | |
|                       hashlen == 0) ||
 | |
|                      hash != NULL);
 | |
|     RSA_VALIDATE_RET(sig != NULL);
 | |
| 
 | |
|     switch (ctx->padding) {
 | |
| #if defined(MBEDTLS_PKCS1_V15)
 | |
|         case MBEDTLS_RSA_PKCS_V15:
 | |
|             return mbedtls_rsa_rsassa_pkcs1_v15_sign(ctx, f_rng, p_rng, mode, md_alg,
 | |
|                                                      hashlen, hash, sig);
 | |
| #endif
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V21)
 | |
|         case MBEDTLS_RSA_PKCS_V21:
 | |
|             return mbedtls_rsa_rsassa_pss_sign(ctx, f_rng, p_rng, mode, md_alg,
 | |
|                                                hashlen, hash, sig);
 | |
| #endif
 | |
| 
 | |
|         default:
 | |
|             return MBEDTLS_ERR_RSA_INVALID_PADDING;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V21)
 | |
| /*
 | |
|  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
 | |
|  */
 | |
| int mbedtls_rsa_rsassa_pss_verify_ext(mbedtls_rsa_context *ctx,
 | |
|                                       int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                                       void *p_rng,
 | |
|                                       int mode,
 | |
|                                       mbedtls_md_type_t md_alg,
 | |
|                                       unsigned int hashlen,
 | |
|                                       const unsigned char *hash,
 | |
|                                       mbedtls_md_type_t mgf1_hash_id,
 | |
|                                       int expected_salt_len,
 | |
|                                       const unsigned char *sig)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t siglen;
 | |
|     unsigned char *p;
 | |
|     unsigned char *hash_start;
 | |
|     unsigned char result[MBEDTLS_MD_MAX_SIZE];
 | |
|     unsigned char zeros[8];
 | |
|     unsigned int hlen;
 | |
|     size_t observed_salt_len, msb;
 | |
|     const mbedtls_md_info_t *md_info;
 | |
|     mbedtls_md_context_t md_ctx;
 | |
|     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
 | |
| 
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
|     RSA_VALIDATE_RET(mode == MBEDTLS_RSA_PRIVATE ||
 | |
|                      mode == MBEDTLS_RSA_PUBLIC);
 | |
|     RSA_VALIDATE_RET(sig != NULL);
 | |
|     RSA_VALIDATE_RET((md_alg  == MBEDTLS_MD_NONE &&
 | |
|                       hashlen == 0) ||
 | |
|                      hash != NULL);
 | |
| 
 | |
|     if (mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     siglen = ctx->len;
 | |
| 
 | |
|     if (siglen < 16 || siglen > sizeof(buf)) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     ret = (mode == MBEDTLS_RSA_PUBLIC)
 | |
|           ? mbedtls_rsa_public(ctx, sig, buf)
 | |
|           : mbedtls_rsa_private(ctx, f_rng, p_rng, sig, buf);
 | |
| 
 | |
|     if (ret != 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     p = buf;
 | |
| 
 | |
|     if (buf[siglen - 1] != 0xBC) {
 | |
|         return MBEDTLS_ERR_RSA_INVALID_PADDING;
 | |
|     }
 | |
| 
 | |
|     if (md_alg != MBEDTLS_MD_NONE) {
 | |
|         /* Gather length of hash to sign */
 | |
|         md_info = mbedtls_md_info_from_type(md_alg);
 | |
|         if (md_info == NULL) {
 | |
|             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|         }
 | |
| 
 | |
|         hashlen = mbedtls_md_get_size(md_info);
 | |
|     }
 | |
| 
 | |
|     md_info = mbedtls_md_info_from_type(mgf1_hash_id);
 | |
|     if (md_info == NULL) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     hlen = mbedtls_md_get_size(md_info);
 | |
| 
 | |
|     memset(zeros, 0, 8);
 | |
| 
 | |
|     /*
 | |
|      * Note: EMSA-PSS verification is over the length of N - 1 bits
 | |
|      */
 | |
|     msb = mbedtls_mpi_bitlen(&ctx->N) - 1;
 | |
| 
 | |
|     if (buf[0] >> (8 - siglen * 8 + msb)) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     /* Compensate for boundary condition when applying mask */
 | |
|     if (msb % 8 == 0) {
 | |
|         p++;
 | |
|         siglen -= 1;
 | |
|     }
 | |
| 
 | |
|     if (siglen < hlen + 2) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
|     hash_start = p + siglen - hlen - 1;
 | |
| 
 | |
|     mbedtls_md_init(&md_ctx);
 | |
|     if ((ret = mbedtls_md_setup(&md_ctx, md_info, 0)) != 0) {
 | |
|         goto exit;
 | |
|     }
 | |
| 
 | |
|     ret = mgf_mask(p, siglen - hlen - 1, hash_start, hlen, &md_ctx);
 | |
|     if (ret != 0) {
 | |
|         goto exit;
 | |
|     }
 | |
| 
 | |
|     buf[0] &= 0xFF >> (siglen * 8 - msb);
 | |
| 
 | |
|     while (p < hash_start - 1 && *p == 0) {
 | |
|         p++;
 | |
|     }
 | |
| 
 | |
|     if (*p++ != 0x01) {
 | |
|         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
 | |
|         goto exit;
 | |
|     }
 | |
| 
 | |
|     observed_salt_len = hash_start - p;
 | |
| 
 | |
|     if (expected_salt_len != MBEDTLS_RSA_SALT_LEN_ANY &&
 | |
|         observed_salt_len != (size_t) expected_salt_len) {
 | |
|         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
 | |
|         goto exit;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Generate H = Hash( M' )
 | |
|      */
 | |
|     ret = mbedtls_md_starts(&md_ctx);
 | |
|     if (ret != 0) {
 | |
|         goto exit;
 | |
|     }
 | |
|     ret = mbedtls_md_update(&md_ctx, zeros, 8);
 | |
|     if (ret != 0) {
 | |
|         goto exit;
 | |
|     }
 | |
|     ret = mbedtls_md_update(&md_ctx, hash, hashlen);
 | |
|     if (ret != 0) {
 | |
|         goto exit;
 | |
|     }
 | |
|     ret = mbedtls_md_update(&md_ctx, p, observed_salt_len);
 | |
|     if (ret != 0) {
 | |
|         goto exit;
 | |
|     }
 | |
|     ret = mbedtls_md_finish(&md_ctx, result);
 | |
|     if (ret != 0) {
 | |
|         goto exit;
 | |
|     }
 | |
| 
 | |
|     if (memcmp(hash_start, result, hlen) != 0) {
 | |
|         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
 | |
|         goto exit;
 | |
|     }
 | |
| 
 | |
| exit:
 | |
|     mbedtls_md_free(&md_ctx);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function
 | |
|  */
 | |
| int mbedtls_rsa_rsassa_pss_verify(mbedtls_rsa_context *ctx,
 | |
|                                   int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                                   void *p_rng,
 | |
|                                   int mode,
 | |
|                                   mbedtls_md_type_t md_alg,
 | |
|                                   unsigned int hashlen,
 | |
|                                   const unsigned char *hash,
 | |
|                                   const unsigned char *sig)
 | |
| {
 | |
|     mbedtls_md_type_t mgf1_hash_id;
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
|     RSA_VALIDATE_RET(mode == MBEDTLS_RSA_PRIVATE ||
 | |
|                      mode == MBEDTLS_RSA_PUBLIC);
 | |
|     RSA_VALIDATE_RET(sig != NULL);
 | |
|     RSA_VALIDATE_RET((md_alg  == MBEDTLS_MD_NONE &&
 | |
|                       hashlen == 0) ||
 | |
|                      hash != NULL);
 | |
| 
 | |
|     mgf1_hash_id = (ctx->hash_id != MBEDTLS_MD_NONE)
 | |
|                              ? (mbedtls_md_type_t) ctx->hash_id
 | |
|                              : md_alg;
 | |
| 
 | |
|     return mbedtls_rsa_rsassa_pss_verify_ext(ctx, f_rng, p_rng, mode,
 | |
|                                              md_alg, hashlen, hash,
 | |
|                                              mgf1_hash_id, MBEDTLS_RSA_SALT_LEN_ANY,
 | |
|                                              sig);
 | |
| 
 | |
| }
 | |
| #endif /* MBEDTLS_PKCS1_V21 */
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V15)
 | |
| /*
 | |
|  * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function
 | |
|  */
 | |
| int mbedtls_rsa_rsassa_pkcs1_v15_verify(mbedtls_rsa_context *ctx,
 | |
|                                         int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                                         void *p_rng,
 | |
|                                         int mode,
 | |
|                                         mbedtls_md_type_t md_alg,
 | |
|                                         unsigned int hashlen,
 | |
|                                         const unsigned char *hash,
 | |
|                                         const unsigned char *sig)
 | |
| {
 | |
|     int ret = 0;
 | |
|     size_t sig_len;
 | |
|     unsigned char *encoded = NULL, *encoded_expected = NULL;
 | |
| 
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
|     RSA_VALIDATE_RET(mode == MBEDTLS_RSA_PRIVATE ||
 | |
|                      mode == MBEDTLS_RSA_PUBLIC);
 | |
|     RSA_VALIDATE_RET(sig != NULL);
 | |
|     RSA_VALIDATE_RET((md_alg  == MBEDTLS_MD_NONE &&
 | |
|                       hashlen == 0) ||
 | |
|                      hash != NULL);
 | |
| 
 | |
|     sig_len = ctx->len;
 | |
| 
 | |
|     if (mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15) {
 | |
|         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Prepare expected PKCS1 v1.5 encoding of hash.
 | |
|      */
 | |
| 
 | |
|     if ((encoded          = mbedtls_calloc(1, sig_len)) == NULL ||
 | |
|         (encoded_expected = mbedtls_calloc(1, sig_len)) == NULL) {
 | |
|         ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if ((ret = rsa_rsassa_pkcs1_v15_encode(md_alg, hashlen, hash, sig_len,
 | |
|                                            encoded_expected)) != 0) {
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Apply RSA primitive to get what should be PKCS1 encoded hash.
 | |
|      */
 | |
| 
 | |
|     ret = (mode == MBEDTLS_RSA_PUBLIC)
 | |
|           ? mbedtls_rsa_public(ctx, sig, encoded)
 | |
|           : mbedtls_rsa_private(ctx, f_rng, p_rng, sig, encoded);
 | |
|     if (ret != 0) {
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Compare
 | |
|      */
 | |
| 
 | |
|     if ((ret = mbedtls_ct_memcmp(encoded, encoded_expected,
 | |
|                                  sig_len)) != 0) {
 | |
|         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     if (encoded != NULL) {
 | |
|         mbedtls_platform_zeroize(encoded, sig_len);
 | |
|         mbedtls_free(encoded);
 | |
|     }
 | |
| 
 | |
|     if (encoded_expected != NULL) {
 | |
|         mbedtls_platform_zeroize(encoded_expected, sig_len);
 | |
|         mbedtls_free(encoded_expected);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| #endif /* MBEDTLS_PKCS1_V15 */
 | |
| 
 | |
| /*
 | |
|  * Do an RSA operation and check the message digest
 | |
|  */
 | |
| int mbedtls_rsa_pkcs1_verify(mbedtls_rsa_context *ctx,
 | |
|                              int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                              void *p_rng,
 | |
|                              int mode,
 | |
|                              mbedtls_md_type_t md_alg,
 | |
|                              unsigned int hashlen,
 | |
|                              const unsigned char *hash,
 | |
|                              const unsigned char *sig)
 | |
| {
 | |
|     RSA_VALIDATE_RET(ctx != NULL);
 | |
|     RSA_VALIDATE_RET(mode == MBEDTLS_RSA_PRIVATE ||
 | |
|                      mode == MBEDTLS_RSA_PUBLIC);
 | |
|     RSA_VALIDATE_RET(sig != NULL);
 | |
|     RSA_VALIDATE_RET((md_alg  == MBEDTLS_MD_NONE &&
 | |
|                       hashlen == 0) ||
 | |
|                      hash != NULL);
 | |
| 
 | |
|     switch (ctx->padding) {
 | |
| #if defined(MBEDTLS_PKCS1_V15)
 | |
|         case MBEDTLS_RSA_PKCS_V15:
 | |
|             return mbedtls_rsa_rsassa_pkcs1_v15_verify(ctx, f_rng, p_rng, mode, md_alg,
 | |
|                                                        hashlen, hash, sig);
 | |
| #endif
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V21)
 | |
|         case MBEDTLS_RSA_PKCS_V21:
 | |
|             return mbedtls_rsa_rsassa_pss_verify(ctx, f_rng, p_rng, mode, md_alg,
 | |
|                                                  hashlen, hash, sig);
 | |
| #endif
 | |
| 
 | |
|         default:
 | |
|             return MBEDTLS_ERR_RSA_INVALID_PADDING;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy the components of an RSA key
 | |
|  */
 | |
| int mbedtls_rsa_copy(mbedtls_rsa_context *dst, const mbedtls_rsa_context *src)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     RSA_VALIDATE_RET(dst != NULL);
 | |
|     RSA_VALIDATE_RET(src != NULL);
 | |
| 
 | |
|     dst->len = src->len;
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->N, &src->N));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->E, &src->E));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->D, &src->D));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->P, &src->P));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Q, &src->Q));
 | |
| 
 | |
| #if !defined(MBEDTLS_RSA_NO_CRT)
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->DP, &src->DP));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->DQ, &src->DQ));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->QP, &src->QP));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RP, &src->RP));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RQ, &src->RQ));
 | |
| #endif
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RN, &src->RN));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Vi, &src->Vi));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Vf, &src->Vf));
 | |
| 
 | |
|     dst->padding = src->padding;
 | |
|     dst->hash_id = src->hash_id;
 | |
| 
 | |
| cleanup:
 | |
|     if (ret != 0) {
 | |
|         mbedtls_rsa_free(dst);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free the components of an RSA key
 | |
|  */
 | |
| void mbedtls_rsa_free(mbedtls_rsa_context *ctx)
 | |
| {
 | |
|     if (ctx == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     mbedtls_mpi_free(&ctx->Vi);
 | |
|     mbedtls_mpi_free(&ctx->Vf);
 | |
|     mbedtls_mpi_free(&ctx->RN);
 | |
|     mbedtls_mpi_free(&ctx->D);
 | |
|     mbedtls_mpi_free(&ctx->Q);
 | |
|     mbedtls_mpi_free(&ctx->P);
 | |
|     mbedtls_mpi_free(&ctx->E);
 | |
|     mbedtls_mpi_free(&ctx->N);
 | |
| 
 | |
| #if !defined(MBEDTLS_RSA_NO_CRT)
 | |
|     mbedtls_mpi_free(&ctx->RQ);
 | |
|     mbedtls_mpi_free(&ctx->RP);
 | |
|     mbedtls_mpi_free(&ctx->QP);
 | |
|     mbedtls_mpi_free(&ctx->DQ);
 | |
|     mbedtls_mpi_free(&ctx->DP);
 | |
| #endif /* MBEDTLS_RSA_NO_CRT */
 | |
| 
 | |
| #if defined(MBEDTLS_THREADING_C)
 | |
|     /* Free the mutex, but only if it hasn't been freed already. */
 | |
|     if (ctx->ver != 0) {
 | |
|         mbedtls_mutex_free(&ctx->mutex);
 | |
|         ctx->ver = 0;
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #endif /* !MBEDTLS_RSA_ALT */
 | |
| 
 | |
| #if defined(MBEDTLS_SELF_TEST)
 | |
| 
 | |
| #include "mbedtls/sha1.h"
 | |
| 
 | |
| /*
 | |
|  * Example RSA-1024 keypair, for test purposes
 | |
|  */
 | |
| #define KEY_LEN 128
 | |
| 
 | |
| #define RSA_N   "9292758453063D803DD603D5E777D788" \
 | |
|                 "8ED1D5BF35786190FA2F23EBC0848AEA" \
 | |
|                 "DDA92CA6C3D80B32C4D109BE0F36D6AE" \
 | |
|                 "7130B9CED7ACDF54CFC7555AC14EEBAB" \
 | |
|                 "93A89813FBF3C4F8066D2D800F7C38A8" \
 | |
|                 "1AE31942917403FF4946B0A83D3D3E05" \
 | |
|                 "EE57C6F5F5606FB5D4BC6CD34EE0801A" \
 | |
|                 "5E94BB77B07507233A0BC7BAC8F90F79"
 | |
| 
 | |
| #define RSA_E   "10001"
 | |
| 
 | |
| #define RSA_D   "24BF6185468786FDD303083D25E64EFC" \
 | |
|                 "66CA472BC44D253102F8B4A9D3BFA750" \
 | |
|                 "91386C0077937FE33FA3252D28855837" \
 | |
|                 "AE1B484A8A9A45F7EE8C0C634F99E8CD" \
 | |
|                 "DF79C5CE07EE72C7F123142198164234" \
 | |
|                 "CABB724CF78B8173B9F880FC86322407" \
 | |
|                 "AF1FEDFDDE2BEB674CA15F3E81A1521E" \
 | |
|                 "071513A1E85B5DFA031F21ECAE91A34D"
 | |
| 
 | |
| #define RSA_P   "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
 | |
|                 "2C01CAD19EA484A87EA4377637E75500" \
 | |
|                 "FCB2005C5C7DD6EC4AC023CDA285D796" \
 | |
|                 "C3D9E75E1EFC42488BB4F1D13AC30A57"
 | |
| 
 | |
| #define RSA_Q   "C000DF51A7C77AE8D7C7370C1FF55B69" \
 | |
|                 "E211C2B9E5DB1ED0BF61D0D9899620F4" \
 | |
|                 "910E4168387E3C30AA1E00C339A79508" \
 | |
|                 "8452DD96A9A5EA5D9DCA68DA636032AF"
 | |
| 
 | |
| #define PT_LEN  24
 | |
| #define RSA_PT  "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \
 | |
|                 "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V15)
 | |
| static int myrand(void *rng_state, unsigned char *output, size_t len)
 | |
| {
 | |
| #if !defined(__OpenBSD__) && !defined(__NetBSD__)
 | |
|     size_t i;
 | |
| 
 | |
|     if (rng_state != NULL) {
 | |
|         rng_state  = NULL;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < len; ++i) {
 | |
|         output[i] = rand();
 | |
|     }
 | |
| #else
 | |
|     if (rng_state != NULL) {
 | |
|         rng_state = NULL;
 | |
|     }
 | |
| 
 | |
|     arc4random_buf(output, len);
 | |
| #endif /* !OpenBSD && !NetBSD */
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| #endif /* MBEDTLS_PKCS1_V15 */
 | |
| 
 | |
| /*
 | |
|  * Checkup routine
 | |
|  */
 | |
| int mbedtls_rsa_self_test(int verbose)
 | |
| {
 | |
|     int ret = 0;
 | |
| #if defined(MBEDTLS_PKCS1_V15)
 | |
|     size_t len;
 | |
|     mbedtls_rsa_context rsa;
 | |
|     unsigned char rsa_plaintext[PT_LEN];
 | |
|     unsigned char rsa_decrypted[PT_LEN];
 | |
|     unsigned char rsa_ciphertext[KEY_LEN];
 | |
| #if defined(MBEDTLS_SHA1_C)
 | |
|     unsigned char sha1sum[20];
 | |
| #endif
 | |
| 
 | |
|     mbedtls_mpi K;
 | |
| 
 | |
|     mbedtls_mpi_init(&K);
 | |
|     mbedtls_rsa_init(&rsa, MBEDTLS_RSA_PKCS_V15, 0);
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_N));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, &K, NULL, NULL, NULL, NULL));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_P));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, &K, NULL, NULL, NULL));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_Q));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, &K, NULL, NULL));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_D));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, NULL, &K, NULL));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_E));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, NULL, NULL, &K));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_rsa_complete(&rsa));
 | |
| 
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("  RSA key validation: ");
 | |
|     }
 | |
| 
 | |
|     if (mbedtls_rsa_check_pubkey(&rsa) != 0 ||
 | |
|         mbedtls_rsa_check_privkey(&rsa) != 0) {
 | |
|         if (verbose != 0) {
 | |
|             mbedtls_printf("failed\n");
 | |
|         }
 | |
| 
 | |
|         ret = 1;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("passed\n  PKCS#1 encryption : ");
 | |
|     }
 | |
| 
 | |
|     memcpy(rsa_plaintext, RSA_PT, PT_LEN);
 | |
| 
 | |
|     if (mbedtls_rsa_pkcs1_encrypt(&rsa, myrand, NULL, MBEDTLS_RSA_PUBLIC,
 | |
|                                   PT_LEN, rsa_plaintext,
 | |
|                                   rsa_ciphertext) != 0) {
 | |
|         if (verbose != 0) {
 | |
|             mbedtls_printf("failed\n");
 | |
|         }
 | |
| 
 | |
|         ret = 1;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("passed\n  PKCS#1 decryption : ");
 | |
|     }
 | |
| 
 | |
|     if (mbedtls_rsa_pkcs1_decrypt(&rsa, myrand, NULL, MBEDTLS_RSA_PRIVATE,
 | |
|                                   &len, rsa_ciphertext, rsa_decrypted,
 | |
|                                   sizeof(rsa_decrypted)) != 0) {
 | |
|         if (verbose != 0) {
 | |
|             mbedtls_printf("failed\n");
 | |
|         }
 | |
| 
 | |
|         ret = 1;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if (memcmp(rsa_decrypted, rsa_plaintext, len) != 0) {
 | |
|         if (verbose != 0) {
 | |
|             mbedtls_printf("failed\n");
 | |
|         }
 | |
| 
 | |
|         ret = 1;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("passed\n");
 | |
|     }
 | |
| 
 | |
| #if defined(MBEDTLS_SHA1_C)
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("  PKCS#1 data sign  : ");
 | |
|     }
 | |
| 
 | |
|     if (mbedtls_sha1_ret(rsa_plaintext, PT_LEN, sha1sum) != 0) {
 | |
|         if (verbose != 0) {
 | |
|             mbedtls_printf("failed\n");
 | |
|         }
 | |
| 
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (mbedtls_rsa_pkcs1_sign(&rsa, myrand, NULL,
 | |
|                                MBEDTLS_RSA_PRIVATE, MBEDTLS_MD_SHA1, 0,
 | |
|                                sha1sum, rsa_ciphertext) != 0) {
 | |
|         if (verbose != 0) {
 | |
|             mbedtls_printf("failed\n");
 | |
|         }
 | |
| 
 | |
|         ret = 1;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("passed\n  PKCS#1 sig. verify: ");
 | |
|     }
 | |
| 
 | |
|     if (mbedtls_rsa_pkcs1_verify(&rsa, NULL, NULL,
 | |
|                                  MBEDTLS_RSA_PUBLIC, MBEDTLS_MD_SHA1, 0,
 | |
|                                  sha1sum, rsa_ciphertext) != 0) {
 | |
|         if (verbose != 0) {
 | |
|             mbedtls_printf("failed\n");
 | |
|         }
 | |
| 
 | |
|         ret = 1;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("passed\n");
 | |
|     }
 | |
| #endif /* MBEDTLS_SHA1_C */
 | |
| 
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("\n");
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free(&K);
 | |
|     mbedtls_rsa_free(&rsa);
 | |
| #else /* MBEDTLS_PKCS1_V15 */
 | |
|     ((void) verbose);
 | |
| #endif /* MBEDTLS_PKCS1_V15 */
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #endif /* MBEDTLS_SELF_TEST */
 | |
| 
 | |
| #endif /* MBEDTLS_RSA_C */
 |