mirror of
				https://github.com/Mbed-TLS/mbedtls.git
				synced 2025-10-24 13:32:59 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			288 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			288 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**
 | |
|  * \file ecp_internal_alt.h
 | |
|  *
 | |
|  * \brief Function declarations for alternative implementation of elliptic curve
 | |
|  * point arithmetic.
 | |
|  */
 | |
| /*
 | |
|  *  Copyright The Mbed TLS Contributors
 | |
|  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * References:
 | |
|  *
 | |
|  * [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records.
 | |
|  *     <http://cr.yp.to/ecdh/curve25519-20060209.pdf>
 | |
|  *
 | |
|  * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
 | |
|  *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
 | |
|  *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
 | |
|  *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
 | |
|  *
 | |
|  * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
 | |
|  *     render ECC resistant against Side Channel Attacks. IACR Cryptology
 | |
|  *     ePrint Archive, 2004, vol. 2004, p. 342.
 | |
|  *     <http://eprint.iacr.org/2004/342.pdf>
 | |
|  *
 | |
|  * [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters.
 | |
|  *     <http://www.secg.org/sec2-v2.pdf>
 | |
|  *
 | |
|  * [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic
 | |
|  *     Curve Cryptography.
 | |
|  *
 | |
|  * [6] Digital Signature Standard (DSS), FIPS 186-4.
 | |
|  *     <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>
 | |
|  *
 | |
|  * [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
 | |
|  *     Security (TLS), RFC 4492.
 | |
|  *     <https://tools.ietf.org/search/rfc4492>
 | |
|  *
 | |
|  * [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html>
 | |
|  *
 | |
|  * [9] COHEN, Henri. A Course in Computational Algebraic Number Theory.
 | |
|  *     Springer Science & Business Media, 1 Aug 2000
 | |
|  */
 | |
| 
 | |
| #ifndef MBEDTLS_ECP_INTERNAL_H
 | |
| #define MBEDTLS_ECP_INTERNAL_H
 | |
| 
 | |
| #include "mbedtls/build_info.h"
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_INTERNAL_ALT)
 | |
| 
 | |
| /**
 | |
|  * \brief           Indicate if the Elliptic Curve Point module extension can
 | |
|  *                  handle the group.
 | |
|  *
 | |
|  * \param grp       The pointer to the elliptic curve group that will be the
 | |
|  *                  basis of the cryptographic computations.
 | |
|  *
 | |
|  * \return          Non-zero if successful.
 | |
|  */
 | |
| unsigned char mbedtls_internal_ecp_grp_capable(const mbedtls_ecp_group *grp);
 | |
| 
 | |
| /**
 | |
|  * \brief           Initialise the Elliptic Curve Point module extension.
 | |
|  *
 | |
|  *                  If mbedtls_internal_ecp_grp_capable returns true for a
 | |
|  *                  group, this function has to be able to initialise the
 | |
|  *                  module for it.
 | |
|  *
 | |
|  *                  This module can be a driver to a crypto hardware
 | |
|  *                  accelerator, for which this could be an initialise function.
 | |
|  *
 | |
|  * \param grp       The pointer to the group the module needs to be
 | |
|  *                  initialised for.
 | |
|  *
 | |
|  * \return          0 if successful.
 | |
|  */
 | |
| int mbedtls_internal_ecp_init(const mbedtls_ecp_group *grp);
 | |
| 
 | |
| /**
 | |
|  * \brief           Frees and deallocates the Elliptic Curve Point module
 | |
|  *                  extension.
 | |
|  *
 | |
|  * \param grp       The pointer to the group the module was initialised for.
 | |
|  */
 | |
| void mbedtls_internal_ecp_free(const mbedtls_ecp_group *grp);
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
 | |
| /**
 | |
|  * \brief           Randomize jacobian coordinates:
 | |
|  *                  (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l.
 | |
|  *
 | |
|  * \param grp       Pointer to the group representing the curve.
 | |
|  *
 | |
|  * \param pt        The point on the curve to be randomised, given with Jacobian
 | |
|  *                  coordinates.
 | |
|  *
 | |
|  * \param f_rng     A function pointer to the random number generator.
 | |
|  *
 | |
|  * \param p_rng     A pointer to the random number generator state.
 | |
|  *
 | |
|  * \return          0 if successful.
 | |
|  */
 | |
| int mbedtls_internal_ecp_randomize_jac(const mbedtls_ecp_group *grp,
 | |
|                                        mbedtls_ecp_point *pt, int (*f_rng)(void *,
 | |
|                                                                            unsigned char *,
 | |
|                                                                            size_t),
 | |
|                                        void *p_rng);
 | |
| #endif
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
 | |
| /**
 | |
|  * \brief           Addition: R = P + Q, mixed affine-Jacobian coordinates.
 | |
|  *
 | |
|  *                  The coordinates of Q must be normalized (= affine),
 | |
|  *                  but those of P don't need to. R is not normalized.
 | |
|  *
 | |
|  *                  This function is used only as a subrutine of
 | |
|  *                  ecp_mul_comb().
 | |
|  *
 | |
|  *                  Special cases: (1) P or Q is zero, (2) R is zero,
 | |
|  *                      (3) P == Q.
 | |
|  *                  None of these cases can happen as intermediate step in
 | |
|  *                  ecp_mul_comb():
 | |
|  *                      - at each step, P, Q and R are multiples of the base
 | |
|  *                      point, the factor being less than its order, so none of
 | |
|  *                      them is zero;
 | |
|  *                      - Q is an odd multiple of the base point, P an even
 | |
|  *                      multiple, due to the choice of precomputed points in the
 | |
|  *                      modified comb method.
 | |
|  *                  So branches for these cases do not leak secret information.
 | |
|  *
 | |
|  *                  We accept Q->Z being unset (saving memory in tables) as
 | |
|  *                  meaning 1.
 | |
|  *
 | |
|  *                  Cost in field operations if done by [5] 3.22:
 | |
|  *                      1A := 8M + 3S
 | |
|  *
 | |
|  * \param grp       Pointer to the group representing the curve.
 | |
|  *
 | |
|  * \param R         Pointer to a point structure to hold the result.
 | |
|  *
 | |
|  * \param P         Pointer to the first summand, given with Jacobian
 | |
|  *                  coordinates
 | |
|  *
 | |
|  * \param Q         Pointer to the second summand, given with affine
 | |
|  *                  coordinates.
 | |
|  *
 | |
|  * \return          0 if successful.
 | |
|  */
 | |
| int mbedtls_internal_ecp_add_mixed(const mbedtls_ecp_group *grp,
 | |
|                                    mbedtls_ecp_point *R, const mbedtls_ecp_point *P,
 | |
|                                    const mbedtls_ecp_point *Q);
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * \brief           Point doubling R = 2 P, Jacobian coordinates.
 | |
|  *
 | |
|  *                  Cost:   1D := 3M + 4S    (A ==  0)
 | |
|  *                          4M + 4S          (A == -3)
 | |
|  *                          3M + 6S + 1a     otherwise
 | |
|  *                  when the implementation is based on the "dbl-1998-cmo-2"
 | |
|  *                  doubling formulas in [8] and standard optimizations are
 | |
|  *                  applied when curve parameter A is one of { 0, -3 }.
 | |
|  *
 | |
|  * \param grp       Pointer to the group representing the curve.
 | |
|  *
 | |
|  * \param R         Pointer to a point structure to hold the result.
 | |
|  *
 | |
|  * \param P         Pointer to the point that has to be doubled, given with
 | |
|  *                  Jacobian coordinates.
 | |
|  *
 | |
|  * \return          0 if successful.
 | |
|  */
 | |
| #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
 | |
| int mbedtls_internal_ecp_double_jac(const mbedtls_ecp_group *grp,
 | |
|                                     mbedtls_ecp_point *R, const mbedtls_ecp_point *P);
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * \brief           Normalize jacobian coordinates of an array of (pointers to)
 | |
|  *                  points.
 | |
|  *
 | |
|  *                  Using Montgomery's trick to perform only one inversion mod P
 | |
|  *                  the cost is:
 | |
|  *                      1N(t) := 1I + (6t - 3)M + 1S
 | |
|  *                  (See for example Algorithm 10.3.4. in [9])
 | |
|  *
 | |
|  *                  This function is used only as a subrutine of
 | |
|  *                  ecp_mul_comb().
 | |
|  *
 | |
|  *                  Warning: fails (returning an error) if one of the points is
 | |
|  *                  zero!
 | |
|  *                  This should never happen, see choice of w in ecp_mul_comb().
 | |
|  *
 | |
|  * \param grp       Pointer to the group representing the curve.
 | |
|  *
 | |
|  * \param T         Array of pointers to the points to normalise.
 | |
|  *
 | |
|  * \param t_len     Number of elements in the array.
 | |
|  *
 | |
|  * \return          0 if successful,
 | |
|  *                      an error if one of the points is zero.
 | |
|  */
 | |
| #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
 | |
| int mbedtls_internal_ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
 | |
|                                             mbedtls_ecp_point *T[], size_t t_len);
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * \brief           Normalize jacobian coordinates so that Z == 0 || Z == 1.
 | |
|  *
 | |
|  *                  Cost in field operations if done by [5] 3.2.1:
 | |
|  *                      1N := 1I + 3M + 1S
 | |
|  *
 | |
|  * \param grp       Pointer to the group representing the curve.
 | |
|  *
 | |
|  * \param pt        pointer to the point to be normalised. This is an
 | |
|  *                  input/output parameter.
 | |
|  *
 | |
|  * \return          0 if successful.
 | |
|  */
 | |
| #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
 | |
| int mbedtls_internal_ecp_normalize_jac(const mbedtls_ecp_group *grp,
 | |
|                                        mbedtls_ecp_point *pt);
 | |
| #endif
 | |
| 
 | |
| #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
 | |
| int mbedtls_internal_ecp_double_add_mxz(const mbedtls_ecp_group *grp,
 | |
|                                         mbedtls_ecp_point *R,
 | |
|                                         mbedtls_ecp_point *S,
 | |
|                                         const mbedtls_ecp_point *P,
 | |
|                                         const mbedtls_ecp_point *Q,
 | |
|                                         const mbedtls_mpi *d);
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * \brief           Randomize projective x/z coordinates:
 | |
|  *                      (X, Z) -> (l X, l Z) for random l
 | |
|  *
 | |
|  * \param grp       pointer to the group representing the curve
 | |
|  *
 | |
|  * \param P         the point on the curve to be randomised given with
 | |
|  *                  projective coordinates. This is an input/output parameter.
 | |
|  *
 | |
|  * \param f_rng     a function pointer to the random number generator
 | |
|  *
 | |
|  * \param p_rng     a pointer to the random number generator state
 | |
|  *
 | |
|  * \return          0 if successful
 | |
|  */
 | |
| #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
 | |
| int mbedtls_internal_ecp_randomize_mxz(const mbedtls_ecp_group *grp,
 | |
|                                        mbedtls_ecp_point *P, int (*f_rng)(void *,
 | |
|                                                                           unsigned char *,
 | |
|                                                                           size_t),
 | |
|                                        void *p_rng);
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * \brief           Normalize Montgomery x/z coordinates: X = X/Z, Z = 1.
 | |
|  *
 | |
|  * \param grp       pointer to the group representing the curve
 | |
|  *
 | |
|  * \param P         pointer to the point to be normalised. This is an
 | |
|  *                  input/output parameter.
 | |
|  *
 | |
|  * \return          0 if successful
 | |
|  */
 | |
| #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
 | |
| int mbedtls_internal_ecp_normalize_mxz(const mbedtls_ecp_group *grp,
 | |
|                                        mbedtls_ecp_point *P);
 | |
| #endif
 | |
| 
 | |
| #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
 | |
| 
 | |
| #endif /* MBEDTLS_ECP_INTERNAL_ALT */
 | |
| 
 | |
| #endif /* ecp_internal_alt.h */
 |