mirror of
				https://github.com/Mbed-TLS/mbedtls.git
				synced 2025-11-03 20:33:16 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			3660 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3660 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  Elliptic curves over GF(p): generic functions
 | 
						|
 *
 | 
						|
 *  Copyright The Mbed TLS Contributors
 | 
						|
 *  SPDX-License-Identifier: Apache-2.0
 | 
						|
 *
 | 
						|
 *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 | 
						|
 *  not use this file except in compliance with the License.
 | 
						|
 *  You may obtain a copy of the License at
 | 
						|
 *
 | 
						|
 *  http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 *
 | 
						|
 *  Unless required by applicable law or agreed to in writing, software
 | 
						|
 *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | 
						|
 *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
 *  See the License for the specific language governing permissions and
 | 
						|
 *  limitations under the License.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * References:
 | 
						|
 *
 | 
						|
 * SEC1 https://www.secg.org/sec1-v2.pdf
 | 
						|
 * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
 | 
						|
 * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
 | 
						|
 * RFC 4492 for the related TLS structures and constants
 | 
						|
 * - https://www.rfc-editor.org/rfc/rfc4492
 | 
						|
 * RFC 7748 for the Curve448 and Curve25519 curve definitions
 | 
						|
 * - https://www.rfc-editor.org/rfc/rfc7748
 | 
						|
 *
 | 
						|
 * [Curve25519] https://cr.yp.to/ecdh/curve25519-20060209.pdf
 | 
						|
 *
 | 
						|
 * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
 | 
						|
 *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
 | 
						|
 *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
 | 
						|
 *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
 | 
						|
 *
 | 
						|
 * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
 | 
						|
 *     render ECC resistant against Side Channel Attacks. IACR Cryptology
 | 
						|
 *     ePrint Archive, 2004, vol. 2004, p. 342.
 | 
						|
 *     <http://eprint.iacr.org/2004/342.pdf>
 | 
						|
 */
 | 
						|
 | 
						|
#include "common.h"
 | 
						|
 | 
						|
/**
 | 
						|
 * \brief Function level alternative implementation.
 | 
						|
 *
 | 
						|
 * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
 | 
						|
 * replace certain functions in this module. The alternative implementations are
 | 
						|
 * typically hardware accelerators and need to activate the hardware before the
 | 
						|
 * computation starts and deactivate it after it finishes. The
 | 
						|
 * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
 | 
						|
 * this purpose.
 | 
						|
 *
 | 
						|
 * To preserve the correct functionality the following conditions must hold:
 | 
						|
 *
 | 
						|
 * - The alternative implementation must be activated by
 | 
						|
 *   mbedtls_internal_ecp_init() before any of the replaceable functions is
 | 
						|
 *   called.
 | 
						|
 * - mbedtls_internal_ecp_free() must \b only be called when the alternative
 | 
						|
 *   implementation is activated.
 | 
						|
 * - mbedtls_internal_ecp_init() must \b not be called when the alternative
 | 
						|
 *   implementation is activated.
 | 
						|
 * - Public functions must not return while the alternative implementation is
 | 
						|
 *   activated.
 | 
						|
 * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
 | 
						|
 *   before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
 | 
						|
 *   \endcode ensures that the alternative implementation supports the current
 | 
						|
 *   group.
 | 
						|
 */
 | 
						|
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_C)
 | 
						|
 | 
						|
#include "mbedtls/ecp.h"
 | 
						|
#include "mbedtls/threading.h"
 | 
						|
#include "mbedtls/platform_util.h"
 | 
						|
#include "mbedtls/error.h"
 | 
						|
#include "mbedtls/bn_mul.h"
 | 
						|
 | 
						|
#include "ecp_invasive.h"
 | 
						|
 | 
						|
#include <string.h>
 | 
						|
 | 
						|
#if !defined(MBEDTLS_ECP_ALT)
 | 
						|
 | 
						|
/* Parameter validation macros based on platform_util.h */
 | 
						|
#define ECP_VALIDATE_RET(cond)    \
 | 
						|
    MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA)
 | 
						|
#define ECP_VALIDATE(cond)        \
 | 
						|
    MBEDTLS_INTERNAL_VALIDATE(cond)
 | 
						|
 | 
						|
#include "mbedtls/platform.h"
 | 
						|
 | 
						|
#include "mbedtls/ecp_internal.h"
 | 
						|
 | 
						|
#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | 
						|
#if defined(MBEDTLS_HMAC_DRBG_C)
 | 
						|
#include "mbedtls/hmac_drbg.h"
 | 
						|
#elif defined(MBEDTLS_CTR_DRBG_C)
 | 
						|
#include "mbedtls/ctr_drbg.h"
 | 
						|
#else
 | 
						|
#error \
 | 
						|
    "Invalid configuration detected. Include check_config.h to ensure that the configuration is valid."
 | 
						|
#endif
 | 
						|
#endif /* MBEDTLS_ECP_NO_INTERNAL_RNG */
 | 
						|
 | 
						|
#if defined(MBEDTLS_SELF_TEST)
 | 
						|
/*
 | 
						|
 * Counts of point addition and doubling, and field multiplications.
 | 
						|
 * Used to test resistance of point multiplication to simple timing attacks.
 | 
						|
 */
 | 
						|
static unsigned long add_count, dbl_count, mul_count;
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | 
						|
/*
 | 
						|
 * Currently ecp_mul() takes a RNG function as an argument, used for
 | 
						|
 * side-channel protection, but it can be NULL. The initial reasoning was
 | 
						|
 * that people will pass non-NULL RNG when they care about side-channels, but
 | 
						|
 * unfortunately we have some APIs that call ecp_mul() with a NULL RNG, with
 | 
						|
 * no opportunity for the user to do anything about it.
 | 
						|
 *
 | 
						|
 * The obvious strategies for addressing that include:
 | 
						|
 * - change those APIs so that they take RNG arguments;
 | 
						|
 * - require a global RNG to be available to all crypto modules.
 | 
						|
 *
 | 
						|
 * Unfortunately those would break compatibility. So what we do instead is
 | 
						|
 * have our own internal DRBG instance, seeded from the secret scalar.
 | 
						|
 *
 | 
						|
 * The following is a light-weight abstraction layer for doing that with
 | 
						|
 * HMAC_DRBG (first choice) or CTR_DRBG.
 | 
						|
 */
 | 
						|
 | 
						|
#if defined(MBEDTLS_HMAC_DRBG_C)
 | 
						|
 | 
						|
/* DRBG context type */
 | 
						|
typedef mbedtls_hmac_drbg_context ecp_drbg_context;
 | 
						|
 | 
						|
/* DRBG context init */
 | 
						|
static inline void ecp_drbg_init(ecp_drbg_context *ctx)
 | 
						|
{
 | 
						|
    mbedtls_hmac_drbg_init(ctx);
 | 
						|
}
 | 
						|
 | 
						|
/* DRBG context free */
 | 
						|
static inline void ecp_drbg_free(ecp_drbg_context *ctx)
 | 
						|
{
 | 
						|
    mbedtls_hmac_drbg_free(ctx);
 | 
						|
}
 | 
						|
 | 
						|
/* DRBG function */
 | 
						|
static inline int ecp_drbg_random(void *p_rng,
 | 
						|
                                  unsigned char *output, size_t output_len)
 | 
						|
{
 | 
						|
    return mbedtls_hmac_drbg_random(p_rng, output, output_len);
 | 
						|
}
 | 
						|
 | 
						|
/* DRBG context seeding */
 | 
						|
static int ecp_drbg_seed(ecp_drbg_context *ctx,
 | 
						|
                         const mbedtls_mpi *secret, size_t secret_len)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    unsigned char secret_bytes[MBEDTLS_ECP_MAX_BYTES];
 | 
						|
    /* The list starts with strong hashes */
 | 
						|
    const mbedtls_md_type_t md_type =
 | 
						|
        (mbedtls_md_type_t) (mbedtls_md_list()[0]);
 | 
						|
    const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type(md_type);
 | 
						|
 | 
						|
    if (secret_len > MBEDTLS_ECP_MAX_BYTES) {
 | 
						|
        ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(secret,
 | 
						|
                                             secret_bytes, secret_len));
 | 
						|
 | 
						|
    ret = mbedtls_hmac_drbg_seed_buf(ctx, md_info, secret_bytes, secret_len);
 | 
						|
 | 
						|
cleanup:
 | 
						|
    mbedtls_platform_zeroize(secret_bytes, secret_len);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#elif defined(MBEDTLS_CTR_DRBG_C)
 | 
						|
 | 
						|
/* DRBG context type */
 | 
						|
typedef mbedtls_ctr_drbg_context ecp_drbg_context;
 | 
						|
 | 
						|
/* DRBG context init */
 | 
						|
static inline void ecp_drbg_init(ecp_drbg_context *ctx)
 | 
						|
{
 | 
						|
    mbedtls_ctr_drbg_init(ctx);
 | 
						|
}
 | 
						|
 | 
						|
/* DRBG context free */
 | 
						|
static inline void ecp_drbg_free(ecp_drbg_context *ctx)
 | 
						|
{
 | 
						|
    mbedtls_ctr_drbg_free(ctx);
 | 
						|
}
 | 
						|
 | 
						|
/* DRBG function */
 | 
						|
static inline int ecp_drbg_random(void *p_rng,
 | 
						|
                                  unsigned char *output, size_t output_len)
 | 
						|
{
 | 
						|
    return mbedtls_ctr_drbg_random(p_rng, output, output_len);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Since CTR_DRBG doesn't have a seed_buf() function the way HMAC_DRBG does,
 | 
						|
 * we need to pass an entropy function when seeding. So we use a dummy
 | 
						|
 * function for that, and pass the actual entropy as customisation string.
 | 
						|
 * (During seeding of CTR_DRBG the entropy input and customisation string are
 | 
						|
 * concatenated before being used to update the secret state.)
 | 
						|
 */
 | 
						|
static int ecp_ctr_drbg_null_entropy(void *ctx, unsigned char *out, size_t len)
 | 
						|
{
 | 
						|
    (void) ctx;
 | 
						|
    memset(out, 0, len);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* DRBG context seeding */
 | 
						|
static int ecp_drbg_seed(ecp_drbg_context *ctx,
 | 
						|
                         const mbedtls_mpi *secret, size_t secret_len)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    unsigned char secret_bytes[MBEDTLS_ECP_MAX_BYTES];
 | 
						|
 | 
						|
    if (secret_len > MBEDTLS_ECP_MAX_BYTES) {
 | 
						|
        ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(secret,
 | 
						|
                                             secret_bytes, secret_len));
 | 
						|
 | 
						|
    ret = mbedtls_ctr_drbg_seed(ctx, ecp_ctr_drbg_null_entropy, NULL,
 | 
						|
                                secret_bytes, secret_len);
 | 
						|
 | 
						|
cleanup:
 | 
						|
    mbedtls_platform_zeroize(secret_bytes, secret_len);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
#error \
 | 
						|
    "Invalid configuration detected. Include check_config.h to ensure that the configuration is valid."
 | 
						|
#endif /* DRBG modules */
 | 
						|
#endif /* MBEDTLS_ECP_NO_INTERNAL_RNG */
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
/*
 | 
						|
 * Maximum number of "basic operations" to be done in a row.
 | 
						|
 *
 | 
						|
 * Default value 0 means that ECC operations will not yield.
 | 
						|
 * Note that regardless of the value of ecp_max_ops, always at
 | 
						|
 * least one step is performed before yielding.
 | 
						|
 *
 | 
						|
 * Setting ecp_max_ops=1 can be suitable for testing purposes
 | 
						|
 * as it will interrupt computation at all possible points.
 | 
						|
 */
 | 
						|
static unsigned ecp_max_ops = 0;
 | 
						|
 | 
						|
/*
 | 
						|
 * Set ecp_max_ops
 | 
						|
 */
 | 
						|
void mbedtls_ecp_set_max_ops(unsigned max_ops)
 | 
						|
{
 | 
						|
    ecp_max_ops = max_ops;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check if restart is enabled
 | 
						|
 */
 | 
						|
int mbedtls_ecp_restart_is_enabled(void)
 | 
						|
{
 | 
						|
    return ecp_max_ops != 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Restart sub-context for ecp_mul_comb()
 | 
						|
 */
 | 
						|
struct mbedtls_ecp_restart_mul {
 | 
						|
    mbedtls_ecp_point R;    /* current intermediate result                  */
 | 
						|
    size_t i;               /* current index in various loops, 0 outside    */
 | 
						|
    mbedtls_ecp_point *T;   /* table for precomputed points                 */
 | 
						|
    unsigned char T_size;   /* number of points in table T                  */
 | 
						|
    enum {                  /* what were we doing last time we returned?    */
 | 
						|
        ecp_rsm_init = 0,       /* nothing so far, dummy initial state      */
 | 
						|
        ecp_rsm_pre_dbl,        /* precompute 2^n multiples                 */
 | 
						|
        ecp_rsm_pre_norm_dbl,   /* normalize precomputed 2^n multiples      */
 | 
						|
        ecp_rsm_pre_add,        /* precompute remaining points by adding    */
 | 
						|
        ecp_rsm_pre_norm_add,   /* normalize all precomputed points         */
 | 
						|
        ecp_rsm_comb_core,      /* ecp_mul_comb_core()                      */
 | 
						|
        ecp_rsm_final_norm,     /* do the final normalization               */
 | 
						|
    } state;
 | 
						|
#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | 
						|
    ecp_drbg_context drbg_ctx;
 | 
						|
    unsigned char drbg_seeded;
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Init restart_mul sub-context
 | 
						|
 */
 | 
						|
static void ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx *ctx)
 | 
						|
{
 | 
						|
    mbedtls_ecp_point_init(&ctx->R);
 | 
						|
    ctx->i = 0;
 | 
						|
    ctx->T = NULL;
 | 
						|
    ctx->T_size = 0;
 | 
						|
    ctx->state = ecp_rsm_init;
 | 
						|
#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | 
						|
    ecp_drbg_init(&ctx->drbg_ctx);
 | 
						|
    ctx->drbg_seeded = 0;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free the components of a restart_mul sub-context
 | 
						|
 */
 | 
						|
static void ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx *ctx)
 | 
						|
{
 | 
						|
    unsigned char i;
 | 
						|
 | 
						|
    if (ctx == NULL) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    mbedtls_ecp_point_free(&ctx->R);
 | 
						|
 | 
						|
    if (ctx->T != NULL) {
 | 
						|
        for (i = 0; i < ctx->T_size; i++) {
 | 
						|
            mbedtls_ecp_point_free(ctx->T + i);
 | 
						|
        }
 | 
						|
        mbedtls_free(ctx->T);
 | 
						|
    }
 | 
						|
 | 
						|
#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | 
						|
    ecp_drbg_free(&ctx->drbg_ctx);
 | 
						|
#endif
 | 
						|
 | 
						|
    ecp_restart_rsm_init(ctx);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Restart context for ecp_muladd()
 | 
						|
 */
 | 
						|
struct mbedtls_ecp_restart_muladd {
 | 
						|
    mbedtls_ecp_point mP;       /* mP value                             */
 | 
						|
    mbedtls_ecp_point R;        /* R intermediate result                */
 | 
						|
    enum {                      /* what should we do next?              */
 | 
						|
        ecp_rsma_mul1 = 0,      /* first multiplication                 */
 | 
						|
        ecp_rsma_mul2,          /* second multiplication                */
 | 
						|
        ecp_rsma_add,           /* addition                             */
 | 
						|
        ecp_rsma_norm,          /* normalization                        */
 | 
						|
    } state;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Init restart_muladd sub-context
 | 
						|
 */
 | 
						|
static void ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx *ctx)
 | 
						|
{
 | 
						|
    mbedtls_ecp_point_init(&ctx->mP);
 | 
						|
    mbedtls_ecp_point_init(&ctx->R);
 | 
						|
    ctx->state = ecp_rsma_mul1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free the components of a restart_muladd sub-context
 | 
						|
 */
 | 
						|
static void ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx *ctx)
 | 
						|
{
 | 
						|
    if (ctx == NULL) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    mbedtls_ecp_point_free(&ctx->mP);
 | 
						|
    mbedtls_ecp_point_free(&ctx->R);
 | 
						|
 | 
						|
    ecp_restart_ma_init(ctx);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize a restart context
 | 
						|
 */
 | 
						|
void mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx *ctx)
 | 
						|
{
 | 
						|
    ECP_VALIDATE(ctx != NULL);
 | 
						|
    ctx->ops_done = 0;
 | 
						|
    ctx->depth = 0;
 | 
						|
    ctx->rsm = NULL;
 | 
						|
    ctx->ma = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free the components of a restart context
 | 
						|
 */
 | 
						|
void mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx *ctx)
 | 
						|
{
 | 
						|
    if (ctx == NULL) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    ecp_restart_rsm_free(ctx->rsm);
 | 
						|
    mbedtls_free(ctx->rsm);
 | 
						|
 | 
						|
    ecp_restart_ma_free(ctx->ma);
 | 
						|
    mbedtls_free(ctx->ma);
 | 
						|
 | 
						|
    mbedtls_ecp_restart_init(ctx);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check if we can do the next step
 | 
						|
 */
 | 
						|
int mbedtls_ecp_check_budget(const mbedtls_ecp_group *grp,
 | 
						|
                             mbedtls_ecp_restart_ctx *rs_ctx,
 | 
						|
                             unsigned ops)
 | 
						|
{
 | 
						|
    ECP_VALIDATE_RET(grp != NULL);
 | 
						|
 | 
						|
    if (rs_ctx != NULL && ecp_max_ops != 0) {
 | 
						|
        /* scale depending on curve size: the chosen reference is 256-bit,
 | 
						|
         * and multiplication is quadratic. Round to the closest integer. */
 | 
						|
        if (grp->pbits >= 512) {
 | 
						|
            ops *= 4;
 | 
						|
        } else if (grp->pbits >= 384) {
 | 
						|
            ops *= 2;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Avoid infinite loops: always allow first step.
 | 
						|
         * Because of that, however, it's not generally true
 | 
						|
         * that ops_done <= ecp_max_ops, so the check
 | 
						|
         * ops_done > ecp_max_ops below is mandatory. */
 | 
						|
        if ((rs_ctx->ops_done != 0) &&
 | 
						|
            (rs_ctx->ops_done > ecp_max_ops ||
 | 
						|
             ops > ecp_max_ops - rs_ctx->ops_done)) {
 | 
						|
            return MBEDTLS_ERR_ECP_IN_PROGRESS;
 | 
						|
        }
 | 
						|
 | 
						|
        /* update running count */
 | 
						|
        rs_ctx->ops_done += ops;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Call this when entering a function that needs its own sub-context */
 | 
						|
#define ECP_RS_ENTER(SUB)   do {                                      \
 | 
						|
        /* reset ops count for this call if top-level */                    \
 | 
						|
        if (rs_ctx != NULL && rs_ctx->depth++ == 0)                        \
 | 
						|
        rs_ctx->ops_done = 0;                                           \
 | 
						|
                                                                        \
 | 
						|
        /* set up our own sub-context if needed */                          \
 | 
						|
        if (mbedtls_ecp_restart_is_enabled() &&                             \
 | 
						|
            rs_ctx != NULL && rs_ctx->SUB == NULL)                         \
 | 
						|
        {                                                                   \
 | 
						|
            rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB));      \
 | 
						|
            if (rs_ctx->SUB == NULL)                                       \
 | 
						|
            return MBEDTLS_ERR_ECP_ALLOC_FAILED;                     \
 | 
						|
                                                                      \
 | 
						|
            ecp_restart_## SUB ##_init(rs_ctx->SUB);                      \
 | 
						|
        }                                                                   \
 | 
						|
} while (0)
 | 
						|
 | 
						|
/* Call this when leaving a function that needs its own sub-context */
 | 
						|
#define ECP_RS_LEAVE(SUB)   do {                                      \
 | 
						|
        /* clear our sub-context when not in progress (done or error) */    \
 | 
						|
        if (rs_ctx != NULL && rs_ctx->SUB != NULL &&                        \
 | 
						|
            ret != MBEDTLS_ERR_ECP_IN_PROGRESS)                            \
 | 
						|
        {                                                                   \
 | 
						|
            ecp_restart_## SUB ##_free(rs_ctx->SUB);                      \
 | 
						|
            mbedtls_free(rs_ctx->SUB);                                    \
 | 
						|
            rs_ctx->SUB = NULL;                                             \
 | 
						|
        }                                                                   \
 | 
						|
                                                                        \
 | 
						|
        if (rs_ctx != NULL)                                                \
 | 
						|
        rs_ctx->depth--;                                                \
 | 
						|
} while (0)
 | 
						|
 | 
						|
#else /* MBEDTLS_ECP_RESTARTABLE */
 | 
						|
 | 
						|
#define ECP_RS_ENTER(sub)     (void) rs_ctx;
 | 
						|
#define ECP_RS_LEAVE(sub)     (void) rs_ctx;
 | 
						|
 | 
						|
#endif /* MBEDTLS_ECP_RESTARTABLE */
 | 
						|
 | 
						|
/*
 | 
						|
 * List of supported curves:
 | 
						|
 *  - internal ID
 | 
						|
 *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)
 | 
						|
 *  - size in bits
 | 
						|
 *  - readable name
 | 
						|
 *
 | 
						|
 * Curves are listed in order: largest curves first, and for a given size,
 | 
						|
 * fastest curves first. This provides the default order for the SSL module.
 | 
						|
 *
 | 
						|
 * Reminder: update profiles in x509_crt.c when adding a new curves!
 | 
						|
 */
 | 
						|
static const mbedtls_ecp_curve_info ecp_supported_curves[] =
 | 
						|
{
 | 
						|
#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
 | 
						|
    { MBEDTLS_ECP_DP_SECP521R1,    25,     521,    "secp521r1"         },
 | 
						|
#endif
 | 
						|
#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
 | 
						|
    { MBEDTLS_ECP_DP_BP512R1,      28,     512,    "brainpoolP512r1"   },
 | 
						|
#endif
 | 
						|
#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
 | 
						|
    { MBEDTLS_ECP_DP_SECP384R1,    24,     384,    "secp384r1"         },
 | 
						|
#endif
 | 
						|
#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
 | 
						|
    { MBEDTLS_ECP_DP_BP384R1,      27,     384,    "brainpoolP384r1"   },
 | 
						|
#endif
 | 
						|
#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
 | 
						|
    { MBEDTLS_ECP_DP_SECP256R1,    23,     256,    "secp256r1"         },
 | 
						|
#endif
 | 
						|
#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
 | 
						|
    { MBEDTLS_ECP_DP_SECP256K1,    22,     256,    "secp256k1"         },
 | 
						|
#endif
 | 
						|
#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
 | 
						|
    { MBEDTLS_ECP_DP_BP256R1,      26,     256,    "brainpoolP256r1"   },
 | 
						|
#endif
 | 
						|
#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
 | 
						|
    { MBEDTLS_ECP_DP_SECP224R1,    21,     224,    "secp224r1"         },
 | 
						|
#endif
 | 
						|
#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
 | 
						|
    { MBEDTLS_ECP_DP_SECP224K1,    20,     224,    "secp224k1"         },
 | 
						|
#endif
 | 
						|
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
 | 
						|
    { MBEDTLS_ECP_DP_SECP192R1,    19,     192,    "secp192r1"         },
 | 
						|
#endif
 | 
						|
#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
 | 
						|
    { MBEDTLS_ECP_DP_SECP192K1,    18,     192,    "secp192k1"         },
 | 
						|
#endif
 | 
						|
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
 | 
						|
    { MBEDTLS_ECP_DP_CURVE25519,   29,     256,    "x25519"            },
 | 
						|
#endif
 | 
						|
#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
 | 
						|
    { MBEDTLS_ECP_DP_CURVE448,     30,     448,    "x448"              },
 | 
						|
#endif
 | 
						|
    { MBEDTLS_ECP_DP_NONE,          0,     0,      NULL                },
 | 
						|
};
 | 
						|
 | 
						|
#define ECP_NB_CURVES   sizeof(ecp_supported_curves) /    \
 | 
						|
    sizeof(ecp_supported_curves[0])
 | 
						|
 | 
						|
static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
 | 
						|
 | 
						|
/*
 | 
						|
 * List of supported curves and associated info
 | 
						|
 */
 | 
						|
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list(void)
 | 
						|
{
 | 
						|
    return ecp_supported_curves;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * List of supported curves, group ID only
 | 
						|
 */
 | 
						|
const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list(void)
 | 
						|
{
 | 
						|
    static int init_done = 0;
 | 
						|
 | 
						|
    if (!init_done) {
 | 
						|
        size_t i = 0;
 | 
						|
        const mbedtls_ecp_curve_info *curve_info;
 | 
						|
 | 
						|
        for (curve_info = mbedtls_ecp_curve_list();
 | 
						|
             curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
 | 
						|
             curve_info++) {
 | 
						|
            ecp_supported_grp_id[i++] = curve_info->grp_id;
 | 
						|
        }
 | 
						|
        ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
 | 
						|
 | 
						|
        init_done = 1;
 | 
						|
    }
 | 
						|
 | 
						|
    return ecp_supported_grp_id;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get the curve info for the internal identifier
 | 
						|
 */
 | 
						|
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)
 | 
						|
{
 | 
						|
    const mbedtls_ecp_curve_info *curve_info;
 | 
						|
 | 
						|
    for (curve_info = mbedtls_ecp_curve_list();
 | 
						|
         curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
 | 
						|
         curve_info++) {
 | 
						|
        if (curve_info->grp_id == grp_id) {
 | 
						|
            return curve_info;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get the curve info from the TLS identifier
 | 
						|
 */
 | 
						|
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)
 | 
						|
{
 | 
						|
    const mbedtls_ecp_curve_info *curve_info;
 | 
						|
 | 
						|
    for (curve_info = mbedtls_ecp_curve_list();
 | 
						|
         curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
 | 
						|
         curve_info++) {
 | 
						|
        if (curve_info->tls_id == tls_id) {
 | 
						|
            return curve_info;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get the curve info from the name
 | 
						|
 */
 | 
						|
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name(const char *name)
 | 
						|
{
 | 
						|
    const mbedtls_ecp_curve_info *curve_info;
 | 
						|
 | 
						|
    if (name == NULL) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    for (curve_info = mbedtls_ecp_curve_list();
 | 
						|
         curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
 | 
						|
         curve_info++) {
 | 
						|
        if (strcmp(curve_info->name, name) == 0) {
 | 
						|
            return curve_info;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get the type of a curve
 | 
						|
 */
 | 
						|
mbedtls_ecp_curve_type mbedtls_ecp_get_type(const mbedtls_ecp_group *grp)
 | 
						|
{
 | 
						|
    if (grp->G.X.p == NULL) {
 | 
						|
        return MBEDTLS_ECP_TYPE_NONE;
 | 
						|
    }
 | 
						|
 | 
						|
    if (grp->G.Y.p == NULL) {
 | 
						|
        return MBEDTLS_ECP_TYPE_MONTGOMERY;
 | 
						|
    } else {
 | 
						|
        return MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize (the components of) a point
 | 
						|
 */
 | 
						|
void mbedtls_ecp_point_init(mbedtls_ecp_point *pt)
 | 
						|
{
 | 
						|
    ECP_VALIDATE(pt != NULL);
 | 
						|
 | 
						|
    mbedtls_mpi_init(&pt->X);
 | 
						|
    mbedtls_mpi_init(&pt->Y);
 | 
						|
    mbedtls_mpi_init(&pt->Z);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize (the components of) a group
 | 
						|
 */
 | 
						|
void mbedtls_ecp_group_init(mbedtls_ecp_group *grp)
 | 
						|
{
 | 
						|
    ECP_VALIDATE(grp != NULL);
 | 
						|
 | 
						|
    grp->id = MBEDTLS_ECP_DP_NONE;
 | 
						|
    mbedtls_mpi_init(&grp->P);
 | 
						|
    mbedtls_mpi_init(&grp->A);
 | 
						|
    mbedtls_mpi_init(&grp->B);
 | 
						|
    mbedtls_ecp_point_init(&grp->G);
 | 
						|
    mbedtls_mpi_init(&grp->N);
 | 
						|
    grp->pbits = 0;
 | 
						|
    grp->nbits = 0;
 | 
						|
    grp->h = 0;
 | 
						|
    grp->modp = NULL;
 | 
						|
    grp->t_pre = NULL;
 | 
						|
    grp->t_post = NULL;
 | 
						|
    grp->t_data = NULL;
 | 
						|
    grp->T = NULL;
 | 
						|
    grp->T_size = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize (the components of) a key pair
 | 
						|
 */
 | 
						|
void mbedtls_ecp_keypair_init(mbedtls_ecp_keypair *key)
 | 
						|
{
 | 
						|
    ECP_VALIDATE(key != NULL);
 | 
						|
 | 
						|
    mbedtls_ecp_group_init(&key->grp);
 | 
						|
    mbedtls_mpi_init(&key->d);
 | 
						|
    mbedtls_ecp_point_init(&key->Q);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Unallocate (the components of) a point
 | 
						|
 */
 | 
						|
void mbedtls_ecp_point_free(mbedtls_ecp_point *pt)
 | 
						|
{
 | 
						|
    if (pt == NULL) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    mbedtls_mpi_free(&(pt->X));
 | 
						|
    mbedtls_mpi_free(&(pt->Y));
 | 
						|
    mbedtls_mpi_free(&(pt->Z));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Unallocate (the components of) a group
 | 
						|
 */
 | 
						|
void mbedtls_ecp_group_free(mbedtls_ecp_group *grp)
 | 
						|
{
 | 
						|
    size_t i;
 | 
						|
 | 
						|
    if (grp == NULL) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (grp->h != 1) {
 | 
						|
        mbedtls_mpi_free(&grp->P);
 | 
						|
        mbedtls_mpi_free(&grp->A);
 | 
						|
        mbedtls_mpi_free(&grp->B);
 | 
						|
        mbedtls_ecp_point_free(&grp->G);
 | 
						|
        mbedtls_mpi_free(&grp->N);
 | 
						|
    }
 | 
						|
 | 
						|
    if (grp->T != NULL) {
 | 
						|
        for (i = 0; i < grp->T_size; i++) {
 | 
						|
            mbedtls_ecp_point_free(&grp->T[i]);
 | 
						|
        }
 | 
						|
        mbedtls_free(grp->T);
 | 
						|
    }
 | 
						|
 | 
						|
    mbedtls_platform_zeroize(grp, sizeof(mbedtls_ecp_group));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Unallocate (the components of) a key pair
 | 
						|
 */
 | 
						|
void mbedtls_ecp_keypair_free(mbedtls_ecp_keypair *key)
 | 
						|
{
 | 
						|
    if (key == NULL) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    mbedtls_ecp_group_free(&key->grp);
 | 
						|
    mbedtls_mpi_free(&key->d);
 | 
						|
    mbedtls_ecp_point_free(&key->Q);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Copy the contents of a point
 | 
						|
 */
 | 
						|
int mbedtls_ecp_copy(mbedtls_ecp_point *P, const mbedtls_ecp_point *Q)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    ECP_VALIDATE_RET(P != NULL);
 | 
						|
    ECP_VALIDATE_RET(Q != NULL);
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->X, &Q->X));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Y, &Q->Y));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Z, &Q->Z));
 | 
						|
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Copy the contents of a group object
 | 
						|
 */
 | 
						|
int mbedtls_ecp_group_copy(mbedtls_ecp_group *dst, const mbedtls_ecp_group *src)
 | 
						|
{
 | 
						|
    ECP_VALIDATE_RET(dst != NULL);
 | 
						|
    ECP_VALIDATE_RET(src != NULL);
 | 
						|
 | 
						|
    return mbedtls_ecp_group_load(dst, src->id);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set point to zero
 | 
						|
 */
 | 
						|
int mbedtls_ecp_set_zero(mbedtls_ecp_point *pt)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    ECP_VALIDATE_RET(pt != NULL);
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->X, 1));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Y, 1));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 0));
 | 
						|
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Tell if a point is zero
 | 
						|
 */
 | 
						|
int mbedtls_ecp_is_zero(mbedtls_ecp_point *pt)
 | 
						|
{
 | 
						|
    ECP_VALIDATE_RET(pt != NULL);
 | 
						|
 | 
						|
    return mbedtls_mpi_cmp_int(&pt->Z, 0) == 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Compare two points lazily
 | 
						|
 */
 | 
						|
int mbedtls_ecp_point_cmp(const mbedtls_ecp_point *P,
 | 
						|
                          const mbedtls_ecp_point *Q)
 | 
						|
{
 | 
						|
    ECP_VALIDATE_RET(P != NULL);
 | 
						|
    ECP_VALIDATE_RET(Q != NULL);
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_mpi(&P->X, &Q->X) == 0 &&
 | 
						|
        mbedtls_mpi_cmp_mpi(&P->Y, &Q->Y) == 0 &&
 | 
						|
        mbedtls_mpi_cmp_mpi(&P->Z, &Q->Z) == 0) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Import a non-zero point from ASCII strings
 | 
						|
 */
 | 
						|
int mbedtls_ecp_point_read_string(mbedtls_ecp_point *P, int radix,
 | 
						|
                                  const char *x, const char *y)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    ECP_VALIDATE_RET(P != NULL);
 | 
						|
    ECP_VALIDATE_RET(x != NULL);
 | 
						|
    ECP_VALIDATE_RET(y != NULL);
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->X, radix, x));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->Y, radix, y));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1));
 | 
						|
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
 | 
						|
 */
 | 
						|
int mbedtls_ecp_point_write_binary(const mbedtls_ecp_group *grp,
 | 
						|
                                   const mbedtls_ecp_point *P,
 | 
						|
                                   int format, size_t *olen,
 | 
						|
                                   unsigned char *buf, size_t buflen)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | 
						|
    size_t plen;
 | 
						|
    ECP_VALIDATE_RET(grp  != NULL);
 | 
						|
    ECP_VALIDATE_RET(P    != NULL);
 | 
						|
    ECP_VALIDATE_RET(olen != NULL);
 | 
						|
    ECP_VALIDATE_RET(buf  != NULL);
 | 
						|
    ECP_VALIDATE_RET(format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
 | 
						|
                     format == MBEDTLS_ECP_PF_COMPRESSED);
 | 
						|
 | 
						|
    plen = mbedtls_mpi_size(&grp->P);
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | 
						|
    (void) format; /* Montgomery curves always use the same point format */
 | 
						|
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
 | 
						|
        *olen = plen;
 | 
						|
        if (buflen < *olen) {
 | 
						|
            return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
 | 
						|
        }
 | 
						|
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&P->X, buf, plen));
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | 
						|
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
 | 
						|
        /*
 | 
						|
         * Common case: P == 0
 | 
						|
         */
 | 
						|
        if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) {
 | 
						|
            if (buflen < 1) {
 | 
						|
                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
 | 
						|
            }
 | 
						|
 | 
						|
            buf[0] = 0x00;
 | 
						|
            *olen = 1;
 | 
						|
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
 | 
						|
        if (format == MBEDTLS_ECP_PF_UNCOMPRESSED) {
 | 
						|
            *olen = 2 * plen + 1;
 | 
						|
 | 
						|
            if (buflen < *olen) {
 | 
						|
                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
 | 
						|
            }
 | 
						|
 | 
						|
            buf[0] = 0x04;
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->Y, buf + 1 + plen, plen));
 | 
						|
        } else if (format == MBEDTLS_ECP_PF_COMPRESSED) {
 | 
						|
            *olen = plen + 1;
 | 
						|
 | 
						|
            if (buflen < *olen) {
 | 
						|
                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
 | 
						|
            }
 | 
						|
 | 
						|
            buf[0] = 0x02 + mbedtls_mpi_get_bit(&P->Y, 0);
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
 | 
						|
 */
 | 
						|
int mbedtls_ecp_point_read_binary(const mbedtls_ecp_group *grp,
 | 
						|
                                  mbedtls_ecp_point *pt,
 | 
						|
                                  const unsigned char *buf, size_t ilen)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | 
						|
    size_t plen;
 | 
						|
    ECP_VALIDATE_RET(grp != NULL);
 | 
						|
    ECP_VALIDATE_RET(pt  != NULL);
 | 
						|
    ECP_VALIDATE_RET(buf != NULL);
 | 
						|
 | 
						|
    if (ilen < 1) {
 | 
						|
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    plen = mbedtls_mpi_size(&grp->P);
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | 
						|
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
 | 
						|
        if (plen != ilen) {
 | 
						|
            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | 
						|
        }
 | 
						|
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&pt->X, buf, plen));
 | 
						|
        mbedtls_mpi_free(&pt->Y);
 | 
						|
 | 
						|
        if (grp->id == MBEDTLS_ECP_DP_CURVE25519) {
 | 
						|
            /* Set most significant bit to 0 as prescribed in RFC7748 §5 */
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&pt->X, plen * 8 - 1, 0));
 | 
						|
        }
 | 
						|
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | 
						|
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
 | 
						|
        if (buf[0] == 0x00) {
 | 
						|
            if (ilen == 1) {
 | 
						|
                return mbedtls_ecp_set_zero(pt);
 | 
						|
            } else {
 | 
						|
                return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (buf[0] != 0x04) {
 | 
						|
            return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | 
						|
        }
 | 
						|
 | 
						|
        if (ilen != 2 * plen + 1) {
 | 
						|
            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | 
						|
        }
 | 
						|
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->X, buf + 1, plen));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->Y,
 | 
						|
                                                buf + 1 + plen, plen));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Import a point from a TLS ECPoint record (RFC 4492)
 | 
						|
 *      struct {
 | 
						|
 *          opaque point <1..2^8-1>;
 | 
						|
 *      } ECPoint;
 | 
						|
 */
 | 
						|
int mbedtls_ecp_tls_read_point(const mbedtls_ecp_group *grp,
 | 
						|
                               mbedtls_ecp_point *pt,
 | 
						|
                               const unsigned char **buf, size_t buf_len)
 | 
						|
{
 | 
						|
    unsigned char data_len;
 | 
						|
    const unsigned char *buf_start;
 | 
						|
    ECP_VALIDATE_RET(grp != NULL);
 | 
						|
    ECP_VALIDATE_RET(pt  != NULL);
 | 
						|
    ECP_VALIDATE_RET(buf != NULL);
 | 
						|
    ECP_VALIDATE_RET(*buf != NULL);
 | 
						|
 | 
						|
    /*
 | 
						|
     * We must have at least two bytes (1 for length, at least one for data)
 | 
						|
     */
 | 
						|
    if (buf_len < 2) {
 | 
						|
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    data_len = *(*buf)++;
 | 
						|
    if (data_len < 1 || data_len > buf_len - 1) {
 | 
						|
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Save buffer start for read_binary and update buf
 | 
						|
     */
 | 
						|
    buf_start = *buf;
 | 
						|
    *buf += data_len;
 | 
						|
 | 
						|
    return mbedtls_ecp_point_read_binary(grp, pt, buf_start, data_len);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Export a point as a TLS ECPoint record (RFC 4492)
 | 
						|
 *      struct {
 | 
						|
 *          opaque point <1..2^8-1>;
 | 
						|
 *      } ECPoint;
 | 
						|
 */
 | 
						|
int mbedtls_ecp_tls_write_point(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
 | 
						|
                                int format, size_t *olen,
 | 
						|
                                unsigned char *buf, size_t blen)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    ECP_VALIDATE_RET(grp  != NULL);
 | 
						|
    ECP_VALIDATE_RET(pt   != NULL);
 | 
						|
    ECP_VALIDATE_RET(olen != NULL);
 | 
						|
    ECP_VALIDATE_RET(buf  != NULL);
 | 
						|
    ECP_VALIDATE_RET(format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
 | 
						|
                     format == MBEDTLS_ECP_PF_COMPRESSED);
 | 
						|
 | 
						|
    /*
 | 
						|
     * buffer length must be at least one, for our length byte
 | 
						|
     */
 | 
						|
    if (blen < 1) {
 | 
						|
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((ret = mbedtls_ecp_point_write_binary(grp, pt, format,
 | 
						|
                                              olen, buf + 1, blen - 1)) != 0) {
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * write length to the first byte and update total length
 | 
						|
     */
 | 
						|
    buf[0] = (unsigned char) *olen;
 | 
						|
    ++*olen;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set a group from an ECParameters record (RFC 4492)
 | 
						|
 */
 | 
						|
int mbedtls_ecp_tls_read_group(mbedtls_ecp_group *grp,
 | 
						|
                               const unsigned char **buf, size_t len)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    mbedtls_ecp_group_id grp_id;
 | 
						|
    ECP_VALIDATE_RET(grp  != NULL);
 | 
						|
    ECP_VALIDATE_RET(buf  != NULL);
 | 
						|
    ECP_VALIDATE_RET(*buf != NULL);
 | 
						|
 | 
						|
    if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, len)) != 0) {
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    return mbedtls_ecp_group_load(grp, grp_id);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Read a group id from an ECParameters record (RFC 4492) and convert it to
 | 
						|
 * mbedtls_ecp_group_id.
 | 
						|
 */
 | 
						|
int mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id *grp,
 | 
						|
                                  const unsigned char **buf, size_t len)
 | 
						|
{
 | 
						|
    uint16_t tls_id;
 | 
						|
    const mbedtls_ecp_curve_info *curve_info;
 | 
						|
    ECP_VALIDATE_RET(grp  != NULL);
 | 
						|
    ECP_VALIDATE_RET(buf  != NULL);
 | 
						|
    ECP_VALIDATE_RET(*buf != NULL);
 | 
						|
 | 
						|
    /*
 | 
						|
     * We expect at least three bytes (see below)
 | 
						|
     */
 | 
						|
    if (len < 3) {
 | 
						|
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * First byte is curve_type; only named_curve is handled
 | 
						|
     */
 | 
						|
    if (*(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE) {
 | 
						|
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Next two bytes are the namedcurve value
 | 
						|
     */
 | 
						|
    tls_id = *(*buf)++;
 | 
						|
    tls_id <<= 8;
 | 
						|
    tls_id |= *(*buf)++;
 | 
						|
 | 
						|
    if ((curve_info = mbedtls_ecp_curve_info_from_tls_id(tls_id)) == NULL) {
 | 
						|
        return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | 
						|
    }
 | 
						|
 | 
						|
    *grp = curve_info->grp_id;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Write the ECParameters record corresponding to a group (RFC 4492)
 | 
						|
 */
 | 
						|
int mbedtls_ecp_tls_write_group(const mbedtls_ecp_group *grp, size_t *olen,
 | 
						|
                                unsigned char *buf, size_t blen)
 | 
						|
{
 | 
						|
    const mbedtls_ecp_curve_info *curve_info;
 | 
						|
    ECP_VALIDATE_RET(grp  != NULL);
 | 
						|
    ECP_VALIDATE_RET(buf  != NULL);
 | 
						|
    ECP_VALIDATE_RET(olen != NULL);
 | 
						|
 | 
						|
    if ((curve_info = mbedtls_ecp_curve_info_from_grp_id(grp->id)) == NULL) {
 | 
						|
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * We are going to write 3 bytes (see below)
 | 
						|
     */
 | 
						|
    *olen = 3;
 | 
						|
    if (blen < *olen) {
 | 
						|
        return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * First byte is curve_type, always named_curve
 | 
						|
     */
 | 
						|
    *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Next two bytes are the namedcurve value
 | 
						|
     */
 | 
						|
    MBEDTLS_PUT_UINT16_BE(curve_info->tls_id, buf, 0);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
 | 
						|
 * See the documentation of struct mbedtls_ecp_group.
 | 
						|
 *
 | 
						|
 * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
 | 
						|
 */
 | 
						|
static int ecp_modp(mbedtls_mpi *N, const mbedtls_ecp_group *grp)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
 | 
						|
    if (grp->modp == NULL) {
 | 
						|
        return mbedtls_mpi_mod_mpi(N, N, &grp->P);
 | 
						|
    }
 | 
						|
 | 
						|
    /* N->s < 0 is a much faster test, which fails only if N is 0 */
 | 
						|
    if ((N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) ||
 | 
						|
        mbedtls_mpi_bitlen(N) > 2 * grp->pbits) {
 | 
						|
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(grp->modp(N));
 | 
						|
 | 
						|
    /* N->s < 0 is a much faster test, which fails only if N is 0 */
 | 
						|
    while (N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &grp->P));
 | 
						|
    }
 | 
						|
 | 
						|
    while (mbedtls_mpi_cmp_mpi(N, &grp->P) >= 0) {
 | 
						|
        /* we known P, N and the result are positive */
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(N, N, &grp->P));
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Fast mod-p functions expect their argument to be in the 0..p^2 range.
 | 
						|
 *
 | 
						|
 * In order to guarantee that, we need to ensure that operands of
 | 
						|
 * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
 | 
						|
 * bring the result back to this range.
 | 
						|
 *
 | 
						|
 * The following macros are shortcuts for doing that.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
 | 
						|
 */
 | 
						|
#if defined(MBEDTLS_SELF_TEST)
 | 
						|
#define INC_MUL_COUNT   mul_count++;
 | 
						|
#else
 | 
						|
#define INC_MUL_COUNT
 | 
						|
#endif
 | 
						|
 | 
						|
#define MOD_MUL(N)                                                    \
 | 
						|
    do                                                                  \
 | 
						|
    {                                                                   \
 | 
						|
        MBEDTLS_MPI_CHK(ecp_modp(&(N), grp));                       \
 | 
						|
        INC_MUL_COUNT                                                   \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
static inline int mbedtls_mpi_mul_mod(const mbedtls_ecp_group *grp,
 | 
						|
                                      mbedtls_mpi *X,
 | 
						|
                                      const mbedtls_mpi *A,
 | 
						|
                                      const mbedtls_mpi *B)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(X, A, B));
 | 
						|
    MOD_MUL(*X);
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
 | 
						|
 * N->s < 0 is a very fast test, which fails only if N is 0
 | 
						|
 */
 | 
						|
#define MOD_SUB(N)                                                    \
 | 
						|
    while ((N).s < 0 && mbedtls_mpi_cmp_int(&(N), 0) != 0)           \
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&(N), &(N), &grp->P))
 | 
						|
 | 
						|
#if (defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \
 | 
						|
    !(defined(MBEDTLS_ECP_NO_FALLBACK) && \
 | 
						|
    defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \
 | 
						|
    defined(MBEDTLS_ECP_ADD_MIXED_ALT))) || \
 | 
						|
    (defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) && \
 | 
						|
    !(defined(MBEDTLS_ECP_NO_FALLBACK) && \
 | 
						|
    defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)))
 | 
						|
static inline int mbedtls_mpi_sub_mod(const mbedtls_ecp_group *grp,
 | 
						|
                                      mbedtls_mpi *X,
 | 
						|
                                      const mbedtls_mpi *A,
 | 
						|
                                      const mbedtls_mpi *B)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(X, A, B));
 | 
						|
    MOD_SUB(*X);
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
#endif /* All functions referencing mbedtls_mpi_sub_mod() are alt-implemented without fallback */
 | 
						|
 | 
						|
/*
 | 
						|
 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
 | 
						|
 * We known P, N and the result are positive, so sub_abs is correct, and
 | 
						|
 * a bit faster.
 | 
						|
 */
 | 
						|
#define MOD_ADD(N)                                                    \
 | 
						|
    while (mbedtls_mpi_cmp_mpi(&(N), &grp->P) >= 0)                  \
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&(N), &(N), &grp->P))
 | 
						|
 | 
						|
static inline int mbedtls_mpi_add_mod(const mbedtls_ecp_group *grp,
 | 
						|
                                      mbedtls_mpi *X,
 | 
						|
                                      const mbedtls_mpi *A,
 | 
						|
                                      const mbedtls_mpi *B)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, A, B));
 | 
						|
    MOD_ADD(*X);
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \
 | 
						|
    !(defined(MBEDTLS_ECP_NO_FALLBACK) && \
 | 
						|
    defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \
 | 
						|
    defined(MBEDTLS_ECP_ADD_MIXED_ALT))
 | 
						|
static inline int mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group *grp,
 | 
						|
                                          mbedtls_mpi *X,
 | 
						|
                                          size_t count)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, count));
 | 
						|
    MOD_ADD(*X);
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
#endif \
 | 
						|
    /* All functions referencing mbedtls_mpi_shift_l_mod() are alt-implemented without fallback */
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | 
						|
/*
 | 
						|
 * For curves in short Weierstrass form, we do all the internal operations in
 | 
						|
 * Jacobian coordinates.
 | 
						|
 *
 | 
						|
 * For multiplication, we'll use a comb method with countermeasures against
 | 
						|
 * SPA, hence timing attacks.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1)
 | 
						|
 * Cost: 1N := 1I + 3M + 1S
 | 
						|
 */
 | 
						|
static int ecp_normalize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt)
 | 
						|
{
 | 
						|
    if (mbedtls_mpi_cmp_int(&pt->Z, 0) == 0) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
 | 
						|
    if (mbedtls_internal_ecp_grp_capable(grp)) {
 | 
						|
        return mbedtls_internal_ecp_normalize_jac(grp, pt);
 | 
						|
    }
 | 
						|
#endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
 | 
						|
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | 
						|
#else
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    mbedtls_mpi Zi, ZZi;
 | 
						|
    mbedtls_mpi_init(&Zi); mbedtls_mpi_init(&ZZi);
 | 
						|
 | 
						|
    /*
 | 
						|
     * X = X / Z^2  mod p
 | 
						|
     */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&Zi,      &pt->Z,     &grp->P));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &ZZi,     &Zi,        &Zi));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &pt->X,   &pt->X,     &ZZi));
 | 
						|
 | 
						|
    /*
 | 
						|
     * Y = Y / Z^3  mod p
 | 
						|
     */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &pt->Y,   &pt->Y,     &ZZi));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &pt->Y,   &pt->Y,     &Zi));
 | 
						|
 | 
						|
    /*
 | 
						|
     * Z = 1
 | 
						|
     */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    mbedtls_mpi_free(&Zi); mbedtls_mpi_free(&ZZi);
 | 
						|
 | 
						|
    return ret;
 | 
						|
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Normalize jacobian coordinates of an array of (pointers to) points,
 | 
						|
 * using Montgomery's trick to perform only one inversion mod P.
 | 
						|
 * (See for example Cohen's "A Course in Computational Algebraic Number
 | 
						|
 * Theory", Algorithm 10.3.4.)
 | 
						|
 *
 | 
						|
 * Warning: fails (returning an error) if one of the points is zero!
 | 
						|
 * This should never happen, see choice of w in ecp_mul_comb().
 | 
						|
 *
 | 
						|
 * Cost: 1N(t) := 1I + (6t - 3)M + 1S
 | 
						|
 */
 | 
						|
static int ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
 | 
						|
                                  mbedtls_ecp_point *T[], size_t T_size)
 | 
						|
{
 | 
						|
    if (T_size < 2) {
 | 
						|
        return ecp_normalize_jac(grp, *T);
 | 
						|
    }
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
 | 
						|
    if (mbedtls_internal_ecp_grp_capable(grp)) {
 | 
						|
        return mbedtls_internal_ecp_normalize_jac_many(grp, T, T_size);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
 | 
						|
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | 
						|
#else
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    size_t i;
 | 
						|
    mbedtls_mpi *c, u, Zi, ZZi;
 | 
						|
 | 
						|
    if ((c = mbedtls_calloc(T_size, sizeof(mbedtls_mpi))) == NULL) {
 | 
						|
        return MBEDTLS_ERR_ECP_ALLOC_FAILED;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < T_size; i++) {
 | 
						|
        mbedtls_mpi_init(&c[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    mbedtls_mpi_init(&u); mbedtls_mpi_init(&Zi); mbedtls_mpi_init(&ZZi);
 | 
						|
 | 
						|
    /*
 | 
						|
     * c[i] = Z_0 * ... * Z_i
 | 
						|
     */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&c[0], &T[0]->Z));
 | 
						|
    for (i = 1; i < T_size; i++) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &c[i], &c[i-1], &T[i]->Z));
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * u = 1 / (Z_0 * ... * Z_n) mod P
 | 
						|
     */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&u, &c[T_size-1], &grp->P));
 | 
						|
 | 
						|
    for (i = T_size - 1;; i--) {
 | 
						|
        /*
 | 
						|
         * Zi = 1 / Z_i mod p
 | 
						|
         * u = 1 / (Z_0 * ... * Z_i) mod P
 | 
						|
         */
 | 
						|
        if (i == 0) {
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Zi, &u));
 | 
						|
        } else {
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &Zi, &u, &c[i-1]));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &u,  &u, &T[i]->Z));
 | 
						|
        }
 | 
						|
 | 
						|
        /*
 | 
						|
         * proceed as in normalize()
 | 
						|
         */
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &ZZi,     &Zi,      &Zi));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T[i]->X, &T[i]->X, &ZZi));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T[i]->Y, &T[i]->Y, &ZZi));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T[i]->Y, &T[i]->Y, &Zi));
 | 
						|
 | 
						|
        /*
 | 
						|
         * Post-precessing: reclaim some memory by shrinking coordinates
 | 
						|
         * - not storing Z (always 1)
 | 
						|
         * - shrinking other coordinates, but still keeping the same number of
 | 
						|
         *   limbs as P, as otherwise it will too likely be regrown too fast.
 | 
						|
         */
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->X, grp->P.n));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->Y, grp->P.n));
 | 
						|
        mbedtls_mpi_free(&T[i]->Z);
 | 
						|
 | 
						|
        if (i == 0) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    mbedtls_mpi_free(&u); mbedtls_mpi_free(&Zi); mbedtls_mpi_free(&ZZi);
 | 
						|
    for (i = 0; i < T_size; i++) {
 | 
						|
        mbedtls_mpi_free(&c[i]);
 | 
						|
    }
 | 
						|
    mbedtls_free(c);
 | 
						|
 | 
						|
    return ret;
 | 
						|
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
 | 
						|
 * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
 | 
						|
 */
 | 
						|
static int ecp_safe_invert_jac(const mbedtls_ecp_group *grp,
 | 
						|
                               mbedtls_ecp_point *Q,
 | 
						|
                               unsigned char inv)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    unsigned char nonzero;
 | 
						|
    mbedtls_mpi mQY;
 | 
						|
 | 
						|
    mbedtls_mpi_init(&mQY);
 | 
						|
 | 
						|
    /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mQY, &grp->P, &Q->Y));
 | 
						|
    nonzero = mbedtls_mpi_cmp_int(&Q->Y, 0) != 0;
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&Q->Y, &mQY, inv & nonzero));
 | 
						|
 | 
						|
cleanup:
 | 
						|
    mbedtls_mpi_free(&mQY);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Point doubling R = 2 P, Jacobian coordinates
 | 
						|
 *
 | 
						|
 * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
 | 
						|
 *
 | 
						|
 * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
 | 
						|
 * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
 | 
						|
 *
 | 
						|
 * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
 | 
						|
 *
 | 
						|
 * Cost: 1D := 3M + 4S          (A ==  0)
 | 
						|
 *             4M + 4S          (A == -3)
 | 
						|
 *             3M + 6S + 1a     otherwise
 | 
						|
 */
 | 
						|
static int ecp_double_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
 | 
						|
                          const mbedtls_ecp_point *P)
 | 
						|
{
 | 
						|
#if defined(MBEDTLS_SELF_TEST)
 | 
						|
    dbl_count++;
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
 | 
						|
    if (mbedtls_internal_ecp_grp_capable(grp)) {
 | 
						|
        return mbedtls_internal_ecp_double_jac(grp, R, P);
 | 
						|
    }
 | 
						|
#endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
 | 
						|
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | 
						|
#else
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    mbedtls_mpi M, S, T, U;
 | 
						|
 | 
						|
    mbedtls_mpi_init(&M); mbedtls_mpi_init(&S); mbedtls_mpi_init(&T); mbedtls_mpi_init(&U);
 | 
						|
 | 
						|
    /* Special case for A = -3 */
 | 
						|
    if (grp->A.p == NULL) {
 | 
						|
        /* M = 3(X + Z^2)(X - Z^2) */
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S,  &P->Z,  &P->Z));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &T,  &P->X,  &S));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &U,  &P->X,  &S));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S,  &T,     &U));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&M,  &S,     3)); MOD_ADD(M);
 | 
						|
    } else {
 | 
						|
        /* M = 3.X^2 */
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S,  &P->X,  &P->X));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&M,  &S,     3)); MOD_ADD(M);
 | 
						|
 | 
						|
        /* Optimize away for "koblitz" curves with A = 0 */
 | 
						|
        if (mbedtls_mpi_cmp_int(&grp->A, 0) != 0) {
 | 
						|
            /* M += A.Z^4 */
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S,  &P->Z,  &P->Z));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T,  &S,     &S));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S,  &T,     &grp->A));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &M,  &M,     &S));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* S = 4.X.Y^2 */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T,  &P->Y,  &P->Y));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, &T,  1));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S,  &P->X,  &T));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, &S,  1));
 | 
						|
 | 
						|
    /* U = 8.Y^4 */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &U,  &T,     &T));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, &U,  1));
 | 
						|
 | 
						|
    /* T = M^2 - 2.S */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T,  &M,     &M));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &T,  &T,     &S));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &T,  &T,     &S));
 | 
						|
 | 
						|
    /* S = M(S - T) - U */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &S,  &S,     &T));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S,  &S,     &M));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &S,  &S,     &U));
 | 
						|
 | 
						|
    /* U = 2.Y.Z */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &U,  &P->Y,  &P->Z));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, &U,  1));
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R->X, &T));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R->Y, &S));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R->Z, &U));
 | 
						|
 | 
						|
cleanup:
 | 
						|
    mbedtls_mpi_free(&M); mbedtls_mpi_free(&S); mbedtls_mpi_free(&T); mbedtls_mpi_free(&U);
 | 
						|
 | 
						|
    return ret;
 | 
						|
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
 | 
						|
 *
 | 
						|
 * The coordinates of Q must be normalized (= affine),
 | 
						|
 * but those of P don't need to. R is not normalized.
 | 
						|
 *
 | 
						|
 * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
 | 
						|
 * None of these cases can happen as intermediate step in ecp_mul_comb():
 | 
						|
 * - at each step, P, Q and R are multiples of the base point, the factor
 | 
						|
 *   being less than its order, so none of them is zero;
 | 
						|
 * - Q is an odd multiple of the base point, P an even multiple,
 | 
						|
 *   due to the choice of precomputed points in the modified comb method.
 | 
						|
 * So branches for these cases do not leak secret information.
 | 
						|
 *
 | 
						|
 * We accept Q->Z being unset (saving memory in tables) as meaning 1.
 | 
						|
 *
 | 
						|
 * Cost: 1A := 8M + 3S
 | 
						|
 */
 | 
						|
static int ecp_add_mixed(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
 | 
						|
                         const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q)
 | 
						|
{
 | 
						|
#if defined(MBEDTLS_SELF_TEST)
 | 
						|
    add_count++;
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
 | 
						|
    if (mbedtls_internal_ecp_grp_capable(grp)) {
 | 
						|
        return mbedtls_internal_ecp_add_mixed(grp, R, P, Q);
 | 
						|
    }
 | 
						|
#endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT)
 | 
						|
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | 
						|
#else
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    mbedtls_mpi T1, T2, T3, T4, X, Y, Z;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Trivial cases: P == 0 or Q == 0 (case 1)
 | 
						|
     */
 | 
						|
    if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) {
 | 
						|
        return mbedtls_ecp_copy(R, Q);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Q->Z.p != NULL && mbedtls_mpi_cmp_int(&Q->Z, 0) == 0) {
 | 
						|
        return mbedtls_ecp_copy(R, P);
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Make sure Q coordinates are normalized
 | 
						|
     */
 | 
						|
    if (Q->Z.p != NULL && mbedtls_mpi_cmp_int(&Q->Z, 1) != 0) {
 | 
						|
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    mbedtls_mpi_init(&T1); mbedtls_mpi_init(&T2); mbedtls_mpi_init(&T3); mbedtls_mpi_init(&T4);
 | 
						|
    mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T1,  &P->Z,  &P->Z));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T2,  &T1,    &P->Z));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T1,  &T1,    &Q->X));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T2,  &T2,    &Q->Y));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &T1,  &T1,    &P->X));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &T2,  &T2,    &P->Y));
 | 
						|
 | 
						|
    /* Special cases (2) and (3) */
 | 
						|
    if (mbedtls_mpi_cmp_int(&T1, 0) == 0) {
 | 
						|
        if (mbedtls_mpi_cmp_int(&T2, 0) == 0) {
 | 
						|
            ret = ecp_double_jac(grp, R, P);
 | 
						|
            goto cleanup;
 | 
						|
        } else {
 | 
						|
            ret = mbedtls_ecp_set_zero(R);
 | 
						|
            goto cleanup;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &Z,   &P->Z,  &T1));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T3,  &T1,    &T1));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T4,  &T3,    &T1));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T3,  &T3,    &P->X));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &T3));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, &T1,  1));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &X,   &T2,    &T2));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &X,   &X,     &T1));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &X,   &X,     &T4));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &T3,  &T3,    &X));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T3,  &T3,    &T2));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T4,  &T4,    &P->Y));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &Y,   &T3,    &T4));
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R->X, &X));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R->Y, &Y));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R->Z, &Z));
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    mbedtls_mpi_free(&T1); mbedtls_mpi_free(&T2); mbedtls_mpi_free(&T3); mbedtls_mpi_free(&T4);
 | 
						|
    mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
 | 
						|
 | 
						|
    return ret;
 | 
						|
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Randomize jacobian coordinates:
 | 
						|
 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
 | 
						|
 * This is sort of the reverse operation of ecp_normalize_jac().
 | 
						|
 *
 | 
						|
 * This countermeasure was first suggested in [2].
 | 
						|
 */
 | 
						|
static int ecp_randomize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
 | 
						|
                             int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
 | 
						|
{
 | 
						|
#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
 | 
						|
    if (mbedtls_internal_ecp_grp_capable(grp)) {
 | 
						|
        return mbedtls_internal_ecp_randomize_jac(grp, pt, f_rng, p_rng);
 | 
						|
    }
 | 
						|
#endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
 | 
						|
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | 
						|
#else
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    mbedtls_mpi l, ll;
 | 
						|
 | 
						|
    mbedtls_mpi_init(&l); mbedtls_mpi_init(&ll);
 | 
						|
 | 
						|
    /* Generate l such that 1 < l < p */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_random(&l, 2, &grp->P, f_rng, p_rng));
 | 
						|
 | 
						|
    /* Z = l * Z */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &pt->Z,   &pt->Z,     &l));
 | 
						|
 | 
						|
    /* X = l^2 * X */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &ll,      &l,         &l));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &pt->X,   &pt->X,     &ll));
 | 
						|
 | 
						|
    /* Y = l^3 * Y */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &ll,      &ll,        &l));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &pt->Y,   &pt->Y,     &ll));
 | 
						|
 | 
						|
cleanup:
 | 
						|
    mbedtls_mpi_free(&l); mbedtls_mpi_free(&ll);
 | 
						|
 | 
						|
    if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
 | 
						|
        ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check and define parameters used by the comb method (see below for details)
 | 
						|
 */
 | 
						|
#if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
 | 
						|
#error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
 | 
						|
#endif
 | 
						|
 | 
						|
/* d = ceil( n / w ) */
 | 
						|
#define COMB_MAX_D      (MBEDTLS_ECP_MAX_BITS + 1) / 2
 | 
						|
 | 
						|
/* number of precomputed points */
 | 
						|
#define COMB_MAX_PRE    (1 << (MBEDTLS_ECP_WINDOW_SIZE - 1))
 | 
						|
 | 
						|
/*
 | 
						|
 * Compute the representation of m that will be used with our comb method.
 | 
						|
 *
 | 
						|
 * The basic comb method is described in GECC 3.44 for example. We use a
 | 
						|
 * modified version that provides resistance to SPA by avoiding zero
 | 
						|
 * digits in the representation as in [3]. We modify the method further by
 | 
						|
 * requiring that all K_i be odd, which has the small cost that our
 | 
						|
 * representation uses one more K_i, due to carries, but saves on the size of
 | 
						|
 * the precomputed table.
 | 
						|
 *
 | 
						|
 * Summary of the comb method and its modifications:
 | 
						|
 *
 | 
						|
 * - The goal is to compute m*P for some w*d-bit integer m.
 | 
						|
 *
 | 
						|
 * - The basic comb method splits m into the w-bit integers
 | 
						|
 *   x[0] .. x[d-1] where x[i] consists of the bits in m whose
 | 
						|
 *   index has residue i modulo d, and computes m * P as
 | 
						|
 *   S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
 | 
						|
 *   S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
 | 
						|
 *
 | 
						|
 * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
 | 
						|
 *    .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
 | 
						|
 *   thereby successively converting it into a form where all summands
 | 
						|
 *   are nonzero, at the cost of negative summands. This is the basic idea of [3].
 | 
						|
 *
 | 
						|
 * - More generally, even if x[i+1] != 0, we can first transform the sum as
 | 
						|
 *   .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
 | 
						|
 *   and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
 | 
						|
 *   Performing and iterating this procedure for those x[i] that are even
 | 
						|
 *   (keeping track of carry), we can transform the original sum into one of the form
 | 
						|
 *   S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
 | 
						|
 *   with all x'[i] odd. It is therefore only necessary to know S at odd indices,
 | 
						|
 *   which is why we are only computing half of it in the first place in
 | 
						|
 *   ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
 | 
						|
 *
 | 
						|
 * - For the sake of compactness, only the seven low-order bits of x[i]
 | 
						|
 *   are used to represent its absolute value (K_i in the paper), and the msb
 | 
						|
 *   of x[i] encodes the sign (s_i in the paper): it is set if and only if
 | 
						|
 *   if s_i == -1;
 | 
						|
 *
 | 
						|
 * Calling conventions:
 | 
						|
 * - x is an array of size d + 1
 | 
						|
 * - w is the size, ie number of teeth, of the comb, and must be between
 | 
						|
 *   2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
 | 
						|
 * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
 | 
						|
 *   (the result will be incorrect if these assumptions are not satisfied)
 | 
						|
 */
 | 
						|
static void ecp_comb_recode_core(unsigned char x[], size_t d,
 | 
						|
                                 unsigned char w, const mbedtls_mpi *m)
 | 
						|
{
 | 
						|
    size_t i, j;
 | 
						|
    unsigned char c, cc, adjust;
 | 
						|
 | 
						|
    memset(x, 0, d+1);
 | 
						|
 | 
						|
    /* First get the classical comb values (except for x_d = 0) */
 | 
						|
    for (i = 0; i < d; i++) {
 | 
						|
        for (j = 0; j < w; j++) {
 | 
						|
            x[i] |= mbedtls_mpi_get_bit(m, i + d * j) << j;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Now make sure x_1 .. x_d are odd */
 | 
						|
    c = 0;
 | 
						|
    for (i = 1; i <= d; i++) {
 | 
						|
        /* Add carry and update it */
 | 
						|
        cc   = x[i] & c;
 | 
						|
        x[i] = x[i] ^ c;
 | 
						|
        c = cc;
 | 
						|
 | 
						|
        /* Adjust if needed, avoiding branches */
 | 
						|
        adjust = 1 - (x[i] & 0x01);
 | 
						|
        c   |= x[i] & (x[i-1] * adjust);
 | 
						|
        x[i] = x[i] ^ (x[i-1] * adjust);
 | 
						|
        x[i-1] |= adjust << 7;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Precompute points for the adapted comb method
 | 
						|
 *
 | 
						|
 * Assumption: T must be able to hold 2^{w - 1} elements.
 | 
						|
 *
 | 
						|
 * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
 | 
						|
 *            sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
 | 
						|
 *
 | 
						|
 * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
 | 
						|
 *
 | 
						|
 * Note: Even comb values (those where P would be omitted from the
 | 
						|
 *       sum defining T[i] above) are not needed in our adaption
 | 
						|
 *       the comb method. See ecp_comb_recode_core().
 | 
						|
 *
 | 
						|
 * This function currently works in four steps:
 | 
						|
 * (1) [dbl]      Computation of intermediate T[i] for 2-power values of i
 | 
						|
 * (2) [norm_dbl] Normalization of coordinates of these T[i]
 | 
						|
 * (3) [add]      Computation of all T[i]
 | 
						|
 * (4) [norm_add] Normalization of all T[i]
 | 
						|
 *
 | 
						|
 * Step 1 can be interrupted but not the others; together with the final
 | 
						|
 * coordinate normalization they are the largest steps done at once, depending
 | 
						|
 * on the window size. Here are operation counts for P-256:
 | 
						|
 *
 | 
						|
 * step     (2)     (3)     (4)
 | 
						|
 * w = 5    142     165     208
 | 
						|
 * w = 4    136      77     160
 | 
						|
 * w = 3    130      33     136
 | 
						|
 * w = 2    124      11     124
 | 
						|
 *
 | 
						|
 * So if ECC operations are blocking for too long even with a low max_ops
 | 
						|
 * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
 | 
						|
 * to minimize maximum blocking time.
 | 
						|
 */
 | 
						|
static int ecp_precompute_comb(const mbedtls_ecp_group *grp,
 | 
						|
                               mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
 | 
						|
                               unsigned char w, size_t d,
 | 
						|
                               mbedtls_ecp_restart_ctx *rs_ctx)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    unsigned char i;
 | 
						|
    size_t j = 0;
 | 
						|
    const unsigned char T_size = 1U << (w - 1);
 | 
						|
    mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1];
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
 | 
						|
        if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
 | 
						|
            goto dbl;
 | 
						|
        }
 | 
						|
        if (rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl) {
 | 
						|
            goto norm_dbl;
 | 
						|
        }
 | 
						|
        if (rs_ctx->rsm->state == ecp_rsm_pre_add) {
 | 
						|
            goto add;
 | 
						|
        }
 | 
						|
        if (rs_ctx->rsm->state == ecp_rsm_pre_norm_add) {
 | 
						|
            goto norm_add;
 | 
						|
        }
 | 
						|
    }
 | 
						|
#else
 | 
						|
    (void) rs_ctx;
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
 | 
						|
        rs_ctx->rsm->state = ecp_rsm_pre_dbl;
 | 
						|
 | 
						|
        /* initial state for the loop */
 | 
						|
        rs_ctx->rsm->i = 0;
 | 
						|
    }
 | 
						|
 | 
						|
dbl:
 | 
						|
#endif
 | 
						|
    /*
 | 
						|
     * Set T[0] = P and
 | 
						|
     * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
 | 
						|
     */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&T[0], P));
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
 | 
						|
        j = rs_ctx->rsm->i;
 | 
						|
    } else
 | 
						|
#endif
 | 
						|
    j = 0;
 | 
						|
 | 
						|
    for (; j < d * (w - 1); j++) {
 | 
						|
        MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL);
 | 
						|
 | 
						|
        i = 1U << (j / d);
 | 
						|
        cur = T + i;
 | 
						|
 | 
						|
        if (j % d == 0) {
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_ecp_copy(cur, T + (i >> 1)));
 | 
						|
        }
 | 
						|
 | 
						|
        MBEDTLS_MPI_CHK(ecp_double_jac(grp, cur, cur));
 | 
						|
    }
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
 | 
						|
        rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
 | 
						|
    }
 | 
						|
 | 
						|
norm_dbl:
 | 
						|
#endif
 | 
						|
    /*
 | 
						|
     * Normalize current elements in T. As T has holes,
 | 
						|
     * use an auxiliary array of pointers to elements in T.
 | 
						|
     */
 | 
						|
    j = 0;
 | 
						|
    for (i = 1; i < T_size; i <<= 1) {
 | 
						|
        TT[j++] = T + i;
 | 
						|
    }
 | 
						|
 | 
						|
    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
 | 
						|
        rs_ctx->rsm->state = ecp_rsm_pre_add;
 | 
						|
    }
 | 
						|
 | 
						|
add:
 | 
						|
#endif
 | 
						|
    /*
 | 
						|
     * Compute the remaining ones using the minimal number of additions
 | 
						|
     * Be careful to update T[2^l] only after using it!
 | 
						|
     */
 | 
						|
    MBEDTLS_ECP_BUDGET((T_size - 1) * MBEDTLS_ECP_OPS_ADD);
 | 
						|
 | 
						|
    for (i = 1; i < T_size; i <<= 1) {
 | 
						|
        j = i;
 | 
						|
        while (j--) {
 | 
						|
            MBEDTLS_MPI_CHK(ecp_add_mixed(grp, &T[i + j], &T[j], &T[i]));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
 | 
						|
        rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
 | 
						|
    }
 | 
						|
 | 
						|
norm_add:
 | 
						|
#endif
 | 
						|
    /*
 | 
						|
     * Normalize final elements in T. Even though there are no holes now, we
 | 
						|
     * still need the auxiliary array for homogeneity with the previous
 | 
						|
     * call. Also, skip T[0] which is already normalised, being a copy of P.
 | 
						|
     */
 | 
						|
    for (j = 0; j + 1 < T_size; j++) {
 | 
						|
        TT[j] = T + j + 1;
 | 
						|
    }
 | 
						|
 | 
						|
    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
 | 
						|
 | 
						|
cleanup:
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
 | 
						|
        ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
 | 
						|
        if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
 | 
						|
            rs_ctx->rsm->i = j;
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
 | 
						|
 *
 | 
						|
 * See ecp_comb_recode_core() for background
 | 
						|
 */
 | 
						|
static int ecp_select_comb(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
 | 
						|
                           const mbedtls_ecp_point T[], unsigned char T_size,
 | 
						|
                           unsigned char i)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    unsigned char ii, j;
 | 
						|
 | 
						|
    /* Ignore the "sign" bit and scale down */
 | 
						|
    ii =  (i & 0x7Fu) >> 1;
 | 
						|
 | 
						|
    /* Read the whole table to thwart cache-based timing attacks */
 | 
						|
    for (j = 0; j < T_size; j++) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&R->X, &T[j].X, j == ii));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&R->Y, &T[j].Y, j == ii));
 | 
						|
    }
 | 
						|
 | 
						|
    /* Safely invert result if i is "negative" */
 | 
						|
    MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, R, i >> 7));
 | 
						|
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Core multiplication algorithm for the (modified) comb method.
 | 
						|
 * This part is actually common with the basic comb method (GECC 3.44)
 | 
						|
 *
 | 
						|
 * Cost: d A + d D + 1 R
 | 
						|
 */
 | 
						|
static int ecp_mul_comb_core(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
 | 
						|
                             const mbedtls_ecp_point T[], unsigned char T_size,
 | 
						|
                             const unsigned char x[], size_t d,
 | 
						|
                             int (*f_rng)(void *, unsigned char *, size_t),
 | 
						|
                             void *p_rng,
 | 
						|
                             mbedtls_ecp_restart_ctx *rs_ctx)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    mbedtls_ecp_point Txi;
 | 
						|
    size_t i;
 | 
						|
 | 
						|
    mbedtls_ecp_point_init(&Txi);
 | 
						|
 | 
						|
#if !defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    (void) rs_ctx;
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
 | 
						|
        rs_ctx->rsm->state != ecp_rsm_comb_core) {
 | 
						|
        rs_ctx->rsm->i = 0;
 | 
						|
        rs_ctx->rsm->state = ecp_rsm_comb_core;
 | 
						|
    }
 | 
						|
 | 
						|
    /* new 'if' instead of nested for the sake of the 'else' branch */
 | 
						|
    if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
 | 
						|
        /* restore current index (R already pointing to rs_ctx->rsm->R) */
 | 
						|
        i = rs_ctx->rsm->i;
 | 
						|
    } else
 | 
						|
#endif
 | 
						|
    {
 | 
						|
        int have_rng = 1;
 | 
						|
 | 
						|
        /* Start with a non-zero point and randomize its coordinates */
 | 
						|
        i = d;
 | 
						|
        MBEDTLS_MPI_CHK(ecp_select_comb(grp, R, T, T_size, x[i]));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&R->Z, 1));
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | 
						|
        if (f_rng == NULL) {
 | 
						|
            have_rng = 0;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        if (have_rng) {
 | 
						|
            MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, R, f_rng, p_rng));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    while (i != 0) {
 | 
						|
        MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD);
 | 
						|
        --i;
 | 
						|
 | 
						|
        MBEDTLS_MPI_CHK(ecp_double_jac(grp, R, R));
 | 
						|
        MBEDTLS_MPI_CHK(ecp_select_comb(grp, &Txi, T, T_size, x[i]));
 | 
						|
        MBEDTLS_MPI_CHK(ecp_add_mixed(grp, R, R, &Txi));
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    mbedtls_ecp_point_free(&Txi);
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
 | 
						|
        ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
 | 
						|
        rs_ctx->rsm->i = i;
 | 
						|
        /* no need to save R, already pointing to rs_ctx->rsm->R */
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Recode the scalar to get constant-time comb multiplication
 | 
						|
 *
 | 
						|
 * As the actual scalar recoding needs an odd scalar as a starting point,
 | 
						|
 * this wrapper ensures that by replacing m by N - m if necessary, and
 | 
						|
 * informs the caller that the result of multiplication will be negated.
 | 
						|
 *
 | 
						|
 * This works because we only support large prime order for Short Weierstrass
 | 
						|
 * curves, so N is always odd hence either m or N - m is.
 | 
						|
 *
 | 
						|
 * See ecp_comb_recode_core() for background.
 | 
						|
 */
 | 
						|
static int ecp_comb_recode_scalar(const mbedtls_ecp_group *grp,
 | 
						|
                                  const mbedtls_mpi *m,
 | 
						|
                                  unsigned char k[COMB_MAX_D + 1],
 | 
						|
                                  size_t d,
 | 
						|
                                  unsigned char w,
 | 
						|
                                  unsigned char *parity_trick)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    mbedtls_mpi M, mm;
 | 
						|
 | 
						|
    mbedtls_mpi_init(&M);
 | 
						|
    mbedtls_mpi_init(&mm);
 | 
						|
 | 
						|
    /* N is always odd (see above), just make extra sure */
 | 
						|
    if (mbedtls_mpi_get_bit(&grp->N, 0) != 1) {
 | 
						|
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    /* do we need the parity trick? */
 | 
						|
    *parity_trick = (mbedtls_mpi_get_bit(m, 0) == 0);
 | 
						|
 | 
						|
    /* execute parity fix in constant time */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&M, m));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mm, &grp->N, m));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&M, &mm, *parity_trick));
 | 
						|
 | 
						|
    /* actual scalar recoding */
 | 
						|
    ecp_comb_recode_core(k, d, w, &M);
 | 
						|
 | 
						|
cleanup:
 | 
						|
    mbedtls_mpi_free(&mm);
 | 
						|
    mbedtls_mpi_free(&M);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Perform comb multiplication (for short Weierstrass curves)
 | 
						|
 * once the auxiliary table has been pre-computed.
 | 
						|
 *
 | 
						|
 * Scalar recoding may use a parity trick that makes us compute -m * P,
 | 
						|
 * if that is the case we'll need to recover m * P at the end.
 | 
						|
 */
 | 
						|
static int ecp_mul_comb_after_precomp(const mbedtls_ecp_group *grp,
 | 
						|
                                      mbedtls_ecp_point *R,
 | 
						|
                                      const mbedtls_mpi *m,
 | 
						|
                                      const mbedtls_ecp_point *T,
 | 
						|
                                      unsigned char T_size,
 | 
						|
                                      unsigned char w,
 | 
						|
                                      size_t d,
 | 
						|
                                      int (*f_rng)(void *, unsigned char *, size_t),
 | 
						|
                                      void *p_rng,
 | 
						|
                                      mbedtls_ecp_restart_ctx *rs_ctx)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    unsigned char parity_trick;
 | 
						|
    unsigned char k[COMB_MAX_D + 1];
 | 
						|
    mbedtls_ecp_point *RR = R;
 | 
						|
    int have_rng = 1;
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
 | 
						|
        RR = &rs_ctx->rsm->R;
 | 
						|
 | 
						|
        if (rs_ctx->rsm->state == ecp_rsm_final_norm) {
 | 
						|
            goto final_norm;
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(ecp_comb_recode_scalar(grp, m, k, d, w,
 | 
						|
                                           &parity_trick));
 | 
						|
    MBEDTLS_MPI_CHK(ecp_mul_comb_core(grp, RR, T, T_size, k, d,
 | 
						|
                                      f_rng, p_rng, rs_ctx));
 | 
						|
    MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, RR, parity_trick));
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
 | 
						|
        rs_ctx->rsm->state = ecp_rsm_final_norm;
 | 
						|
    }
 | 
						|
 | 
						|
final_norm:
 | 
						|
    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
 | 
						|
#endif
 | 
						|
    /*
 | 
						|
     * Knowledge of the jacobian coordinates may leak the last few bits of the
 | 
						|
     * scalar [1], and since our MPI implementation isn't constant-flow,
 | 
						|
     * inversion (used for coordinate normalization) may leak the full value
 | 
						|
     * of its input via side-channels [2].
 | 
						|
     *
 | 
						|
     * [1] https://eprint.iacr.org/2003/191
 | 
						|
     * [2] https://eprint.iacr.org/2020/055
 | 
						|
     *
 | 
						|
     * Avoid the leak by randomizing coordinates before we normalize them.
 | 
						|
     */
 | 
						|
#if defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | 
						|
    if (f_rng == NULL) {
 | 
						|
        have_rng = 0;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    if (have_rng) {
 | 
						|
        MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, RR, f_rng, p_rng));
 | 
						|
    }
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, RR));
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, RR));
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Pick window size based on curve size and whether we optimize for base point
 | 
						|
 */
 | 
						|
static unsigned char ecp_pick_window_size(const mbedtls_ecp_group *grp,
 | 
						|
                                          unsigned char p_eq_g)
 | 
						|
{
 | 
						|
    unsigned char w;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Minimize the number of multiplications, that is minimize
 | 
						|
     * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
 | 
						|
     * (see costs of the various parts, with 1S = 1M)
 | 
						|
     */
 | 
						|
    w = grp->nbits >= 384 ? 5 : 4;
 | 
						|
 | 
						|
    /*
 | 
						|
     * If P == G, pre-compute a bit more, since this may be re-used later.
 | 
						|
     * Just adding one avoids upping the cost of the first mul too much,
 | 
						|
     * and the memory cost too.
 | 
						|
     */
 | 
						|
    if (p_eq_g) {
 | 
						|
        w++;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Make sure w is within bounds.
 | 
						|
     * (The last test is useful only for very small curves in the test suite.)
 | 
						|
     */
 | 
						|
#if (MBEDTLS_ECP_WINDOW_SIZE < 6)
 | 
						|
    if (w > MBEDTLS_ECP_WINDOW_SIZE) {
 | 
						|
        w = MBEDTLS_ECP_WINDOW_SIZE;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    if (w >= grp->nbits) {
 | 
						|
        w = 2;
 | 
						|
    }
 | 
						|
 | 
						|
    return w;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Multiplication using the comb method - for curves in short Weierstrass form
 | 
						|
 *
 | 
						|
 * This function is mainly responsible for administrative work:
 | 
						|
 * - managing the restart context if enabled
 | 
						|
 * - managing the table of precomputed points (passed between the below two
 | 
						|
 *   functions): allocation, computation, ownership transfer, freeing.
 | 
						|
 *
 | 
						|
 * It delegates the actual arithmetic work to:
 | 
						|
 *      ecp_precompute_comb() and ecp_mul_comb_with_precomp()
 | 
						|
 *
 | 
						|
 * See comments on ecp_comb_recode_core() regarding the computation strategy.
 | 
						|
 */
 | 
						|
static int ecp_mul_comb(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
 | 
						|
                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,
 | 
						|
                        int (*f_rng)(void *, unsigned char *, size_t),
 | 
						|
                        void *p_rng,
 | 
						|
                        mbedtls_ecp_restart_ctx *rs_ctx)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    unsigned char w, p_eq_g, i;
 | 
						|
    size_t d;
 | 
						|
    unsigned char T_size = 0, T_ok = 0;
 | 
						|
    mbedtls_ecp_point *T = NULL;
 | 
						|
#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | 
						|
    ecp_drbg_context drbg_ctx;
 | 
						|
 | 
						|
    ecp_drbg_init(&drbg_ctx);
 | 
						|
#endif
 | 
						|
 | 
						|
    ECP_RS_ENTER(rsm);
 | 
						|
 | 
						|
#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | 
						|
    if (f_rng == NULL) {
 | 
						|
        /* Adjust pointers */
 | 
						|
        f_rng = &ecp_drbg_random;
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
        if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
 | 
						|
            p_rng = &rs_ctx->rsm->drbg_ctx;
 | 
						|
        } else
 | 
						|
#endif
 | 
						|
        p_rng = &drbg_ctx;
 | 
						|
 | 
						|
        /* Initialize internal DRBG if necessary */
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
        if (rs_ctx == NULL || rs_ctx->rsm == NULL ||
 | 
						|
            rs_ctx->rsm->drbg_seeded == 0)
 | 
						|
#endif
 | 
						|
        {
 | 
						|
            const size_t m_len = (grp->nbits + 7) / 8;
 | 
						|
            MBEDTLS_MPI_CHK(ecp_drbg_seed(p_rng, m, m_len));
 | 
						|
        }
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
        if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
 | 
						|
            rs_ctx->rsm->drbg_seeded = 1;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
#endif /* !MBEDTLS_ECP_NO_INTERNAL_RNG */
 | 
						|
 | 
						|
    /* Is P the base point ? */
 | 
						|
#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
 | 
						|
    p_eq_g = (mbedtls_mpi_cmp_mpi(&P->Y, &grp->G.Y) == 0 &&
 | 
						|
              mbedtls_mpi_cmp_mpi(&P->X, &grp->G.X) == 0);
 | 
						|
#else
 | 
						|
    p_eq_g = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
    /* Pick window size and deduce related sizes */
 | 
						|
    w = ecp_pick_window_size(grp, p_eq_g);
 | 
						|
    T_size = 1U << (w - 1);
 | 
						|
    d = (grp->nbits + w - 1) / w;
 | 
						|
 | 
						|
    /* Pre-computed table: do we have it already for the base point? */
 | 
						|
    if (p_eq_g && grp->T != NULL) {
 | 
						|
        /* second pointer to the same table, will be deleted on exit */
 | 
						|
        T = grp->T;
 | 
						|
        T_ok = 1;
 | 
						|
    } else
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    /* Pre-computed table: do we have one in progress? complete? */
 | 
						|
    if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL) {
 | 
						|
        /* transfer ownership of T from rsm to local function */
 | 
						|
        T = rs_ctx->rsm->T;
 | 
						|
        rs_ctx->rsm->T = NULL;
 | 
						|
        rs_ctx->rsm->T_size = 0;
 | 
						|
 | 
						|
        /* This effectively jumps to the call to mul_comb_after_precomp() */
 | 
						|
        T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
 | 
						|
    } else
 | 
						|
#endif
 | 
						|
    /* Allocate table if we didn't have any */
 | 
						|
    {
 | 
						|
        T = mbedtls_calloc(T_size, sizeof(mbedtls_ecp_point));
 | 
						|
        if (T == NULL) {
 | 
						|
            ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
 | 
						|
            goto cleanup;
 | 
						|
        }
 | 
						|
 | 
						|
        for (i = 0; i < T_size; i++) {
 | 
						|
            mbedtls_ecp_point_init(&T[i]);
 | 
						|
        }
 | 
						|
 | 
						|
        T_ok = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Compute table (or finish computing it) if not done already */
 | 
						|
    if (!T_ok) {
 | 
						|
        MBEDTLS_MPI_CHK(ecp_precompute_comb(grp, T, P, w, d, rs_ctx));
 | 
						|
 | 
						|
        if (p_eq_g) {
 | 
						|
            /* almost transfer ownership of T to the group, but keep a copy of
 | 
						|
             * the pointer to use for calling the next function more easily */
 | 
						|
            grp->T = T;
 | 
						|
            grp->T_size = T_size;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Actual comb multiplication using precomputed points */
 | 
						|
    MBEDTLS_MPI_CHK(ecp_mul_comb_after_precomp(grp, R, m,
 | 
						|
                                               T, T_size, w, d,
 | 
						|
                                               f_rng, p_rng, rs_ctx));
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | 
						|
    ecp_drbg_free(&drbg_ctx);
 | 
						|
#endif
 | 
						|
 | 
						|
    /* does T belong to the group? */
 | 
						|
    if (T == grp->T) {
 | 
						|
        T = NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* does T belong to the restart context? */
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL) {
 | 
						|
        /* transfer ownership of T from local function to rsm */
 | 
						|
        rs_ctx->rsm->T_size = T_size;
 | 
						|
        rs_ctx->rsm->T = T;
 | 
						|
        T = NULL;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    /* did T belong to us? then let's destroy it! */
 | 
						|
    if (T != NULL) {
 | 
						|
        for (i = 0; i < T_size; i++) {
 | 
						|
            mbedtls_ecp_point_free(&T[i]);
 | 
						|
        }
 | 
						|
        mbedtls_free(T);
 | 
						|
    }
 | 
						|
 | 
						|
    /* prevent caller from using invalid value */
 | 
						|
    int should_free_R = (ret != 0);
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    /* don't free R while in progress in case R == P */
 | 
						|
    if (ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
 | 
						|
        should_free_R = 0;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    if (should_free_R) {
 | 
						|
        mbedtls_ecp_point_free(R);
 | 
						|
    }
 | 
						|
 | 
						|
    ECP_RS_LEAVE(rsm);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | 
						|
/*
 | 
						|
 * For Montgomery curves, we do all the internal arithmetic in projective
 | 
						|
 * coordinates. Import/export of points uses only the x coordinates, which is
 | 
						|
 * internally represented as X / Z.
 | 
						|
 *
 | 
						|
 * For scalar multiplication, we'll use a Montgomery ladder.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
 | 
						|
 * Cost: 1M + 1I
 | 
						|
 */
 | 
						|
static int ecp_normalize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P)
 | 
						|
{
 | 
						|
#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
 | 
						|
    if (mbedtls_internal_ecp_grp_capable(grp)) {
 | 
						|
        return mbedtls_internal_ecp_normalize_mxz(grp, P);
 | 
						|
    }
 | 
						|
#endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
 | 
						|
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | 
						|
#else
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&P->Z, &P->Z, &grp->P));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &P->X, &P->X, &P->Z));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1));
 | 
						|
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Randomize projective x/z coordinates:
 | 
						|
 * (X, Z) -> (l X, l Z) for random l
 | 
						|
 * This is sort of the reverse operation of ecp_normalize_mxz().
 | 
						|
 *
 | 
						|
 * This countermeasure was first suggested in [2].
 | 
						|
 * Cost: 2M
 | 
						|
 */
 | 
						|
static int ecp_randomize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
 | 
						|
                             int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
 | 
						|
{
 | 
						|
#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
 | 
						|
    if (mbedtls_internal_ecp_grp_capable(grp)) {
 | 
						|
        return mbedtls_internal_ecp_randomize_mxz(grp, P, f_rng, p_rng);
 | 
						|
    }
 | 
						|
#endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
 | 
						|
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | 
						|
#else
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    mbedtls_mpi l;
 | 
						|
    mbedtls_mpi_init(&l);
 | 
						|
 | 
						|
    /* Generate l such that 1 < l < p */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_random(&l, 2, &grp->P, f_rng, p_rng));
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &P->X, &P->X, &l));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &P->Z, &P->Z, &l));
 | 
						|
 | 
						|
cleanup:
 | 
						|
    mbedtls_mpi_free(&l);
 | 
						|
 | 
						|
    if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
 | 
						|
        ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
 | 
						|
 * for Montgomery curves in x/z coordinates.
 | 
						|
 *
 | 
						|
 * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
 | 
						|
 * with
 | 
						|
 * d =  X1
 | 
						|
 * P = (X2, Z2)
 | 
						|
 * Q = (X3, Z3)
 | 
						|
 * R = (X4, Z4)
 | 
						|
 * S = (X5, Z5)
 | 
						|
 * and eliminating temporary variables tO, ..., t4.
 | 
						|
 *
 | 
						|
 * Cost: 5M + 4S
 | 
						|
 */
 | 
						|
static int ecp_double_add_mxz(const mbedtls_ecp_group *grp,
 | 
						|
                              mbedtls_ecp_point *R, mbedtls_ecp_point *S,
 | 
						|
                              const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
 | 
						|
                              const mbedtls_mpi *d)
 | 
						|
{
 | 
						|
#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
 | 
						|
    if (mbedtls_internal_ecp_grp_capable(grp)) {
 | 
						|
        return mbedtls_internal_ecp_double_add_mxz(grp, R, S, P, Q, d);
 | 
						|
    }
 | 
						|
#endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
 | 
						|
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | 
						|
#else
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    mbedtls_mpi A, AA, B, BB, E, C, D, DA, CB;
 | 
						|
 | 
						|
    mbedtls_mpi_init(&A); mbedtls_mpi_init(&AA); mbedtls_mpi_init(&B);
 | 
						|
    mbedtls_mpi_init(&BB); mbedtls_mpi_init(&E); mbedtls_mpi_init(&C);
 | 
						|
    mbedtls_mpi_init(&D); mbedtls_mpi_init(&DA); mbedtls_mpi_init(&CB);
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &A,    &P->X,   &P->Z));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &AA,   &A,      &A));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &B,    &P->X,   &P->Z));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &BB,   &B,      &B));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &E,    &AA,     &BB));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &C,    &Q->X,   &Q->Z));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &D,    &Q->X,   &Q->Z));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &DA,   &D,      &A));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &CB,   &C,      &B));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &S->X, &DA,     &CB));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S->X, &S->X,   &S->X));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &S->Z, &DA,     &CB));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S->Z, &S->Z,   &S->Z));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S->Z, d,       &S->Z));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &R->X, &AA,     &BB));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &R->Z, &grp->A, &E));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &R->Z, &BB,     &R->Z));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &R->Z, &E,      &R->Z));
 | 
						|
 | 
						|
cleanup:
 | 
						|
    mbedtls_mpi_free(&A); mbedtls_mpi_free(&AA); mbedtls_mpi_free(&B);
 | 
						|
    mbedtls_mpi_free(&BB); mbedtls_mpi_free(&E); mbedtls_mpi_free(&C);
 | 
						|
    mbedtls_mpi_free(&D); mbedtls_mpi_free(&DA); mbedtls_mpi_free(&CB);
 | 
						|
 | 
						|
    return ret;
 | 
						|
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Multiplication with Montgomery ladder in x/z coordinates,
 | 
						|
 * for curves in Montgomery form
 | 
						|
 */
 | 
						|
static int ecp_mul_mxz(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
 | 
						|
                       const mbedtls_mpi *m, const mbedtls_ecp_point *P,
 | 
						|
                       int (*f_rng)(void *, unsigned char *, size_t),
 | 
						|
                       void *p_rng)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    int have_rng = 1;
 | 
						|
    size_t i;
 | 
						|
    unsigned char b;
 | 
						|
    mbedtls_ecp_point RP;
 | 
						|
    mbedtls_mpi PX;
 | 
						|
#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | 
						|
    ecp_drbg_context drbg_ctx;
 | 
						|
 | 
						|
    ecp_drbg_init(&drbg_ctx);
 | 
						|
#endif
 | 
						|
    mbedtls_ecp_point_init(&RP); mbedtls_mpi_init(&PX);
 | 
						|
 | 
						|
#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | 
						|
    if (f_rng == NULL) {
 | 
						|
        const size_t m_len = (grp->nbits + 7) / 8;
 | 
						|
        MBEDTLS_MPI_CHK(ecp_drbg_seed(&drbg_ctx, m, m_len));
 | 
						|
        f_rng = &ecp_drbg_random;
 | 
						|
        p_rng = &drbg_ctx;
 | 
						|
    }
 | 
						|
#endif /* !MBEDTLS_ECP_NO_INTERNAL_RNG */
 | 
						|
 | 
						|
    /* Save PX and read from P before writing to R, in case P == R */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&PX, &P->X));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&RP, P));
 | 
						|
 | 
						|
    /* Set R to zero in modified x/z coordinates */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&R->X, 1));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&R->Z, 0));
 | 
						|
    mbedtls_mpi_free(&R->Y);
 | 
						|
 | 
						|
    /* RP.X might be slightly larger than P, so reduce it */
 | 
						|
    MOD_ADD(RP.X);
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | 
						|
    /* Derandomize coordinates of the starting point */
 | 
						|
    if (f_rng == NULL) {
 | 
						|
        have_rng = 0;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    if (have_rng) {
 | 
						|
        MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, &RP, f_rng, p_rng));
 | 
						|
    }
 | 
						|
 | 
						|
    /* Loop invariant: R = result so far, RP = R + P */
 | 
						|
    i = grp->nbits + 1; /* one past the (zero-based) required msb for private keys */
 | 
						|
    while (i-- > 0) {
 | 
						|
        b = mbedtls_mpi_get_bit(m, i);
 | 
						|
        /*
 | 
						|
         *  if (b) R = 2R + P else R = 2R,
 | 
						|
         * which is:
 | 
						|
         *  if (b) double_add( RP, R, RP, R )
 | 
						|
         *  else   double_add( R, RP, R, RP )
 | 
						|
         * but using safe conditional swaps to avoid leaks
 | 
						|
         */
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap(&R->X, &RP.X, b));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap(&R->Z, &RP.Z, b));
 | 
						|
        MBEDTLS_MPI_CHK(ecp_double_add_mxz(grp, R, &RP, R, &RP, &PX));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap(&R->X, &RP.X, b));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap(&R->Z, &RP.Z, b));
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Knowledge of the projective coordinates may leak the last few bits of the
 | 
						|
     * scalar [1], and since our MPI implementation isn't constant-flow,
 | 
						|
     * inversion (used for coordinate normalization) may leak the full value
 | 
						|
     * of its input via side-channels [2].
 | 
						|
     *
 | 
						|
     * [1] https://eprint.iacr.org/2003/191
 | 
						|
     * [2] https://eprint.iacr.org/2020/055
 | 
						|
     *
 | 
						|
     * Avoid the leak by randomizing coordinates before we normalize them.
 | 
						|
     */
 | 
						|
    have_rng = 1;
 | 
						|
#if defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | 
						|
    if (f_rng == NULL) {
 | 
						|
        have_rng = 0;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    if (have_rng) {
 | 
						|
        MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, R, f_rng, p_rng));
 | 
						|
    }
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(ecp_normalize_mxz(grp, R));
 | 
						|
 | 
						|
cleanup:
 | 
						|
#if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | 
						|
    ecp_drbg_free(&drbg_ctx);
 | 
						|
#endif
 | 
						|
 | 
						|
    mbedtls_ecp_point_free(&RP); mbedtls_mpi_free(&PX);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
 | 
						|
 | 
						|
/*
 | 
						|
 * Restartable multiplication R = m * P
 | 
						|
 */
 | 
						|
int mbedtls_ecp_mul_restartable(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
 | 
						|
                                const mbedtls_mpi *m, const mbedtls_ecp_point *P,
 | 
						|
                                int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
 | 
						|
                                mbedtls_ecp_restart_ctx *rs_ctx)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | 
						|
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
 | 
						|
    char is_grp_capable = 0;
 | 
						|
#endif
 | 
						|
    ECP_VALIDATE_RET(grp != NULL);
 | 
						|
    ECP_VALIDATE_RET(R   != NULL);
 | 
						|
    ECP_VALIDATE_RET(m   != NULL);
 | 
						|
    ECP_VALIDATE_RET(P   != NULL);
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    /* reset ops count for this call if top-level */
 | 
						|
    if (rs_ctx != NULL && rs_ctx->depth++ == 0) {
 | 
						|
        rs_ctx->ops_done = 0;
 | 
						|
    }
 | 
						|
#else
 | 
						|
    (void) rs_ctx;
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
 | 
						|
    if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
 | 
						|
    }
 | 
						|
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
 | 
						|
 | 
						|
    int restarting = 0;
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    restarting = (rs_ctx != NULL && rs_ctx->rsm != NULL);
 | 
						|
#endif
 | 
						|
    /* skip argument check when restarting */
 | 
						|
    if (!restarting) {
 | 
						|
        /* check_privkey is free */
 | 
						|
        MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_CHK);
 | 
						|
 | 
						|
        /* Common sanity checks */
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(grp, m));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
 | 
						|
    }
 | 
						|
 | 
						|
    ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | 
						|
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | 
						|
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
 | 
						|
        MBEDTLS_MPI_CHK(ecp_mul_mxz(grp, R, m, P, f_rng, p_rng));
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | 
						|
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
 | 
						|
        MBEDTLS_MPI_CHK(ecp_mul_comb(grp, R, m, P, f_rng, p_rng, rs_ctx));
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
 | 
						|
    if (is_grp_capable) {
 | 
						|
        mbedtls_internal_ecp_free(grp);
 | 
						|
    }
 | 
						|
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    if (rs_ctx != NULL) {
 | 
						|
        rs_ctx->depth--;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Multiplication R = m * P
 | 
						|
 */
 | 
						|
int mbedtls_ecp_mul(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
 | 
						|
                    const mbedtls_mpi *m, const mbedtls_ecp_point *P,
 | 
						|
                    int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
 | 
						|
{
 | 
						|
    ECP_VALIDATE_RET(grp != NULL);
 | 
						|
    ECP_VALIDATE_RET(R   != NULL);
 | 
						|
    ECP_VALIDATE_RET(m   != NULL);
 | 
						|
    ECP_VALIDATE_RET(P   != NULL);
 | 
						|
    return mbedtls_ecp_mul_restartable(grp, R, m, P, f_rng, p_rng, NULL);
 | 
						|
}
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | 
						|
/*
 | 
						|
 * Check that an affine point is valid as a public key,
 | 
						|
 * short weierstrass curves (SEC1 3.2.3.1)
 | 
						|
 */
 | 
						|
static int ecp_check_pubkey_sw(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    mbedtls_mpi YY, RHS;
 | 
						|
 | 
						|
    /* pt coordinates must be normalized for our checks */
 | 
						|
    if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0 ||
 | 
						|
        mbedtls_mpi_cmp_int(&pt->Y, 0) < 0 ||
 | 
						|
        mbedtls_mpi_cmp_mpi(&pt->X, &grp->P) >= 0 ||
 | 
						|
        mbedtls_mpi_cmp_mpi(&pt->Y, &grp->P) >= 0) {
 | 
						|
        return MBEDTLS_ERR_ECP_INVALID_KEY;
 | 
						|
    }
 | 
						|
 | 
						|
    mbedtls_mpi_init(&YY); mbedtls_mpi_init(&RHS);
 | 
						|
 | 
						|
    /*
 | 
						|
     * YY = Y^2
 | 
						|
     * RHS = X (X^2 + A) + B = X^3 + A X + B
 | 
						|
     */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &YY,  &pt->Y,   &pt->Y));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &RHS, &pt->X,   &pt->X));
 | 
						|
 | 
						|
    /* Special case for A = -3 */
 | 
						|
    if (grp->A.p == NULL) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&RHS, &RHS, 3));  MOD_SUB(RHS);
 | 
						|
    } else {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &RHS, &RHS, &grp->A));
 | 
						|
    }
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &RHS, &RHS,     &pt->X));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &RHS, &RHS,     &grp->B));
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_mpi(&YY, &RHS) != 0) {
 | 
						|
        ret = MBEDTLS_ERR_ECP_INVALID_KEY;
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    mbedtls_mpi_free(&YY); mbedtls_mpi_free(&RHS);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | 
						|
/*
 | 
						|
 * R = m * P with shortcuts for m == 0, m == 1 and m == -1
 | 
						|
 * NOT constant-time - ONLY for short Weierstrass!
 | 
						|
 */
 | 
						|
static int mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group *grp,
 | 
						|
                                     mbedtls_ecp_point *R,
 | 
						|
                                     const mbedtls_mpi *m,
 | 
						|
                                     const mbedtls_ecp_point *P,
 | 
						|
                                     mbedtls_ecp_restart_ctx *rs_ctx)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_int(m, 0) == 0) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R));
 | 
						|
    } else if (mbedtls_mpi_cmp_int(m, 1) == 0) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
 | 
						|
    } else if (mbedtls_mpi_cmp_int(m, -1) == 0) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
 | 
						|
        if (mbedtls_mpi_cmp_int(&R->Y, 0) != 0) {
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&R->Y, &grp->P, &R->Y));
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_ecp_mul_restartable(grp, R, m, P,
 | 
						|
                                                    NULL, NULL, rs_ctx));
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Restartable linear combination
 | 
						|
 * NOT constant-time
 | 
						|
 */
 | 
						|
int mbedtls_ecp_muladd_restartable(
 | 
						|
    mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
 | 
						|
    const mbedtls_mpi *m, const mbedtls_ecp_point *P,
 | 
						|
    const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
 | 
						|
    mbedtls_ecp_restart_ctx *rs_ctx)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    mbedtls_ecp_point mP;
 | 
						|
    mbedtls_ecp_point *pmP = &mP;
 | 
						|
    mbedtls_ecp_point *pR = R;
 | 
						|
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
 | 
						|
    char is_grp_capable = 0;
 | 
						|
#endif
 | 
						|
    ECP_VALIDATE_RET(grp != NULL);
 | 
						|
    ECP_VALIDATE_RET(R   != NULL);
 | 
						|
    ECP_VALIDATE_RET(m   != NULL);
 | 
						|
    ECP_VALIDATE_RET(P   != NULL);
 | 
						|
    ECP_VALIDATE_RET(n   != NULL);
 | 
						|
    ECP_VALIDATE_RET(Q   != NULL);
 | 
						|
 | 
						|
    if (mbedtls_ecp_get_type(grp) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
 | 
						|
        return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | 
						|
    }
 | 
						|
 | 
						|
    mbedtls_ecp_point_init(&mP);
 | 
						|
 | 
						|
    ECP_RS_ENTER(ma);
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
 | 
						|
        /* redirect intermediate results to restart context */
 | 
						|
        pmP = &rs_ctx->ma->mP;
 | 
						|
        pR  = &rs_ctx->ma->R;
 | 
						|
 | 
						|
        /* jump to next operation */
 | 
						|
        if (rs_ctx->ma->state == ecp_rsma_mul2) {
 | 
						|
            goto mul2;
 | 
						|
        }
 | 
						|
        if (rs_ctx->ma->state == ecp_rsma_add) {
 | 
						|
            goto add;
 | 
						|
        }
 | 
						|
        if (rs_ctx->ma->state == ecp_rsma_norm) {
 | 
						|
            goto norm;
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif /* MBEDTLS_ECP_RESTARTABLE */
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pmP, m, P, rs_ctx));
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
 | 
						|
        rs_ctx->ma->state = ecp_rsma_mul2;
 | 
						|
    }
 | 
						|
 | 
						|
mul2:
 | 
						|
#endif
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pR,  n, Q, rs_ctx));
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
 | 
						|
    if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
 | 
						|
    }
 | 
						|
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
 | 
						|
        rs_ctx->ma->state = ecp_rsma_add;
 | 
						|
    }
 | 
						|
 | 
						|
add:
 | 
						|
#endif
 | 
						|
    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_ADD);
 | 
						|
    MBEDTLS_MPI_CHK(ecp_add_mixed(grp, pR, pmP, pR));
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
 | 
						|
        rs_ctx->ma->state = ecp_rsma_norm;
 | 
						|
    }
 | 
						|
 | 
						|
norm:
 | 
						|
#endif
 | 
						|
    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
 | 
						|
    MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, pR));
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_RESTARTABLE)
 | 
						|
    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, pR));
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
cleanup:
 | 
						|
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
 | 
						|
    if (is_grp_capable) {
 | 
						|
        mbedtls_internal_ecp_free(grp);
 | 
						|
    }
 | 
						|
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
 | 
						|
 | 
						|
    mbedtls_ecp_point_free(&mP);
 | 
						|
 | 
						|
    ECP_RS_LEAVE(ma);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Linear combination
 | 
						|
 * NOT constant-time
 | 
						|
 */
 | 
						|
int mbedtls_ecp_muladd(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
 | 
						|
                       const mbedtls_mpi *m, const mbedtls_ecp_point *P,
 | 
						|
                       const mbedtls_mpi *n, const mbedtls_ecp_point *Q)
 | 
						|
{
 | 
						|
    ECP_VALIDATE_RET(grp != NULL);
 | 
						|
    ECP_VALIDATE_RET(R   != NULL);
 | 
						|
    ECP_VALIDATE_RET(m   != NULL);
 | 
						|
    ECP_VALIDATE_RET(P   != NULL);
 | 
						|
    ECP_VALIDATE_RET(n   != NULL);
 | 
						|
    ECP_VALIDATE_RET(Q   != NULL);
 | 
						|
    return mbedtls_ecp_muladd_restartable(grp, R, m, P, n, Q, NULL);
 | 
						|
}
 | 
						|
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | 
						|
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
 | 
						|
#define ECP_MPI_INIT(s, n, p) { s, (n), (mbedtls_mpi_uint *) (p) }
 | 
						|
#define ECP_MPI_INIT_ARRAY(x)   \
 | 
						|
    ECP_MPI_INIT(1, sizeof(x) / sizeof(mbedtls_mpi_uint), x)
 | 
						|
/*
 | 
						|
 * Constants for the two points other than 0, 1, -1 (mod p) in
 | 
						|
 * https://cr.yp.to/ecdh.html#validate
 | 
						|
 * See ecp_check_pubkey_x25519().
 | 
						|
 */
 | 
						|
static const mbedtls_mpi_uint x25519_bad_point_1[] = {
 | 
						|
    MBEDTLS_BYTES_TO_T_UINT_8(0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae),
 | 
						|
    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a),
 | 
						|
    MBEDTLS_BYTES_TO_T_UINT_8(0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd),
 | 
						|
    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00),
 | 
						|
};
 | 
						|
static const mbedtls_mpi_uint x25519_bad_point_2[] = {
 | 
						|
    MBEDTLS_BYTES_TO_T_UINT_8(0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24),
 | 
						|
    MBEDTLS_BYTES_TO_T_UINT_8(0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b),
 | 
						|
    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86),
 | 
						|
    MBEDTLS_BYTES_TO_T_UINT_8(0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57),
 | 
						|
};
 | 
						|
static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(
 | 
						|
    x25519_bad_point_1);
 | 
						|
static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(
 | 
						|
    x25519_bad_point_2);
 | 
						|
#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
 | 
						|
 | 
						|
/*
 | 
						|
 * Check that the input point is not one of the low-order points.
 | 
						|
 * This is recommended by the "May the Fourth" paper:
 | 
						|
 * https://eprint.iacr.org/2017/806.pdf
 | 
						|
 * Those points are never sent by an honest peer.
 | 
						|
 */
 | 
						|
static int ecp_check_bad_points_mx(const mbedtls_mpi *X, const mbedtls_mpi *P,
 | 
						|
                                   const mbedtls_ecp_group_id grp_id)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    mbedtls_mpi XmP;
 | 
						|
 | 
						|
    mbedtls_mpi_init(&XmP);
 | 
						|
 | 
						|
    /* Reduce X mod P so that we only need to check values less than P.
 | 
						|
     * We know X < 2^256 so we can proceed by subtraction. */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&XmP, X));
 | 
						|
    while (mbedtls_mpi_cmp_mpi(&XmP, P) >= 0) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&XmP, &XmP, P));
 | 
						|
    }
 | 
						|
 | 
						|
    /* Check against the known bad values that are less than P. For Curve448
 | 
						|
     * these are 0, 1 and -1. For Curve25519 we check the values less than P
 | 
						|
     * from the following list: https://cr.yp.to/ecdh.html#validate */
 | 
						|
    if (mbedtls_mpi_cmp_int(&XmP, 1) <= 0) {  /* takes care of 0 and 1 */
 | 
						|
        ret = MBEDTLS_ERR_ECP_INVALID_KEY;
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
 | 
						|
    if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
 | 
						|
        if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_1) == 0) {
 | 
						|
            ret = MBEDTLS_ERR_ECP_INVALID_KEY;
 | 
						|
            goto cleanup;
 | 
						|
        }
 | 
						|
 | 
						|
        if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_2) == 0) {
 | 
						|
            ret = MBEDTLS_ERR_ECP_INVALID_KEY;
 | 
						|
            goto cleanup;
 | 
						|
        }
 | 
						|
    }
 | 
						|
#else
 | 
						|
    (void) grp_id;
 | 
						|
#endif
 | 
						|
 | 
						|
    /* Final check: check if XmP + 1 is P (final because it changes XmP!) */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&XmP, &XmP, 1));
 | 
						|
    if (mbedtls_mpi_cmp_mpi(&XmP, P) == 0) {
 | 
						|
        ret = MBEDTLS_ERR_ECP_INVALID_KEY;
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = 0;
 | 
						|
 | 
						|
cleanup:
 | 
						|
    mbedtls_mpi_free(&XmP);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check validity of a public key for Montgomery curves with x-only schemes
 | 
						|
 */
 | 
						|
static int ecp_check_pubkey_mx(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
 | 
						|
{
 | 
						|
    /* [Curve25519 p. 5] Just check X is the correct number of bytes */
 | 
						|
    /* Allow any public value, if it's too big then we'll just reduce it mod p
 | 
						|
     * (RFC 7748 sec. 5 para. 3). */
 | 
						|
    if (mbedtls_mpi_size(&pt->X) > (grp->nbits + 7) / 8) {
 | 
						|
        return MBEDTLS_ERR_ECP_INVALID_KEY;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Implicit in all standards (as they don't consider negative numbers):
 | 
						|
     * X must be non-negative. This is normally ensured by the way it's
 | 
						|
     * encoded for transmission, but let's be extra sure. */
 | 
						|
    if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0) {
 | 
						|
        return MBEDTLS_ERR_ECP_INVALID_KEY;
 | 
						|
    }
 | 
						|
 | 
						|
    return ecp_check_bad_points_mx(&pt->X, &grp->P, grp->id);
 | 
						|
}
 | 
						|
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
 | 
						|
 | 
						|
/*
 | 
						|
 * Check that a point is valid as a public key
 | 
						|
 */
 | 
						|
int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp,
 | 
						|
                             const mbedtls_ecp_point *pt)
 | 
						|
{
 | 
						|
    ECP_VALIDATE_RET(grp != NULL);
 | 
						|
    ECP_VALIDATE_RET(pt  != NULL);
 | 
						|
 | 
						|
    /* Must use affine coordinates */
 | 
						|
    if (mbedtls_mpi_cmp_int(&pt->Z, 1) != 0) {
 | 
						|
        return MBEDTLS_ERR_ECP_INVALID_KEY;
 | 
						|
    }
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | 
						|
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
 | 
						|
        return ecp_check_pubkey_mx(grp, pt);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | 
						|
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
 | 
						|
        return ecp_check_pubkey_sw(grp, pt);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check that an mbedtls_mpi is valid as a private key
 | 
						|
 */
 | 
						|
int mbedtls_ecp_check_privkey(const mbedtls_ecp_group *grp,
 | 
						|
                              const mbedtls_mpi *d)
 | 
						|
{
 | 
						|
    ECP_VALIDATE_RET(grp != NULL);
 | 
						|
    ECP_VALIDATE_RET(d   != NULL);
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | 
						|
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
 | 
						|
        /* see RFC 7748 sec. 5 para. 5 */
 | 
						|
        if (mbedtls_mpi_get_bit(d, 0) != 0 ||
 | 
						|
            mbedtls_mpi_get_bit(d, 1) != 0 ||
 | 
						|
            mbedtls_mpi_bitlen(d) - 1 != grp->nbits) {  /* mbedtls_mpi_bitlen is one-based! */
 | 
						|
            return MBEDTLS_ERR_ECP_INVALID_KEY;
 | 
						|
        }
 | 
						|
 | 
						|
        /* see [Curve25519] page 5 */
 | 
						|
        if (grp->nbits == 254 && mbedtls_mpi_get_bit(d, 2) != 0) {
 | 
						|
            return MBEDTLS_ERR_ECP_INVALID_KEY;
 | 
						|
        }
 | 
						|
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
 | 
						|
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | 
						|
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
 | 
						|
        /* see SEC1 3.2 */
 | 
						|
        if (mbedtls_mpi_cmp_int(d, 1) < 0 ||
 | 
						|
            mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) {
 | 
						|
            return MBEDTLS_ERR_ECP_INVALID_KEY;
 | 
						|
        } else {
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
 | 
						|
 | 
						|
    return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | 
						|
MBEDTLS_STATIC_TESTABLE
 | 
						|
int mbedtls_ecp_gen_privkey_mx(size_t high_bit,
 | 
						|
                               mbedtls_mpi *d,
 | 
						|
                               int (*f_rng)(void *, unsigned char *, size_t),
 | 
						|
                               void *p_rng)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | 
						|
    size_t n_random_bytes = high_bit / 8 + 1;
 | 
						|
 | 
						|
    /* [Curve25519] page 5 */
 | 
						|
    /* Generate a (high_bit+1)-bit random number by generating just enough
 | 
						|
     * random bytes, then shifting out extra bits from the top (necessary
 | 
						|
     * when (high_bit+1) is not a multiple of 8). */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(d, n_random_bytes,
 | 
						|
                                            f_rng, p_rng));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(d, 8 * n_random_bytes - high_bit - 1));
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, high_bit, 1));
 | 
						|
 | 
						|
    /* Make sure the last two bits are unset for Curve448, three bits for
 | 
						|
       Curve25519 */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 0, 0));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 1, 0));
 | 
						|
    if (high_bit == 254) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 2, 0));
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | 
						|
static int mbedtls_ecp_gen_privkey_sw(
 | 
						|
    const mbedtls_mpi *N, mbedtls_mpi *d,
 | 
						|
    int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
 | 
						|
{
 | 
						|
    int ret = mbedtls_mpi_random(d, 1, N, f_rng, p_rng);
 | 
						|
    switch (ret) {
 | 
						|
        case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
 | 
						|
            return MBEDTLS_ERR_ECP_RANDOM_FAILED;
 | 
						|
        default:
 | 
						|
            return ret;
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
 | 
						|
 | 
						|
/*
 | 
						|
 * Generate a private key
 | 
						|
 */
 | 
						|
int mbedtls_ecp_gen_privkey(const mbedtls_ecp_group *grp,
 | 
						|
                            mbedtls_mpi *d,
 | 
						|
                            int (*f_rng)(void *, unsigned char *, size_t),
 | 
						|
                            void *p_rng)
 | 
						|
{
 | 
						|
    ECP_VALIDATE_RET(grp   != NULL);
 | 
						|
    ECP_VALIDATE_RET(d     != NULL);
 | 
						|
    ECP_VALIDATE_RET(f_rng != NULL);
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | 
						|
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
 | 
						|
        return mbedtls_ecp_gen_privkey_mx(grp->nbits, d, f_rng, p_rng);
 | 
						|
    }
 | 
						|
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | 
						|
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
 | 
						|
        return mbedtls_ecp_gen_privkey_sw(&grp->N, d, f_rng, p_rng);
 | 
						|
    }
 | 
						|
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
 | 
						|
 | 
						|
    return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Generate a keypair with configurable base point
 | 
						|
 */
 | 
						|
int mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group *grp,
 | 
						|
                                 const mbedtls_ecp_point *G,
 | 
						|
                                 mbedtls_mpi *d, mbedtls_ecp_point *Q,
 | 
						|
                                 int (*f_rng)(void *, unsigned char *, size_t),
 | 
						|
                                 void *p_rng)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    ECP_VALIDATE_RET(grp   != NULL);
 | 
						|
    ECP_VALIDATE_RET(d     != NULL);
 | 
						|
    ECP_VALIDATE_RET(G     != NULL);
 | 
						|
    ECP_VALIDATE_RET(Q     != NULL);
 | 
						|
    ECP_VALIDATE_RET(f_rng != NULL);
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, Q, d, G, f_rng, p_rng));
 | 
						|
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Generate key pair, wrapper for conventional base point
 | 
						|
 */
 | 
						|
int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp,
 | 
						|
                            mbedtls_mpi *d, mbedtls_ecp_point *Q,
 | 
						|
                            int (*f_rng)(void *, unsigned char *, size_t),
 | 
						|
                            void *p_rng)
 | 
						|
{
 | 
						|
    ECP_VALIDATE_RET(grp   != NULL);
 | 
						|
    ECP_VALIDATE_RET(d     != NULL);
 | 
						|
    ECP_VALIDATE_RET(Q     != NULL);
 | 
						|
    ECP_VALIDATE_RET(f_rng != NULL);
 | 
						|
 | 
						|
    return mbedtls_ecp_gen_keypair_base(grp, &grp->G, d, Q, f_rng, p_rng);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Generate a keypair, prettier wrapper
 | 
						|
 */
 | 
						|
int mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
 | 
						|
                        int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    ECP_VALIDATE_RET(key   != NULL);
 | 
						|
    ECP_VALIDATE_RET(f_rng != NULL);
 | 
						|
 | 
						|
    if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    return mbedtls_ecp_gen_keypair(&key->grp, &key->d, &key->Q, f_rng, p_rng);
 | 
						|
}
 | 
						|
 | 
						|
#define ECP_CURVE25519_KEY_SIZE 32
 | 
						|
/*
 | 
						|
 * Read a private key.
 | 
						|
 */
 | 
						|
int mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
 | 
						|
                         const unsigned char *buf, size_t buflen)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
 | 
						|
    ECP_VALIDATE_RET(key  != NULL);
 | 
						|
    ECP_VALIDATE_RET(buf  != NULL);
 | 
						|
 | 
						|
    if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | 
						|
    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
 | 
						|
        /*
 | 
						|
         * If it is Curve25519 curve then mask the key as mandated by RFC7748
 | 
						|
         */
 | 
						|
        if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
 | 
						|
            if (buflen != ECP_CURVE25519_KEY_SIZE) {
 | 
						|
                return MBEDTLS_ERR_ECP_INVALID_KEY;
 | 
						|
            }
 | 
						|
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
 | 
						|
 | 
						|
            /* Set the three least significant bits to 0 */
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 2, 0));
 | 
						|
 | 
						|
            /* Set the most significant bit to 0 */
 | 
						|
            MBEDTLS_MPI_CHK(
 | 
						|
                mbedtls_mpi_set_bit(&key->d,
 | 
						|
                                    ECP_CURVE25519_KEY_SIZE * 8 - 1, 0)
 | 
						|
                );
 | 
						|
 | 
						|
            /* Set the second most significant bit to 1 */
 | 
						|
            MBEDTLS_MPI_CHK(
 | 
						|
                mbedtls_mpi_set_bit(&key->d,
 | 
						|
                                    ECP_CURVE25519_KEY_SIZE * 8 - 2, 1)
 | 
						|
                );
 | 
						|
        } else {
 | 
						|
            ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
#endif
 | 
						|
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | 
						|
    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&key->d, buf, buflen));
 | 
						|
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(&key->grp, &key->d));
 | 
						|
    }
 | 
						|
 | 
						|
#endif
 | 
						|
cleanup:
 | 
						|
 | 
						|
    if (ret != 0) {
 | 
						|
        mbedtls_mpi_free(&key->d);
 | 
						|
    }
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Write a private key.
 | 
						|
 */
 | 
						|
int mbedtls_ecp_write_key(mbedtls_ecp_keypair *key,
 | 
						|
                          unsigned char *buf, size_t buflen)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | 
						|
 | 
						|
    ECP_VALIDATE_RET(key != NULL);
 | 
						|
    ECP_VALIDATE_RET(buf != NULL);
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | 
						|
    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
 | 
						|
        if (key->grp.id == MBEDTLS_ECP_DP_CURVE25519) {
 | 
						|
            if (buflen < ECP_CURVE25519_KEY_SIZE) {
 | 
						|
                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
 | 
						|
            }
 | 
						|
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&key->d, buf, buflen));
 | 
						|
        } else {
 | 
						|
            ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
#endif
 | 
						|
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | 
						|
    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&key->d, buf, buflen));
 | 
						|
    }
 | 
						|
 | 
						|
#endif
 | 
						|
cleanup:
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Check a public-private key pair
 | 
						|
 */
 | 
						|
int mbedtls_ecp_check_pub_priv(const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    mbedtls_ecp_point Q;
 | 
						|
    mbedtls_ecp_group grp;
 | 
						|
    ECP_VALIDATE_RET(pub != NULL);
 | 
						|
    ECP_VALIDATE_RET(prv != NULL);
 | 
						|
 | 
						|
    if (pub->grp.id == MBEDTLS_ECP_DP_NONE ||
 | 
						|
        pub->grp.id != prv->grp.id ||
 | 
						|
        mbedtls_mpi_cmp_mpi(&pub->Q.X, &prv->Q.X) ||
 | 
						|
        mbedtls_mpi_cmp_mpi(&pub->Q.Y, &prv->Q.Y) ||
 | 
						|
        mbedtls_mpi_cmp_mpi(&pub->Q.Z, &prv->Q.Z)) {
 | 
						|
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    mbedtls_ecp_point_init(&Q);
 | 
						|
    mbedtls_ecp_group_init(&grp);
 | 
						|
 | 
						|
    /* mbedtls_ecp_mul() needs a non-const group... */
 | 
						|
    mbedtls_ecp_group_copy(&grp, &prv->grp);
 | 
						|
 | 
						|
    /* Also checks d is valid */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &Q, &prv->d, &prv->grp.G, NULL, NULL));
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_mpi(&Q.X, &prv->Q.X) ||
 | 
						|
        mbedtls_mpi_cmp_mpi(&Q.Y, &prv->Q.Y) ||
 | 
						|
        mbedtls_mpi_cmp_mpi(&Q.Z, &prv->Q.Z)) {
 | 
						|
        ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
    mbedtls_ecp_point_free(&Q);
 | 
						|
    mbedtls_ecp_group_free(&grp);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(MBEDTLS_SELF_TEST)
 | 
						|
 | 
						|
/* Adjust the exponent to be a valid private point for the specified curve.
 | 
						|
 * This is sometimes necessary because we use a single set of exponents
 | 
						|
 * for all curves but the validity of values depends on the curve. */
 | 
						|
static int self_test_adjust_exponent(const mbedtls_ecp_group *grp,
 | 
						|
                                     mbedtls_mpi *m)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    switch (grp->id) {
 | 
						|
    /* If Curve25519 is available, then that's what we use for the
 | 
						|
     * Montgomery test, so we don't need the adjustment code. */
 | 
						|
#if !defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
 | 
						|
#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
 | 
						|
        case MBEDTLS_ECP_DP_CURVE448:
 | 
						|
            /* Move highest bit from 254 to N-1. Setting bit N-1 is
 | 
						|
             * necessary to enforce the highest-bit-set constraint. */
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, 254, 0));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, grp->nbits, 1));
 | 
						|
            /* Copy second-highest bit from 253 to N-2. This is not
 | 
						|
             * necessary but improves the test variety a bit. */
 | 
						|
            MBEDTLS_MPI_CHK(
 | 
						|
                mbedtls_mpi_set_bit(m, grp->nbits - 1,
 | 
						|
                                    mbedtls_mpi_get_bit(m, 253)));
 | 
						|
            break;
 | 
						|
#endif
 | 
						|
#endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */
 | 
						|
        default:
 | 
						|
            /* Non-Montgomery curves and Curve25519 need no adjustment. */
 | 
						|
            (void) grp;
 | 
						|
            (void) m;
 | 
						|
            goto cleanup;
 | 
						|
    }
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Calculate R = m.P for each m in exponents. Check that the number of
 | 
						|
 * basic operations doesn't depend on the value of m. */
 | 
						|
static int self_test_point(int verbose,
 | 
						|
                           mbedtls_ecp_group *grp,
 | 
						|
                           mbedtls_ecp_point *R,
 | 
						|
                           mbedtls_mpi *m,
 | 
						|
                           const mbedtls_ecp_point *P,
 | 
						|
                           const char *const *exponents,
 | 
						|
                           size_t n_exponents)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    size_t i = 0;
 | 
						|
    unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
 | 
						|
    add_count = 0;
 | 
						|
    dbl_count = 0;
 | 
						|
    mul_count = 0;
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[0]));
 | 
						|
    MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, NULL, NULL));
 | 
						|
 | 
						|
    for (i = 1; i < n_exponents; i++) {
 | 
						|
        add_c_prev = add_count;
 | 
						|
        dbl_c_prev = dbl_count;
 | 
						|
        mul_c_prev = mul_count;
 | 
						|
        add_count = 0;
 | 
						|
        dbl_count = 0;
 | 
						|
        mul_count = 0;
 | 
						|
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[i]));
 | 
						|
        MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, NULL, NULL));
 | 
						|
 | 
						|
        if (add_count != add_c_prev ||
 | 
						|
            dbl_count != dbl_c_prev ||
 | 
						|
            mul_count != mul_c_prev) {
 | 
						|
            ret = 1;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
    if (verbose != 0) {
 | 
						|
        if (ret != 0) {
 | 
						|
            mbedtls_printf("failed (%u)\n", (unsigned int) i);
 | 
						|
        } else {
 | 
						|
            mbedtls_printf("passed\n");
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Checkup routine
 | 
						|
 */
 | 
						|
int mbedtls_ecp_self_test(int verbose)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    mbedtls_ecp_group grp;
 | 
						|
    mbedtls_ecp_point R, P;
 | 
						|
    mbedtls_mpi m;
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | 
						|
    /* Exponents especially adapted for secp192k1, which has the lowest
 | 
						|
     * order n of all supported curves (secp192r1 is in a slightly larger
 | 
						|
     * field but the order of its base point is slightly smaller). */
 | 
						|
    const char *sw_exponents[] =
 | 
						|
    {
 | 
						|
        "000000000000000000000000000000000000000000000001", /* one */
 | 
						|
        "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */
 | 
						|
        "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
 | 
						|
        "400000000000000000000000000000000000000000000000", /* one and zeros */
 | 
						|
        "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
 | 
						|
        "555555555555555555555555555555555555555555555555", /* 101010... */
 | 
						|
    };
 | 
						|
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
 | 
						|
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | 
						|
    const char *m_exponents[] =
 | 
						|
    {
 | 
						|
        /* Valid private values for Curve25519. In a build with Curve448
 | 
						|
         * but not Curve25519, they will be adjusted in
 | 
						|
         * self_test_adjust_exponent(). */
 | 
						|
        "4000000000000000000000000000000000000000000000000000000000000000",
 | 
						|
        "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",
 | 
						|
        "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",
 | 
						|
        "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",
 | 
						|
        "5555555555555555555555555555555555555555555555555555555555555550",
 | 
						|
        "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",
 | 
						|
    };
 | 
						|
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
 | 
						|
 | 
						|
    mbedtls_ecp_group_init(&grp);
 | 
						|
    mbedtls_ecp_point_init(&R);
 | 
						|
    mbedtls_ecp_point_init(&P);
 | 
						|
    mbedtls_mpi_init(&m);
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | 
						|
    /* Use secp192r1 if available, or any available curve */
 | 
						|
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP192R1));
 | 
						|
#else
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, mbedtls_ecp_curve_list()->grp_id));
 | 
						|
#endif
 | 
						|
 | 
						|
    if (verbose != 0) {
 | 
						|
        mbedtls_printf("  ECP SW test #1 (constant op_count, base point G): ");
 | 
						|
    }
 | 
						|
    /* Do a dummy multiplication first to trigger precomputation */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&m, 2));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &P, &m, &grp.G, NULL, NULL));
 | 
						|
    ret = self_test_point(verbose,
 | 
						|
                          &grp, &R, &m, &grp.G,
 | 
						|
                          sw_exponents,
 | 
						|
                          sizeof(sw_exponents) / sizeof(sw_exponents[0]));
 | 
						|
    if (ret != 0) {
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
 | 
						|
    if (verbose != 0) {
 | 
						|
        mbedtls_printf("  ECP SW test #2 (constant op_count, other point): ");
 | 
						|
    }
 | 
						|
    /* We computed P = 2G last time, use it */
 | 
						|
    ret = self_test_point(verbose,
 | 
						|
                          &grp, &R, &m, &P,
 | 
						|
                          sw_exponents,
 | 
						|
                          sizeof(sw_exponents) / sizeof(sw_exponents[0]));
 | 
						|
    if (ret != 0) {
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
 | 
						|
    mbedtls_ecp_group_free(&grp);
 | 
						|
    mbedtls_ecp_point_free(&R);
 | 
						|
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
 | 
						|
 | 
						|
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | 
						|
    if (verbose != 0) {
 | 
						|
        mbedtls_printf("  ECP Montgomery test (constant op_count): ");
 | 
						|
    }
 | 
						|
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE25519));
 | 
						|
#elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE448));
 | 
						|
#else
 | 
						|
#error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"
 | 
						|
#endif
 | 
						|
    ret = self_test_point(verbose,
 | 
						|
                          &grp, &R, &m, &grp.G,
 | 
						|
                          m_exponents,
 | 
						|
                          sizeof(m_exponents) / sizeof(m_exponents[0]));
 | 
						|
    if (ret != 0) {
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    if (ret < 0 && verbose != 0) {
 | 
						|
        mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
 | 
						|
    }
 | 
						|
 | 
						|
    mbedtls_ecp_group_free(&grp);
 | 
						|
    mbedtls_ecp_point_free(&R);
 | 
						|
    mbedtls_ecp_point_free(&P);
 | 
						|
    mbedtls_mpi_free(&m);
 | 
						|
 | 
						|
    if (verbose != 0) {
 | 
						|
        mbedtls_printf("\n");
 | 
						|
    }
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* MBEDTLS_SELF_TEST */
 | 
						|
 | 
						|
#endif /* !MBEDTLS_ECP_ALT */
 | 
						|
 | 
						|
#endif /* MBEDTLS_ECP_C */
 |