mirror of
				https://github.com/Mbed-TLS/mbedtls.git
				synced 2025-10-30 10:45:34 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			907 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			907 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Core bignum functions
 | |
|  *
 | |
|  *  Copyright The Mbed TLS Contributors
 | |
|  *  SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 | |
|  *  not use this file except in compliance with the License.
 | |
|  *  You may obtain a copy of the License at
 | |
|  *
 | |
|  *  http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  *  Unless required by applicable law or agreed to in writing, software
 | |
|  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | |
|  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  *  See the License for the specific language governing permissions and
 | |
|  *  limitations under the License.
 | |
|  */
 | |
| 
 | |
| #include "common.h"
 | |
| 
 | |
| #if defined(MBEDTLS_BIGNUM_C)
 | |
| 
 | |
| #include <string.h>
 | |
| 
 | |
| #include "mbedtls/error.h"
 | |
| #include "mbedtls/platform_util.h"
 | |
| #include "constant_time_internal.h"
 | |
| 
 | |
| #include "mbedtls/platform.h"
 | |
| 
 | |
| #include "bignum_core.h"
 | |
| #include "bn_mul.h"
 | |
| #include "constant_time_internal.h"
 | |
| 
 | |
| size_t mbedtls_mpi_core_clz(mbedtls_mpi_uint a)
 | |
| {
 | |
| #if defined(__has_builtin)
 | |
| #if (MBEDTLS_MPI_UINT_MAX == UINT_MAX) && __has_builtin(__builtin_clz)
 | |
|     #define core_clz __builtin_clz
 | |
| #elif (MBEDTLS_MPI_UINT_MAX == ULONG_MAX) && __has_builtin(__builtin_clzl)
 | |
|     #define core_clz __builtin_clzl
 | |
| #elif (MBEDTLS_MPI_UINT_MAX == ULLONG_MAX) && __has_builtin(__builtin_clzll)
 | |
|     #define core_clz __builtin_clzll
 | |
| #endif
 | |
| #endif
 | |
| #if defined(core_clz)
 | |
|     return (size_t) core_clz(a);
 | |
| #else
 | |
|     size_t j;
 | |
|     mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
 | |
| 
 | |
|     for (j = 0; j < biL; j++) {
 | |
|         if (a & mask) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         mask >>= 1;
 | |
|     }
 | |
| 
 | |
|     return j;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| size_t mbedtls_mpi_core_bitlen(const mbedtls_mpi_uint *A, size_t A_limbs)
 | |
| {
 | |
|     int i;
 | |
|     size_t j;
 | |
| 
 | |
|     for (i = ((int) A_limbs) - 1; i >= 0; i--) {
 | |
|         if (A[i] != 0) {
 | |
|             j = biL - mbedtls_mpi_core_clz(A[i]);
 | |
|             return (i * biL) + j;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static mbedtls_mpi_uint mpi_bigendian_to_host(mbedtls_mpi_uint a)
 | |
| {
 | |
|     if (MBEDTLS_IS_BIG_ENDIAN) {
 | |
|         /* Nothing to do on bigendian systems. */
 | |
|         return a;
 | |
|     } else {
 | |
| #if defined(MBEDTLS_HAVE_INT32)
 | |
|         return (mbedtls_mpi_uint) MBEDTLS_BSWAP32(a);
 | |
| #elif defined(MBEDTLS_HAVE_INT64)
 | |
|         return (mbedtls_mpi_uint) MBEDTLS_BSWAP64(a);
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| void mbedtls_mpi_core_bigendian_to_host(mbedtls_mpi_uint *A,
 | |
|                                         size_t A_limbs)
 | |
| {
 | |
|     mbedtls_mpi_uint *cur_limb_left;
 | |
|     mbedtls_mpi_uint *cur_limb_right;
 | |
|     if (A_limbs == 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Traverse limbs and
 | |
|      * - adapt byte-order in each limb
 | |
|      * - swap the limbs themselves.
 | |
|      * For that, simultaneously traverse the limbs from left to right
 | |
|      * and from right to left, as long as the left index is not bigger
 | |
|      * than the right index (it's not a problem if limbs is odd and the
 | |
|      * indices coincide in the last iteration).
 | |
|      */
 | |
|     for (cur_limb_left = A, cur_limb_right = A + (A_limbs - 1);
 | |
|          cur_limb_left <= cur_limb_right;
 | |
|          cur_limb_left++, cur_limb_right--) {
 | |
|         mbedtls_mpi_uint tmp;
 | |
|         /* Note that if cur_limb_left == cur_limb_right,
 | |
|          * this code effectively swaps the bytes only once. */
 | |
|         tmp             = mpi_bigendian_to_host(*cur_limb_left);
 | |
|         *cur_limb_left  = mpi_bigendian_to_host(*cur_limb_right);
 | |
|         *cur_limb_right = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Whether min <= A, in constant time.
 | |
|  * A_limbs must be at least 1. */
 | |
| mbedtls_ct_condition_t mbedtls_mpi_core_uint_le_mpi(mbedtls_mpi_uint min,
 | |
|                                                     const mbedtls_mpi_uint *A,
 | |
|                                                     size_t A_limbs)
 | |
| {
 | |
|     /* min <= least significant limb? */
 | |
|     mbedtls_ct_condition_t min_le_lsl = mbedtls_ct_uint_ge(A[0], min);
 | |
| 
 | |
|     /* limbs other than the least significant one are all zero? */
 | |
|     mbedtls_ct_condition_t msll_mask = MBEDTLS_CT_FALSE;
 | |
|     for (size_t i = 1; i < A_limbs; i++) {
 | |
|         msll_mask = mbedtls_ct_bool_or(msll_mask, mbedtls_ct_bool(A[i]));
 | |
|     }
 | |
| 
 | |
|     /* min <= A iff the lowest limb of A is >= min or the other limbs
 | |
|      * are not all zero. */
 | |
|     return mbedtls_ct_bool_or(msll_mask, min_le_lsl);
 | |
| }
 | |
| 
 | |
| mbedtls_ct_condition_t mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint *A,
 | |
|                                               const mbedtls_mpi_uint *B,
 | |
|                                               size_t limbs)
 | |
| {
 | |
|     mbedtls_ct_condition_t ret = MBEDTLS_CT_FALSE, cond = MBEDTLS_CT_FALSE, done = MBEDTLS_CT_FALSE;
 | |
| 
 | |
|     for (size_t i = limbs; i > 0; i--) {
 | |
|         /*
 | |
|          * If B[i - 1] < A[i - 1] then A < B is false and the result must
 | |
|          * remain 0.
 | |
|          *
 | |
|          * Again even if we can make a decision, we just mark the result and
 | |
|          * the fact that we are done and continue looping.
 | |
|          */
 | |
|         cond = mbedtls_ct_uint_lt(B[i - 1], A[i - 1]);
 | |
|         done = mbedtls_ct_bool_or(done, cond);
 | |
| 
 | |
|         /*
 | |
|          * If A[i - 1] < B[i - 1] then A < B is true.
 | |
|          *
 | |
|          * Again even if we can make a decision, we just mark the result and
 | |
|          * the fact that we are done and continue looping.
 | |
|          */
 | |
|         cond = mbedtls_ct_uint_lt(A[i - 1], B[i - 1]);
 | |
|         ret  = mbedtls_ct_bool_or(ret, mbedtls_ct_bool_and(cond, mbedtls_ct_bool_not(done)));
 | |
|         done = mbedtls_ct_bool_or(done, cond);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * If all the limbs were equal, then the numbers are equal, A < B is false
 | |
|      * and leaving the result 0 is correct.
 | |
|      */
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void mbedtls_mpi_core_cond_assign(mbedtls_mpi_uint *X,
 | |
|                                   const mbedtls_mpi_uint *A,
 | |
|                                   size_t limbs,
 | |
|                                   mbedtls_ct_condition_t assign)
 | |
| {
 | |
|     if (X == A) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* This function is very performance-sensitive for RSA. For this reason
 | |
|      * we have the loop below, instead of calling mbedtls_ct_memcpy_if
 | |
|      * (this is more optimal since here we don't have to handle the case where
 | |
|      * we copy awkwardly sized data).
 | |
|      */
 | |
|     for (size_t i = 0; i < limbs; i++) {
 | |
|         X[i] = mbedtls_ct_mpi_uint_if(assign, A[i], X[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void mbedtls_mpi_core_cond_swap(mbedtls_mpi_uint *X,
 | |
|                                 mbedtls_mpi_uint *Y,
 | |
|                                 size_t limbs,
 | |
|                                 mbedtls_ct_condition_t swap)
 | |
| {
 | |
|     if (X == Y) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     for (size_t i = 0; i < limbs; i++) {
 | |
|         mbedtls_mpi_uint tmp = X[i];
 | |
|         X[i] = mbedtls_ct_mpi_uint_if(swap, Y[i], X[i]);
 | |
|         Y[i] = mbedtls_ct_mpi_uint_if(swap, tmp, Y[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int mbedtls_mpi_core_read_le(mbedtls_mpi_uint *X,
 | |
|                              size_t X_limbs,
 | |
|                              const unsigned char *input,
 | |
|                              size_t input_length)
 | |
| {
 | |
|     const size_t limbs = CHARS_TO_LIMBS(input_length);
 | |
| 
 | |
|     if (X_limbs < limbs) {
 | |
|         return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
 | |
|     }
 | |
| 
 | |
|     if (X != NULL) {
 | |
|         memset(X, 0, X_limbs * ciL);
 | |
| 
 | |
|         for (size_t i = 0; i < input_length; i++) {
 | |
|             size_t offset = ((i % ciL) << 3);
 | |
|             X[i / ciL] |= ((mbedtls_mpi_uint) input[i]) << offset;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int mbedtls_mpi_core_read_be(mbedtls_mpi_uint *X,
 | |
|                              size_t X_limbs,
 | |
|                              const unsigned char *input,
 | |
|                              size_t input_length)
 | |
| {
 | |
|     const size_t limbs = CHARS_TO_LIMBS(input_length);
 | |
| 
 | |
|     if (X_limbs < limbs) {
 | |
|         return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
 | |
|     }
 | |
| 
 | |
|     /* If X_limbs is 0, input_length must also be 0 (from previous test).
 | |
|      * Nothing to do. */
 | |
|     if (X_limbs == 0) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     memset(X, 0, X_limbs * ciL);
 | |
| 
 | |
|     /* memcpy() with (NULL, 0) is undefined behaviour */
 | |
|     if (input_length != 0) {
 | |
|         size_t overhead = (X_limbs * ciL) - input_length;
 | |
|         unsigned char *Xp = (unsigned char *) X;
 | |
|         memcpy(Xp + overhead, input, input_length);
 | |
|     }
 | |
| 
 | |
|     mbedtls_mpi_core_bigendian_to_host(X, X_limbs);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int mbedtls_mpi_core_write_le(const mbedtls_mpi_uint *A,
 | |
|                               size_t A_limbs,
 | |
|                               unsigned char *output,
 | |
|                               size_t output_length)
 | |
| {
 | |
|     size_t stored_bytes = A_limbs * ciL;
 | |
|     size_t bytes_to_copy;
 | |
| 
 | |
|     if (stored_bytes < output_length) {
 | |
|         bytes_to_copy = stored_bytes;
 | |
|     } else {
 | |
|         bytes_to_copy = output_length;
 | |
| 
 | |
|         /* The output buffer is smaller than the allocated size of A.
 | |
|          * However A may fit if its leading bytes are zero. */
 | |
|         for (size_t i = bytes_to_copy; i < stored_bytes; i++) {
 | |
|             if (GET_BYTE(A, i) != 0) {
 | |
|                 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (size_t i = 0; i < bytes_to_copy; i++) {
 | |
|         output[i] = GET_BYTE(A, i);
 | |
|     }
 | |
| 
 | |
|     if (stored_bytes < output_length) {
 | |
|         /* Write trailing 0 bytes */
 | |
|         memset(output + stored_bytes, 0, output_length - stored_bytes);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int mbedtls_mpi_core_write_be(const mbedtls_mpi_uint *X,
 | |
|                               size_t X_limbs,
 | |
|                               unsigned char *output,
 | |
|                               size_t output_length)
 | |
| {
 | |
|     size_t stored_bytes;
 | |
|     size_t bytes_to_copy;
 | |
|     unsigned char *p;
 | |
| 
 | |
|     stored_bytes = X_limbs * ciL;
 | |
| 
 | |
|     if (stored_bytes < output_length) {
 | |
|         /* There is enough space in the output buffer. Write initial
 | |
|          * null bytes and record the position at which to start
 | |
|          * writing the significant bytes. In this case, the execution
 | |
|          * trace of this function does not depend on the value of the
 | |
|          * number. */
 | |
|         bytes_to_copy = stored_bytes;
 | |
|         p = output + output_length - stored_bytes;
 | |
|         memset(output, 0, output_length - stored_bytes);
 | |
|     } else {
 | |
|         /* The output buffer is smaller than the allocated size of X.
 | |
|          * However X may fit if its leading bytes are zero. */
 | |
|         bytes_to_copy = output_length;
 | |
|         p = output;
 | |
|         for (size_t i = bytes_to_copy; i < stored_bytes; i++) {
 | |
|             if (GET_BYTE(X, i) != 0) {
 | |
|                 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (size_t i = 0; i < bytes_to_copy; i++) {
 | |
|         p[bytes_to_copy - i - 1] = GET_BYTE(X, i);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void mbedtls_mpi_core_shift_r(mbedtls_mpi_uint *X, size_t limbs,
 | |
|                               size_t count)
 | |
| {
 | |
|     size_t i, v0, v1;
 | |
|     mbedtls_mpi_uint r0 = 0, r1;
 | |
| 
 | |
|     v0 = count /  biL;
 | |
|     v1 = count & (biL - 1);
 | |
| 
 | |
|     if (v0 > limbs || (v0 == limbs && v1 > 0)) {
 | |
|         memset(X, 0, limbs * ciL);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * shift by count / limb_size
 | |
|      */
 | |
|     if (v0 > 0) {
 | |
|         for (i = 0; i < limbs - v0; i++) {
 | |
|             X[i] = X[i + v0];
 | |
|         }
 | |
| 
 | |
|         for (; i < limbs; i++) {
 | |
|             X[i] = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * shift by count % limb_size
 | |
|      */
 | |
|     if (v1 > 0) {
 | |
|         for (i = limbs; i > 0; i--) {
 | |
|             r1 = X[i - 1] << (biL - v1);
 | |
|             X[i - 1] >>= v1;
 | |
|             X[i - 1] |= r0;
 | |
|             r0 = r1;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void mbedtls_mpi_core_shift_l(mbedtls_mpi_uint *X, size_t limbs,
 | |
|                               size_t count)
 | |
| {
 | |
|     size_t i, v0, v1;
 | |
|     mbedtls_mpi_uint r0 = 0, r1;
 | |
| 
 | |
|     v0 = count / (biL);
 | |
|     v1 = count & (biL - 1);
 | |
| 
 | |
|     /*
 | |
|      * shift by count / limb_size
 | |
|      */
 | |
|     if (v0 > 0) {
 | |
|         for (i = limbs; i > v0; i--) {
 | |
|             X[i - 1] = X[i - v0 - 1];
 | |
|         }
 | |
| 
 | |
|         for (; i > 0; i--) {
 | |
|             X[i - 1] = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * shift by count % limb_size
 | |
|      */
 | |
|     if (v1 > 0) {
 | |
|         for (i = v0; i < limbs; i++) {
 | |
|             r1 = X[i] >> (biL - v1);
 | |
|             X[i] <<= v1;
 | |
|             X[i] |= r0;
 | |
|             r0 = r1;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| mbedtls_mpi_uint mbedtls_mpi_core_add(mbedtls_mpi_uint *X,
 | |
|                                       const mbedtls_mpi_uint *A,
 | |
|                                       const mbedtls_mpi_uint *B,
 | |
|                                       size_t limbs)
 | |
| {
 | |
|     mbedtls_mpi_uint c = 0;
 | |
| 
 | |
|     for (size_t i = 0; i < limbs; i++) {
 | |
|         mbedtls_mpi_uint t = c + A[i];
 | |
|         c = (t < A[i]);
 | |
|         t += B[i];
 | |
|         c += (t < B[i]);
 | |
|         X[i] = t;
 | |
|     }
 | |
| 
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| mbedtls_mpi_uint mbedtls_mpi_core_add_if(mbedtls_mpi_uint *X,
 | |
|                                          const mbedtls_mpi_uint *A,
 | |
|                                          size_t limbs,
 | |
|                                          unsigned cond)
 | |
| {
 | |
|     mbedtls_mpi_uint c = 0;
 | |
| 
 | |
|     mbedtls_ct_condition_t do_add = mbedtls_ct_bool(cond);
 | |
| 
 | |
|     for (size_t i = 0; i < limbs; i++) {
 | |
|         mbedtls_mpi_uint add = mbedtls_ct_mpi_uint_if_else_0(do_add, A[i]);
 | |
|         mbedtls_mpi_uint t = c + X[i];
 | |
|         c = (t < X[i]);
 | |
|         t += add;
 | |
|         c += (t < add);
 | |
|         X[i] = t;
 | |
|     }
 | |
| 
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| mbedtls_mpi_uint mbedtls_mpi_core_sub(mbedtls_mpi_uint *X,
 | |
|                                       const mbedtls_mpi_uint *A,
 | |
|                                       const mbedtls_mpi_uint *B,
 | |
|                                       size_t limbs)
 | |
| {
 | |
|     mbedtls_mpi_uint c = 0;
 | |
| 
 | |
|     for (size_t i = 0; i < limbs; i++) {
 | |
|         mbedtls_mpi_uint z = (A[i] < c);
 | |
|         mbedtls_mpi_uint t = A[i] - c;
 | |
|         c = (t < B[i]) + z;
 | |
|         X[i] = t - B[i];
 | |
|     }
 | |
| 
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| mbedtls_mpi_uint mbedtls_mpi_core_mla(mbedtls_mpi_uint *d, size_t d_len,
 | |
|                                       const mbedtls_mpi_uint *s, size_t s_len,
 | |
|                                       mbedtls_mpi_uint b)
 | |
| {
 | |
|     mbedtls_mpi_uint c = 0; /* carry */
 | |
|     /*
 | |
|      * It is a documented precondition of this function that d_len >= s_len.
 | |
|      * If that's not the case, we swap these round: this turns what would be
 | |
|      * a buffer overflow into an incorrect result.
 | |
|      */
 | |
|     if (d_len < s_len) {
 | |
|         s_len = d_len;
 | |
|     }
 | |
|     size_t excess_len = d_len - s_len;
 | |
|     size_t steps_x8 = s_len / 8;
 | |
|     size_t steps_x1 = s_len & 7;
 | |
| 
 | |
|     while (steps_x8--) {
 | |
|         MULADDC_X8_INIT
 | |
|         MULADDC_X8_CORE
 | |
|             MULADDC_X8_STOP
 | |
|     }
 | |
| 
 | |
|     while (steps_x1--) {
 | |
|         MULADDC_X1_INIT
 | |
|         MULADDC_X1_CORE
 | |
|             MULADDC_X1_STOP
 | |
|     }
 | |
| 
 | |
|     while (excess_len--) {
 | |
|         *d += c;
 | |
|         c = (*d < c);
 | |
|         d++;
 | |
|     }
 | |
| 
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| void mbedtls_mpi_core_mul(mbedtls_mpi_uint *X,
 | |
|                           const mbedtls_mpi_uint *A, size_t A_limbs,
 | |
|                           const mbedtls_mpi_uint *B, size_t B_limbs)
 | |
| {
 | |
|     memset(X, 0, (A_limbs + B_limbs) * ciL);
 | |
| 
 | |
|     for (size_t i = 0; i < B_limbs; i++) {
 | |
|         (void) mbedtls_mpi_core_mla(X + i, A_limbs + 1, A, A_limbs, B[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fast Montgomery initialization (thanks to Tom St Denis).
 | |
|  */
 | |
| mbedtls_mpi_uint mbedtls_mpi_core_montmul_init(const mbedtls_mpi_uint *N)
 | |
| {
 | |
|     mbedtls_mpi_uint x = N[0];
 | |
| 
 | |
|     x += ((N[0] + 2) & 4) << 1;
 | |
| 
 | |
|     for (unsigned int i = biL; i >= 8; i /= 2) {
 | |
|         x *= (2 - (N[0] * x));
 | |
|     }
 | |
| 
 | |
|     return ~x + 1;
 | |
| }
 | |
| 
 | |
| void mbedtls_mpi_core_montmul(mbedtls_mpi_uint *X,
 | |
|                               const mbedtls_mpi_uint *A,
 | |
|                               const mbedtls_mpi_uint *B,
 | |
|                               size_t B_limbs,
 | |
|                               const mbedtls_mpi_uint *N,
 | |
|                               size_t AN_limbs,
 | |
|                               mbedtls_mpi_uint mm,
 | |
|                               mbedtls_mpi_uint *T)
 | |
| {
 | |
|     memset(T, 0, (2 * AN_limbs + 1) * ciL);
 | |
| 
 | |
|     for (size_t i = 0; i < AN_limbs; i++) {
 | |
|         /* T = (T + u0*B + u1*N) / 2^biL */
 | |
|         mbedtls_mpi_uint u0 = A[i];
 | |
|         mbedtls_mpi_uint u1 = (T[0] + u0 * B[0]) * mm;
 | |
| 
 | |
|         (void) mbedtls_mpi_core_mla(T, AN_limbs + 2, B, B_limbs, u0);
 | |
|         (void) mbedtls_mpi_core_mla(T, AN_limbs + 2, N, AN_limbs, u1);
 | |
| 
 | |
|         T++;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * The result we want is (T >= N) ? T - N : T.
 | |
|      *
 | |
|      * For better constant-time properties in this function, we always do the
 | |
|      * subtraction, with the result in X.
 | |
|      *
 | |
|      * We also look to see if there was any carry in the final additions in the
 | |
|      * loop above.
 | |
|      */
 | |
| 
 | |
|     mbedtls_mpi_uint carry  = T[AN_limbs];
 | |
|     mbedtls_mpi_uint borrow = mbedtls_mpi_core_sub(X, T, N, AN_limbs);
 | |
| 
 | |
|     /*
 | |
|      * Using R as the Montgomery radix (auxiliary modulus) i.e. 2^(biL*AN_limbs):
 | |
|      *
 | |
|      * T can be in one of 3 ranges:
 | |
|      *
 | |
|      * 1) T < N      : (carry, borrow) = (0, 1): we want T
 | |
|      * 2) N <= T < R : (carry, borrow) = (0, 0): we want X
 | |
|      * 3) T >= R     : (carry, borrow) = (1, 1): we want X
 | |
|      *
 | |
|      * and (carry, borrow) = (1, 0) can't happen.
 | |
|      *
 | |
|      * So the correct return value is already in X if (carry ^ borrow) = 0,
 | |
|      * but is in (the lower AN_limbs limbs of) T if (carry ^ borrow) = 1.
 | |
|      */
 | |
|     mbedtls_ct_memcpy_if(mbedtls_ct_bool(carry ^ borrow),
 | |
|                          (unsigned char *) X,
 | |
|                          (unsigned char *) T,
 | |
|                          NULL,
 | |
|                          AN_limbs * sizeof(mbedtls_mpi_uint));
 | |
| }
 | |
| 
 | |
| int mbedtls_mpi_core_get_mont_r2_unsafe(mbedtls_mpi *X,
 | |
|                                         const mbedtls_mpi *N)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 1));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, N->n * 2 * biL));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(X, X, N));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(X, N->n));
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| MBEDTLS_STATIC_TESTABLE
 | |
| void mbedtls_mpi_core_ct_uint_table_lookup(mbedtls_mpi_uint *dest,
 | |
|                                            const mbedtls_mpi_uint *table,
 | |
|                                            size_t limbs,
 | |
|                                            size_t count,
 | |
|                                            size_t index)
 | |
| {
 | |
|     for (size_t i = 0; i < count; i++, table += limbs) {
 | |
|         mbedtls_ct_condition_t assign = mbedtls_ct_uint_eq(i, index);
 | |
|         mbedtls_mpi_core_cond_assign(dest, table, limbs, assign);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Fill X with n_bytes random bytes.
 | |
|  * X must already have room for those bytes.
 | |
|  * The ordering of the bytes returned from the RNG is suitable for
 | |
|  * deterministic ECDSA (see RFC 6979 §3.3 and the specification of
 | |
|  * mbedtls_mpi_core_random()).
 | |
|  */
 | |
| int mbedtls_mpi_core_fill_random(
 | |
|     mbedtls_mpi_uint *X, size_t X_limbs,
 | |
|     size_t n_bytes,
 | |
|     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     const size_t limbs = CHARS_TO_LIMBS(n_bytes);
 | |
|     const size_t overhead = (limbs * ciL) - n_bytes;
 | |
| 
 | |
|     if (X_limbs < limbs) {
 | |
|         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     memset(X, 0, overhead);
 | |
|     memset((unsigned char *) X + limbs * ciL, 0, (X_limbs - limbs) * ciL);
 | |
|     MBEDTLS_MPI_CHK(f_rng(p_rng, (unsigned char *) X + overhead, n_bytes));
 | |
|     mbedtls_mpi_core_bigendian_to_host(X, limbs);
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int mbedtls_mpi_core_random(mbedtls_mpi_uint *X,
 | |
|                             mbedtls_mpi_uint min,
 | |
|                             const mbedtls_mpi_uint *N,
 | |
|                             size_t limbs,
 | |
|                             int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                             void *p_rng)
 | |
| {
 | |
|     mbedtls_ct_condition_t ge_lower = MBEDTLS_CT_TRUE, lt_upper = MBEDTLS_CT_FALSE;
 | |
|     size_t n_bits = mbedtls_mpi_core_bitlen(N, limbs);
 | |
|     size_t n_bytes = (n_bits + 7) / 8;
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
| 
 | |
|     /*
 | |
|      * When min == 0, each try has at worst a probability 1/2 of failing
 | |
|      * (the msb has a probability 1/2 of being 0, and then the result will
 | |
|      * be < N), so after 30 tries failure probability is a most 2**(-30).
 | |
|      *
 | |
|      * When N is just below a power of 2, as is the case when generating
 | |
|      * a random scalar on most elliptic curves, 1 try is enough with
 | |
|      * overwhelming probability. When N is just above a power of 2,
 | |
|      * as when generating a random scalar on secp224k1, each try has
 | |
|      * a probability of failing that is almost 1/2.
 | |
|      *
 | |
|      * The probabilities are almost the same if min is nonzero but negligible
 | |
|      * compared to N. This is always the case when N is crypto-sized, but
 | |
|      * it's convenient to support small N for testing purposes. When N
 | |
|      * is small, use a higher repeat count, otherwise the probability of
 | |
|      * failure is macroscopic.
 | |
|      */
 | |
|     int count = (n_bytes > 4 ? 30 : 250);
 | |
| 
 | |
|     /*
 | |
|      * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
 | |
|      * when f_rng is a suitably parametrized instance of HMAC_DRBG:
 | |
|      * - use the same byte ordering;
 | |
|      * - keep the leftmost n_bits bits of the generated octet string;
 | |
|      * - try until result is in the desired range.
 | |
|      * This also avoids any bias, which is especially important for ECDSA.
 | |
|      */
 | |
|     do {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_core_fill_random(X, limbs,
 | |
|                                                      n_bytes,
 | |
|                                                      f_rng, p_rng));
 | |
|         mbedtls_mpi_core_shift_r(X, limbs, 8 * n_bytes - n_bits);
 | |
| 
 | |
|         if (--count == 0) {
 | |
|             ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         ge_lower = mbedtls_mpi_core_uint_le_mpi(min, X, limbs);
 | |
|         lt_upper = mbedtls_mpi_core_lt_ct(X, N, limbs);
 | |
|     } while (mbedtls_ct_bool_and(ge_lower, lt_upper) == MBEDTLS_CT_FALSE);
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static size_t exp_mod_get_window_size(size_t Ebits)
 | |
| {
 | |
| #if MBEDTLS_MPI_WINDOW_SIZE >= 6
 | |
|     return (Ebits > 671) ? 6 : (Ebits > 239) ? 5 : (Ebits >  79) ? 4 : 1;
 | |
| #elif MBEDTLS_MPI_WINDOW_SIZE == 5
 | |
|     return (Ebits > 239) ? 5 : (Ebits >  79) ? 4 : 1;
 | |
| #elif MBEDTLS_MPI_WINDOW_SIZE > 1
 | |
|     return (Ebits >  79) ? MBEDTLS_MPI_WINDOW_SIZE : 1;
 | |
| #else
 | |
|     (void) Ebits;
 | |
|     return 1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| size_t mbedtls_mpi_core_exp_mod_working_limbs(size_t AN_limbs, size_t E_limbs)
 | |
| {
 | |
|     const size_t wsize = exp_mod_get_window_size(E_limbs * biL);
 | |
|     const size_t welem = ((size_t) 1) << wsize;
 | |
| 
 | |
|     /* How big does each part of the working memory pool need to be? */
 | |
|     const size_t table_limbs   = welem * AN_limbs;
 | |
|     const size_t select_limbs  = AN_limbs;
 | |
|     const size_t temp_limbs    = 2 * AN_limbs + 1;
 | |
| 
 | |
|     return table_limbs + select_limbs + temp_limbs;
 | |
| }
 | |
| 
 | |
| static void exp_mod_precompute_window(const mbedtls_mpi_uint *A,
 | |
|                                       const mbedtls_mpi_uint *N,
 | |
|                                       size_t AN_limbs,
 | |
|                                       mbedtls_mpi_uint mm,
 | |
|                                       const mbedtls_mpi_uint *RR,
 | |
|                                       size_t welem,
 | |
|                                       mbedtls_mpi_uint *Wtable,
 | |
|                                       mbedtls_mpi_uint *temp)
 | |
| {
 | |
|     /* W[0] = 1 (in Montgomery presentation) */
 | |
|     memset(Wtable, 0, AN_limbs * ciL);
 | |
|     Wtable[0] = 1;
 | |
|     mbedtls_mpi_core_montmul(Wtable, Wtable, RR, AN_limbs, N, AN_limbs, mm, temp);
 | |
| 
 | |
|     /* W[1] = A (already in Montgomery presentation) */
 | |
|     mbedtls_mpi_uint *W1 = Wtable + AN_limbs;
 | |
|     memcpy(W1, A, AN_limbs * ciL);
 | |
| 
 | |
|     /* W[i+1] = W[i] * W[1], i >= 2 */
 | |
|     mbedtls_mpi_uint *Wprev = W1;
 | |
|     for (size_t i = 2; i < welem; i++) {
 | |
|         mbedtls_mpi_uint *Wcur = Wprev + AN_limbs;
 | |
|         mbedtls_mpi_core_montmul(Wcur, Wprev, W1, AN_limbs, N, AN_limbs, mm, temp);
 | |
|         Wprev = Wcur;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Exponentiation: X := A^E mod N.
 | |
|  *
 | |
|  * A must already be in Montgomery form.
 | |
|  *
 | |
|  * As in other bignum functions, assume that AN_limbs and E_limbs are nonzero.
 | |
|  *
 | |
|  * RR must contain 2^{2*biL} mod N.
 | |
|  *
 | |
|  * The algorithm is a variant of Left-to-right k-ary exponentiation: HAC 14.82
 | |
|  * (The difference is that the body in our loop processes a single bit instead
 | |
|  * of a full window.)
 | |
|  */
 | |
| void mbedtls_mpi_core_exp_mod(mbedtls_mpi_uint *X,
 | |
|                               const mbedtls_mpi_uint *A,
 | |
|                               const mbedtls_mpi_uint *N,
 | |
|                               size_t AN_limbs,
 | |
|                               const mbedtls_mpi_uint *E,
 | |
|                               size_t E_limbs,
 | |
|                               const mbedtls_mpi_uint *RR,
 | |
|                               mbedtls_mpi_uint *T)
 | |
| {
 | |
|     const size_t wsize = exp_mod_get_window_size(E_limbs * biL);
 | |
|     const size_t welem = ((size_t) 1) << wsize;
 | |
| 
 | |
|     /* This is how we will use the temporary storage T, which must have space
 | |
|      * for table_limbs, select_limbs and (2 * AN_limbs + 1) for montmul. */
 | |
|     const size_t table_limbs  = welem * AN_limbs;
 | |
|     const size_t select_limbs = AN_limbs;
 | |
| 
 | |
|     /* Pointers to specific parts of the temporary working memory pool */
 | |
|     mbedtls_mpi_uint *const Wtable  = T;
 | |
|     mbedtls_mpi_uint *const Wselect = Wtable  +  table_limbs;
 | |
|     mbedtls_mpi_uint *const temp    = Wselect + select_limbs;
 | |
| 
 | |
|     /*
 | |
|      * Window precomputation
 | |
|      */
 | |
| 
 | |
|     const mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N);
 | |
| 
 | |
|     /* Set Wtable[i] = A^(2^i) (in Montgomery representation) */
 | |
|     exp_mod_precompute_window(A, N, AN_limbs,
 | |
|                               mm, RR,
 | |
|                               welem, Wtable, temp);
 | |
| 
 | |
|     /*
 | |
|      * Fixed window exponentiation
 | |
|      */
 | |
| 
 | |
|     /* X = 1 (in Montgomery presentation) initially */
 | |
|     memcpy(X, Wtable, AN_limbs * ciL);
 | |
| 
 | |
|     /* We'll process the bits of E from most significant
 | |
|      * (limb_index=E_limbs-1, E_bit_index=biL-1) to least significant
 | |
|      * (limb_index=0, E_bit_index=0). */
 | |
|     size_t E_limb_index = E_limbs;
 | |
|     size_t E_bit_index = 0;
 | |
|     /* At any given time, window contains window_bits bits from E.
 | |
|      * window_bits can go up to wsize. */
 | |
|     size_t window_bits = 0;
 | |
|     mbedtls_mpi_uint window = 0;
 | |
| 
 | |
|     do {
 | |
|         /* Square */
 | |
|         mbedtls_mpi_core_montmul(X, X, X, AN_limbs, N, AN_limbs, mm, temp);
 | |
| 
 | |
|         /* Move to the next bit of the exponent */
 | |
|         if (E_bit_index == 0) {
 | |
|             --E_limb_index;
 | |
|             E_bit_index = biL - 1;
 | |
|         } else {
 | |
|             --E_bit_index;
 | |
|         }
 | |
|         /* Insert next exponent bit into window */
 | |
|         ++window_bits;
 | |
|         window <<= 1;
 | |
|         window |= (E[E_limb_index] >> E_bit_index) & 1;
 | |
| 
 | |
|         /* Clear window if it's full. Also clear the window at the end,
 | |
|          * when we've finished processing the exponent. */
 | |
|         if (window_bits == wsize ||
 | |
|             (E_bit_index == 0 && E_limb_index == 0)) {
 | |
|             /* Select Wtable[window] without leaking window through
 | |
|              * memory access patterns. */
 | |
|             mbedtls_mpi_core_ct_uint_table_lookup(Wselect, Wtable,
 | |
|                                                   AN_limbs, welem, window);
 | |
|             /* Multiply X by the selected element. */
 | |
|             mbedtls_mpi_core_montmul(X, X, Wselect, AN_limbs, N, AN_limbs, mm,
 | |
|                                      temp);
 | |
|             window = 0;
 | |
|             window_bits = 0;
 | |
|         }
 | |
|     } while (!(E_bit_index == 0 && E_limb_index == 0));
 | |
| }
 | |
| 
 | |
| mbedtls_mpi_uint mbedtls_mpi_core_sub_int(mbedtls_mpi_uint *X,
 | |
|                                           const mbedtls_mpi_uint *A,
 | |
|                                           mbedtls_mpi_uint c,  /* doubles as carry */
 | |
|                                           size_t limbs)
 | |
| {
 | |
|     for (size_t i = 0; i < limbs; i++) {
 | |
|         mbedtls_mpi_uint s = A[i];
 | |
|         mbedtls_mpi_uint t = s - c;
 | |
|         c = (t > s);
 | |
|         X[i] = t;
 | |
|     }
 | |
| 
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| mbedtls_mpi_uint mbedtls_mpi_core_check_zero_ct(const mbedtls_mpi_uint *A,
 | |
|                                                 size_t limbs)
 | |
| {
 | |
|     mbedtls_mpi_uint bits = 0;
 | |
| 
 | |
|     for (size_t i = 0; i < limbs; i++) {
 | |
|         bits |= A[i];
 | |
|     }
 | |
| 
 | |
|     return bits;
 | |
| }
 | |
| 
 | |
| void mbedtls_mpi_core_to_mont_rep(mbedtls_mpi_uint *X,
 | |
|                                   const mbedtls_mpi_uint *A,
 | |
|                                   const mbedtls_mpi_uint *N,
 | |
|                                   size_t AN_limbs,
 | |
|                                   mbedtls_mpi_uint mm,
 | |
|                                   const mbedtls_mpi_uint *rr,
 | |
|                                   mbedtls_mpi_uint *T)
 | |
| {
 | |
|     mbedtls_mpi_core_montmul(X, A, rr, AN_limbs, N, AN_limbs, mm, T);
 | |
| }
 | |
| 
 | |
| void mbedtls_mpi_core_from_mont_rep(mbedtls_mpi_uint *X,
 | |
|                                     const mbedtls_mpi_uint *A,
 | |
|                                     const mbedtls_mpi_uint *N,
 | |
|                                     size_t AN_limbs,
 | |
|                                     mbedtls_mpi_uint mm,
 | |
|                                     mbedtls_mpi_uint *T)
 | |
| {
 | |
|     const mbedtls_mpi_uint Rinv = 1;    /* 1/R in Mont. rep => 1 */
 | |
| 
 | |
|     mbedtls_mpi_core_montmul(X, A, &Rinv, 1, N, AN_limbs, mm, T);
 | |
| }
 | |
| 
 | |
| #endif /* MBEDTLS_BIGNUM_C */
 |