mirror of
				https://github.com/Mbed-TLS/mbedtls.git
				synced 2025-10-24 13:32:59 +03:00 
			
		
		
		
	The assembly code uses t only on some architectures. Fixes #7166. Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
		
			
				
	
	
		
			3212 lines
		
	
	
		
			86 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3212 lines
		
	
	
		
			86 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Multi-precision integer library
 | |
|  *
 | |
|  *  Copyright The Mbed TLS Contributors
 | |
|  *  SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 | |
|  *  not use this file except in compliance with the License.
 | |
|  *  You may obtain a copy of the License at
 | |
|  *
 | |
|  *  http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  *  Unless required by applicable law or agreed to in writing, software
 | |
|  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | |
|  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  *  See the License for the specific language governing permissions and
 | |
|  *  limitations under the License.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *  The following sources were referenced in the design of this Multi-precision
 | |
|  *  Integer library:
 | |
|  *
 | |
|  *  [1] Handbook of Applied Cryptography - 1997
 | |
|  *      Menezes, van Oorschot and Vanstone
 | |
|  *
 | |
|  *  [2] Multi-Precision Math
 | |
|  *      Tom St Denis
 | |
|  *      https://github.com/libtom/libtommath/blob/develop/tommath.pdf
 | |
|  *
 | |
|  *  [3] GNU Multi-Precision Arithmetic Library
 | |
|  *      https://gmplib.org/manual/index.html
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "common.h"
 | |
| 
 | |
| #if defined(MBEDTLS_BIGNUM_C)
 | |
| 
 | |
| #include "mbedtls/bignum.h"
 | |
| #include "mbedtls/bn_mul.h"
 | |
| #include "mbedtls/platform_util.h"
 | |
| #include "mbedtls/error.h"
 | |
| #include "constant_time_internal.h"
 | |
| 
 | |
| #include <limits.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "mbedtls/platform.h"
 | |
| 
 | |
| #define MPI_VALIDATE_RET(cond)                                       \
 | |
|     MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)
 | |
| #define MPI_VALIDATE(cond)                                           \
 | |
|     MBEDTLS_INTERNAL_VALIDATE(cond)
 | |
| 
 | |
| #define ciL    (sizeof(mbedtls_mpi_uint))         /* chars in limb  */
 | |
| #define biL    (ciL << 3)               /* bits  in limb  */
 | |
| #define biH    (ciL << 2)               /* half limb size */
 | |
| 
 | |
| #define MPI_SIZE_T_MAX  ((size_t) -1)   /* SIZE_T_MAX is not standard */
 | |
| 
 | |
| /*
 | |
|  * Convert between bits/chars and number of limbs
 | |
|  * Divide first in order to avoid potential overflows
 | |
|  */
 | |
| #define BITS_TO_LIMBS(i)  ((i) / biL + ((i) % biL != 0))
 | |
| #define CHARS_TO_LIMBS(i) ((i) / ciL + ((i) % ciL != 0))
 | |
| 
 | |
| /* Implementation that should never be optimized out by the compiler */
 | |
| static void mbedtls_mpi_zeroize(mbedtls_mpi_uint *v, size_t n)
 | |
| {
 | |
|     mbedtls_platform_zeroize(v, ciL * n);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize one MPI
 | |
|  */
 | |
| void mbedtls_mpi_init(mbedtls_mpi *X)
 | |
| {
 | |
|     MPI_VALIDATE(X != NULL);
 | |
| 
 | |
|     X->s = 1;
 | |
|     X->n = 0;
 | |
|     X->p = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unallocate one MPI
 | |
|  */
 | |
| void mbedtls_mpi_free(mbedtls_mpi *X)
 | |
| {
 | |
|     if (X == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (X->p != NULL) {
 | |
|         mbedtls_mpi_zeroize(X->p, X->n);
 | |
|         mbedtls_free(X->p);
 | |
|     }
 | |
| 
 | |
|     X->s = 1;
 | |
|     X->n = 0;
 | |
|     X->p = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enlarge to the specified number of limbs
 | |
|  */
 | |
| int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs)
 | |
| {
 | |
|     mbedtls_mpi_uint *p;
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
| 
 | |
|     if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
 | |
|         return MBEDTLS_ERR_MPI_ALLOC_FAILED;
 | |
|     }
 | |
| 
 | |
|     if (X->n < nblimbs) {
 | |
|         if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) {
 | |
|             return MBEDTLS_ERR_MPI_ALLOC_FAILED;
 | |
|         }
 | |
| 
 | |
|         if (X->p != NULL) {
 | |
|             memcpy(p, X->p, X->n * ciL);
 | |
|             mbedtls_mpi_zeroize(X->p, X->n);
 | |
|             mbedtls_free(X->p);
 | |
|         }
 | |
| 
 | |
|         X->n = nblimbs;
 | |
|         X->p = p;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Resize down as much as possible,
 | |
|  * while keeping at least the specified number of limbs
 | |
|  */
 | |
| int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs)
 | |
| {
 | |
|     mbedtls_mpi_uint *p;
 | |
|     size_t i;
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
| 
 | |
|     if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
 | |
|         return MBEDTLS_ERR_MPI_ALLOC_FAILED;
 | |
|     }
 | |
| 
 | |
|     /* Actually resize up if there are currently fewer than nblimbs limbs. */
 | |
|     if (X->n <= nblimbs) {
 | |
|         return mbedtls_mpi_grow(X, nblimbs);
 | |
|     }
 | |
|     /* After this point, then X->n > nblimbs and in particular X->n > 0. */
 | |
| 
 | |
|     for (i = X->n - 1; i > 0; i--) {
 | |
|         if (X->p[i] != 0) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     i++;
 | |
| 
 | |
|     if (i < nblimbs) {
 | |
|         i = nblimbs;
 | |
|     }
 | |
| 
 | |
|     if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) {
 | |
|         return MBEDTLS_ERR_MPI_ALLOC_FAILED;
 | |
|     }
 | |
| 
 | |
|     if (X->p != NULL) {
 | |
|         memcpy(p, X->p, i * ciL);
 | |
|         mbedtls_mpi_zeroize(X->p, X->n);
 | |
|         mbedtls_free(X->p);
 | |
|     }
 | |
| 
 | |
|     X->n = i;
 | |
|     X->p = p;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Resize X to have exactly n limbs and set it to 0. */
 | |
| static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs)
 | |
| {
 | |
|     if (limbs == 0) {
 | |
|         mbedtls_mpi_free(X);
 | |
|         return 0;
 | |
|     } else if (X->n == limbs) {
 | |
|         memset(X->p, 0, limbs * ciL);
 | |
|         X->s = 1;
 | |
|         return 0;
 | |
|     } else {
 | |
|         mbedtls_mpi_free(X);
 | |
|         return mbedtls_mpi_grow(X, limbs);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy the contents of Y into X.
 | |
|  *
 | |
|  * This function is not constant-time. Leading zeros in Y may be removed.
 | |
|  *
 | |
|  * Ensure that X does not shrink. This is not guaranteed by the public API,
 | |
|  * but some code in the bignum module relies on this property, for example
 | |
|  * in mbedtls_mpi_exp_mod().
 | |
|  */
 | |
| int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)
 | |
| {
 | |
|     int ret = 0;
 | |
|     size_t i;
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
|     MPI_VALIDATE_RET(Y != NULL);
 | |
| 
 | |
|     if (X == Y) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (Y->n == 0) {
 | |
|         if (X->n != 0) {
 | |
|             X->s = 1;
 | |
|             memset(X->p, 0, X->n * ciL);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     for (i = Y->n - 1; i > 0; i--) {
 | |
|         if (Y->p[i] != 0) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     i++;
 | |
| 
 | |
|     X->s = Y->s;
 | |
| 
 | |
|     if (X->n < i) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));
 | |
|     } else {
 | |
|         memset(X->p + i, 0, (X->n - i) * ciL);
 | |
|     }
 | |
| 
 | |
|     memcpy(X->p, Y->p, i * ciL);
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Swap the contents of X and Y
 | |
|  */
 | |
| void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y)
 | |
| {
 | |
|     mbedtls_mpi T;
 | |
|     MPI_VALIDATE(X != NULL);
 | |
|     MPI_VALIDATE(Y != NULL);
 | |
| 
 | |
|     memcpy(&T,  X, sizeof(mbedtls_mpi));
 | |
|     memcpy(X,  Y, sizeof(mbedtls_mpi));
 | |
|     memcpy(Y, &T, sizeof(mbedtls_mpi));
 | |
| }
 | |
| 
 | |
| static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z)
 | |
| {
 | |
|     if (z >= 0) {
 | |
|         return z;
 | |
|     }
 | |
|     /* Take care to handle the most negative value (-2^(biL-1)) correctly.
 | |
|      * A naive -z would have undefined behavior.
 | |
|      * Write this in a way that makes popular compilers happy (GCC, Clang,
 | |
|      * MSVC). */
 | |
|     return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set value from integer
 | |
|  */
 | |
| int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));
 | |
|     memset(X->p, 0, X->n * ciL);
 | |
| 
 | |
|     X->p[0] = mpi_sint_abs(z);
 | |
|     X->s    = (z < 0) ? -1 : 1;
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get a specific bit
 | |
|  */
 | |
| int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos)
 | |
| {
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
| 
 | |
|     if (X->n * biL <= pos) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return (X->p[pos / biL] >> (pos % biL)) & 0x01;
 | |
| }
 | |
| 
 | |
| /* Get a specific byte, without range checks. */
 | |
| #define GET_BYTE(X, i)                                \
 | |
|     (((X)->p[(i) / ciL] >> (((i) % ciL) * 8)) & 0xff)
 | |
| 
 | |
| /*
 | |
|  * Set a bit to a specific value of 0 or 1
 | |
|  */
 | |
| int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val)
 | |
| {
 | |
|     int ret = 0;
 | |
|     size_t off = pos / biL;
 | |
|     size_t idx = pos % biL;
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
| 
 | |
|     if (val != 0 && val != 1) {
 | |
|         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if (X->n * biL <= pos) {
 | |
|         if (val == 0) {
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));
 | |
|     }
 | |
| 
 | |
|     X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);
 | |
|     X->p[off] |= (mbedtls_mpi_uint) val << idx;
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of less significant zero-bits
 | |
|  */
 | |
| size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
 | |
| {
 | |
|     size_t i, j, count = 0;
 | |
|     MBEDTLS_INTERNAL_VALIDATE_RET(X != NULL, 0);
 | |
| 
 | |
|     for (i = 0; i < X->n; i++) {
 | |
|         for (j = 0; j < biL; j++, count++) {
 | |
|             if (((X->p[i] >> j) & 1) != 0) {
 | |
|                 return count;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Count leading zero bits in a given integer
 | |
|  */
 | |
| static size_t mbedtls_clz(const mbedtls_mpi_uint x)
 | |
| {
 | |
|     size_t j;
 | |
|     mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
 | |
| 
 | |
|     for (j = 0; j < biL; j++) {
 | |
|         if (x & mask) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         mask >>= 1;
 | |
|     }
 | |
| 
 | |
|     return j;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of bits
 | |
|  */
 | |
| size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X)
 | |
| {
 | |
|     size_t i, j;
 | |
| 
 | |
|     if (X->n == 0) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     for (i = X->n - 1; i > 0; i--) {
 | |
|         if (X->p[i] != 0) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     j = biL - mbedtls_clz(X->p[i]);
 | |
| 
 | |
|     return (i * biL) + j;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the total size in bytes
 | |
|  */
 | |
| size_t mbedtls_mpi_size(const mbedtls_mpi *X)
 | |
| {
 | |
|     return (mbedtls_mpi_bitlen(X) + 7) >> 3;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert an ASCII character to digit value
 | |
|  */
 | |
| static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c)
 | |
| {
 | |
|     *d = 255;
 | |
| 
 | |
|     if (c >= 0x30 && c <= 0x39) {
 | |
|         *d = c - 0x30;
 | |
|     }
 | |
|     if (c >= 0x41 && c <= 0x46) {
 | |
|         *d = c - 0x37;
 | |
|     }
 | |
|     if (c >= 0x61 && c <= 0x66) {
 | |
|         *d = c - 0x57;
 | |
|     }
 | |
| 
 | |
|     if (*d >= (mbedtls_mpi_uint) radix) {
 | |
|         return MBEDTLS_ERR_MPI_INVALID_CHARACTER;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Import from an ASCII string
 | |
|  */
 | |
| int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t i, j, slen, n;
 | |
|     int sign = 1;
 | |
|     mbedtls_mpi_uint d;
 | |
|     mbedtls_mpi T;
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
|     MPI_VALIDATE_RET(s != NULL);
 | |
| 
 | |
|     if (radix < 2 || radix > 16) {
 | |
|         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     mbedtls_mpi_init(&T);
 | |
| 
 | |
|     if (s[0] == 0) {
 | |
|         mbedtls_mpi_free(X);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (s[0] == '-') {
 | |
|         ++s;
 | |
|         sign = -1;
 | |
|     }
 | |
| 
 | |
|     slen = strlen(s);
 | |
| 
 | |
|     if (radix == 16) {
 | |
|         if (slen > MPI_SIZE_T_MAX >> 2) {
 | |
|             return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|         }
 | |
| 
 | |
|         n = BITS_TO_LIMBS(slen << 2);
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
 | |
| 
 | |
|         for (i = slen, j = 0; i > 0; i--, j++) {
 | |
|             MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));
 | |
|             X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);
 | |
|         }
 | |
|     } else {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
 | |
| 
 | |
|         for (i = 0; i < slen; i++) {
 | |
|             MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) {
 | |
|         X->s = -1;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free(&T);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper to write the digits high-order first.
 | |
|  */
 | |
| static int mpi_write_hlp(mbedtls_mpi *X, int radix,
 | |
|                          char **p, const size_t buflen)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     mbedtls_mpi_uint r;
 | |
|     size_t length = 0;
 | |
|     char *p_end = *p + buflen;
 | |
| 
 | |
|     do {
 | |
|         if (length >= buflen) {
 | |
|             return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
 | |
|         }
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));
 | |
|         /*
 | |
|          * Write the residue in the current position, as an ASCII character.
 | |
|          */
 | |
|         if (r < 0xA) {
 | |
|             *(--p_end) = (char) ('0' + r);
 | |
|         } else {
 | |
|             *(--p_end) = (char) ('A' + (r - 0xA));
 | |
|         }
 | |
| 
 | |
|         length++;
 | |
|     } while (mbedtls_mpi_cmp_int(X, 0) != 0);
 | |
| 
 | |
|     memmove(*p, p_end, length);
 | |
|     *p += length;
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Export into an ASCII string
 | |
|  */
 | |
| int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,
 | |
|                              char *buf, size_t buflen, size_t *olen)
 | |
| {
 | |
|     int ret = 0;
 | |
|     size_t n;
 | |
|     char *p;
 | |
|     mbedtls_mpi T;
 | |
|     MPI_VALIDATE_RET(X    != NULL);
 | |
|     MPI_VALIDATE_RET(olen != NULL);
 | |
|     MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
 | |
| 
 | |
|     if (radix < 2 || radix > 16) {
 | |
|         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     n = mbedtls_mpi_bitlen(X);   /* Number of bits necessary to present `n`. */
 | |
|     if (radix >=  4) {
 | |
|         n >>= 1;                 /* Number of 4-adic digits necessary to present
 | |
|                                   * `n`. If radix > 4, this might be a strict
 | |
|                                   * overapproximation of the number of
 | |
|                                   * radix-adic digits needed to present `n`. */
 | |
|     }
 | |
|     if (radix >= 16) {
 | |
|         n >>= 1;                 /* Number of hexadecimal digits necessary to
 | |
|                                   * present `n`. */
 | |
| 
 | |
|     }
 | |
|     n += 1; /* Terminating null byte */
 | |
|     n += 1; /* Compensate for the divisions above, which round down `n`
 | |
|              * in case it's not even. */
 | |
|     n += 1; /* Potential '-'-sign. */
 | |
|     n += (n & 1);   /* Make n even to have enough space for hexadecimal writing,
 | |
|                      * which always uses an even number of hex-digits. */
 | |
| 
 | |
|     if (buflen < n) {
 | |
|         *olen = n;
 | |
|         return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
 | |
|     }
 | |
| 
 | |
|     p = buf;
 | |
|     mbedtls_mpi_init(&T);
 | |
| 
 | |
|     if (X->s == -1) {
 | |
|         *p++ = '-';
 | |
|         buflen--;
 | |
|     }
 | |
| 
 | |
|     if (radix == 16) {
 | |
|         int c;
 | |
|         size_t i, j, k;
 | |
| 
 | |
|         for (i = X->n, k = 0; i > 0; i--) {
 | |
|             for (j = ciL; j > 0; j--) {
 | |
|                 c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;
 | |
| 
 | |
|                 if (c == 0 && k == 0 && (i + j) != 2) {
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 *(p++) = "0123456789ABCDEF" [c / 16];
 | |
|                 *(p++) = "0123456789ABCDEF" [c % 16];
 | |
|                 k = 1;
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));
 | |
| 
 | |
|         if (T.s == -1) {
 | |
|             T.s = 1;
 | |
|         }
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen));
 | |
|     }
 | |
| 
 | |
|     *p++ = '\0';
 | |
|     *olen = p - buf;
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free(&T);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #if defined(MBEDTLS_FS_IO)
 | |
| /*
 | |
|  * Read X from an opened file
 | |
|  */
 | |
| int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin)
 | |
| {
 | |
|     mbedtls_mpi_uint d;
 | |
|     size_t slen;
 | |
|     char *p;
 | |
|     /*
 | |
|      * Buffer should have space for (short) label and decimal formatted MPI,
 | |
|      * newline characters and '\0'
 | |
|      */
 | |
|     char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
 | |
| 
 | |
|     MPI_VALIDATE_RET(X   != NULL);
 | |
|     MPI_VALIDATE_RET(fin != NULL);
 | |
| 
 | |
|     if (radix < 2 || radix > 16) {
 | |
|         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     memset(s, 0, sizeof(s));
 | |
|     if (fgets(s, sizeof(s) - 1, fin) == NULL) {
 | |
|         return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
 | |
|     }
 | |
| 
 | |
|     slen = strlen(s);
 | |
|     if (slen == sizeof(s) - 2) {
 | |
|         return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
 | |
|     }
 | |
| 
 | |
|     if (slen > 0 && s[slen - 1] == '\n') {
 | |
|         slen--; s[slen] = '\0';
 | |
|     }
 | |
|     if (slen > 0 && s[slen - 1] == '\r') {
 | |
|         slen--; s[slen] = '\0';
 | |
|     }
 | |
| 
 | |
|     p = s + slen;
 | |
|     while (p-- > s) {
 | |
|         if (mpi_get_digit(&d, radix, *p) != 0) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return mbedtls_mpi_read_string(X, radix, p + 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write X into an opened file (or stdout if fout == NULL)
 | |
|  */
 | |
| int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t n, slen, plen;
 | |
|     /*
 | |
|      * Buffer should have space for (short) label and decimal formatted MPI,
 | |
|      * newline characters and '\0'
 | |
|      */
 | |
|     char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
| 
 | |
|     if (radix < 2 || radix > 16) {
 | |
|         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     memset(s, 0, sizeof(s));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));
 | |
| 
 | |
|     if (p == NULL) {
 | |
|         p = "";
 | |
|     }
 | |
| 
 | |
|     plen = strlen(p);
 | |
|     slen = strlen(s);
 | |
|     s[slen++] = '\r';
 | |
|     s[slen++] = '\n';
 | |
| 
 | |
|     if (fout != NULL) {
 | |
|         if (fwrite(p, 1, plen, fout) != plen ||
 | |
|             fwrite(s, 1, slen, fout) != slen) {
 | |
|             return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
 | |
|         }
 | |
|     } else {
 | |
|         mbedtls_printf("%s%s", p, s);
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| #endif /* MBEDTLS_FS_IO */
 | |
| 
 | |
| 
 | |
| /* Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
 | |
|  * into the storage form used by mbedtls_mpi. */
 | |
| 
 | |
| static mbedtls_mpi_uint mpi_uint_bigendian_to_host_c(mbedtls_mpi_uint x)
 | |
| {
 | |
|     uint8_t i;
 | |
|     unsigned char *x_ptr;
 | |
|     mbedtls_mpi_uint tmp = 0;
 | |
| 
 | |
|     for (i = 0, x_ptr = (unsigned char *) &x; i < ciL; i++, x_ptr++) {
 | |
|         tmp <<= CHAR_BIT;
 | |
|         tmp |= (mbedtls_mpi_uint) *x_ptr;
 | |
|     }
 | |
| 
 | |
|     return tmp;
 | |
| }
 | |
| 
 | |
| static mbedtls_mpi_uint mpi_uint_bigendian_to_host(mbedtls_mpi_uint x)
 | |
| {
 | |
| #if defined(__BYTE_ORDER__)
 | |
| 
 | |
| /* Nothing to do on bigendian systems. */
 | |
| #if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
 | |
|     return x;
 | |
| #endif /* __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ */
 | |
| 
 | |
| #if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
 | |
| 
 | |
| /* For GCC and Clang, have builtins for byte swapping. */
 | |
| #if defined(__GNUC__) && defined(__GNUC_PREREQ)
 | |
| #if __GNUC_PREREQ(4, 3)
 | |
| #define have_bswap
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #if defined(__clang__) && defined(__has_builtin)
 | |
| #if __has_builtin(__builtin_bswap32)  &&                 \
 | |
|     __has_builtin(__builtin_bswap64)
 | |
| #define have_bswap
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #if defined(have_bswap)
 | |
|     /* The compiler is hopefully able to statically evaluate this! */
 | |
|     switch (sizeof(mbedtls_mpi_uint)) {
 | |
|         case 4:
 | |
|             return __builtin_bswap32(x);
 | |
|         case 8:
 | |
|             return __builtin_bswap64(x);
 | |
|     }
 | |
| #endif
 | |
| #endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */
 | |
| #endif /* __BYTE_ORDER__ */
 | |
| 
 | |
|     /* Fall back to C-based reordering if we don't know the byte order
 | |
|      * or we couldn't use a compiler-specific builtin. */
 | |
|     return mpi_uint_bigendian_to_host_c(x);
 | |
| }
 | |
| 
 | |
| static void mpi_bigendian_to_host(mbedtls_mpi_uint * const p, size_t limbs)
 | |
| {
 | |
|     mbedtls_mpi_uint *cur_limb_left;
 | |
|     mbedtls_mpi_uint *cur_limb_right;
 | |
|     if (limbs == 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Traverse limbs and
 | |
|      * - adapt byte-order in each limb
 | |
|      * - swap the limbs themselves.
 | |
|      * For that, simultaneously traverse the limbs from left to right
 | |
|      * and from right to left, as long as the left index is not bigger
 | |
|      * than the right index (it's not a problem if limbs is odd and the
 | |
|      * indices coincide in the last iteration).
 | |
|      */
 | |
|     for (cur_limb_left = p, cur_limb_right = p + (limbs - 1);
 | |
|          cur_limb_left <= cur_limb_right;
 | |
|          cur_limb_left++, cur_limb_right--) {
 | |
|         mbedtls_mpi_uint tmp;
 | |
|         /* Note that if cur_limb_left == cur_limb_right,
 | |
|          * this code effectively swaps the bytes only once. */
 | |
|         tmp             = mpi_uint_bigendian_to_host(*cur_limb_left);
 | |
|         *cur_limb_left  = mpi_uint_bigendian_to_host(*cur_limb_right);
 | |
|         *cur_limb_right = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Import X from unsigned binary data, little endian
 | |
|  */
 | |
| int mbedtls_mpi_read_binary_le(mbedtls_mpi *X,
 | |
|                                const unsigned char *buf, size_t buflen)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t i;
 | |
|     size_t const limbs = CHARS_TO_LIMBS(buflen);
 | |
| 
 | |
|     /* Ensure that target MPI has exactly the necessary number of limbs */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
 | |
| 
 | |
|     for (i = 0; i < buflen; i++) {
 | |
|         X->p[i / ciL] |= ((mbedtls_mpi_uint) buf[i]) << ((i % ciL) << 3);
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     /*
 | |
|      * This function is also used to import keys. However, wiping the buffers
 | |
|      * upon failure is not necessary because failure only can happen before any
 | |
|      * input is copied.
 | |
|      */
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Import X from unsigned binary data, big endian
 | |
|  */
 | |
| int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t const limbs    = CHARS_TO_LIMBS(buflen);
 | |
|     size_t const overhead = (limbs * ciL) - buflen;
 | |
|     unsigned char *Xp;
 | |
| 
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
|     MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
 | |
| 
 | |
|     /* Ensure that target MPI has exactly the necessary number of limbs */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
 | |
| 
 | |
|     /* Avoid calling `memcpy` with NULL source or destination argument,
 | |
|      * even if buflen is 0. */
 | |
|     if (buflen != 0) {
 | |
|         Xp = (unsigned char *) X->p;
 | |
|         memcpy(Xp + overhead, buf, buflen);
 | |
| 
 | |
|         mpi_bigendian_to_host(X->p, limbs);
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     /*
 | |
|      * This function is also used to import keys. However, wiping the buffers
 | |
|      * upon failure is not necessary because failure only can happen before any
 | |
|      * input is copied.
 | |
|      */
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Export X into unsigned binary data, little endian
 | |
|  */
 | |
| int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X,
 | |
|                                 unsigned char *buf, size_t buflen)
 | |
| {
 | |
|     size_t stored_bytes = X->n * ciL;
 | |
|     size_t bytes_to_copy;
 | |
|     size_t i;
 | |
| 
 | |
|     if (stored_bytes < buflen) {
 | |
|         bytes_to_copy = stored_bytes;
 | |
|     } else {
 | |
|         bytes_to_copy = buflen;
 | |
| 
 | |
|         /* The output buffer is smaller than the allocated size of X.
 | |
|          * However X may fit if its leading bytes are zero. */
 | |
|         for (i = bytes_to_copy; i < stored_bytes; i++) {
 | |
|             if (GET_BYTE(X, i) != 0) {
 | |
|                 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < bytes_to_copy; i++) {
 | |
|         buf[i] = GET_BYTE(X, i);
 | |
|     }
 | |
| 
 | |
|     if (stored_bytes < buflen) {
 | |
|         /* Write trailing 0 bytes */
 | |
|         memset(buf + stored_bytes, 0, buflen - stored_bytes);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Export X into unsigned binary data, big endian
 | |
|  */
 | |
| int mbedtls_mpi_write_binary(const mbedtls_mpi *X,
 | |
|                              unsigned char *buf, size_t buflen)
 | |
| {
 | |
|     size_t stored_bytes;
 | |
|     size_t bytes_to_copy;
 | |
|     unsigned char *p;
 | |
|     size_t i;
 | |
| 
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
|     MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
 | |
| 
 | |
|     stored_bytes = X->n * ciL;
 | |
| 
 | |
|     if (stored_bytes < buflen) {
 | |
|         /* There is enough space in the output buffer. Write initial
 | |
|          * null bytes and record the position at which to start
 | |
|          * writing the significant bytes. In this case, the execution
 | |
|          * trace of this function does not depend on the value of the
 | |
|          * number. */
 | |
|         bytes_to_copy = stored_bytes;
 | |
|         p = buf + buflen - stored_bytes;
 | |
|         memset(buf, 0, buflen - stored_bytes);
 | |
|     } else {
 | |
|         /* The output buffer is smaller than the allocated size of X.
 | |
|          * However X may fit if its leading bytes are zero. */
 | |
|         bytes_to_copy = buflen;
 | |
|         p = buf;
 | |
|         for (i = bytes_to_copy; i < stored_bytes; i++) {
 | |
|             if (GET_BYTE(X, i) != 0) {
 | |
|                 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < bytes_to_copy; i++) {
 | |
|         p[bytes_to_copy - i - 1] = GET_BYTE(X, i);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Left-shift: X <<= count
 | |
|  */
 | |
| int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t i, v0, t1;
 | |
|     mbedtls_mpi_uint r0 = 0, r1;
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
| 
 | |
|     v0 = count / (biL);
 | |
|     t1 = count & (biL - 1);
 | |
| 
 | |
|     i = mbedtls_mpi_bitlen(X) + count;
 | |
| 
 | |
|     if (X->n * biL < i) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));
 | |
|     }
 | |
| 
 | |
|     ret = 0;
 | |
| 
 | |
|     /*
 | |
|      * shift by count / limb_size
 | |
|      */
 | |
|     if (v0 > 0) {
 | |
|         for (i = X->n; i > v0; i--) {
 | |
|             X->p[i - 1] = X->p[i - v0 - 1];
 | |
|         }
 | |
| 
 | |
|         for (; i > 0; i--) {
 | |
|             X->p[i - 1] = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * shift by count % limb_size
 | |
|      */
 | |
|     if (t1 > 0) {
 | |
|         for (i = v0; i < X->n; i++) {
 | |
|             r1 = X->p[i] >> (biL - t1);
 | |
|             X->p[i] <<= t1;
 | |
|             X->p[i] |= r0;
 | |
|             r0 = r1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Right-shift: X >>= count
 | |
|  */
 | |
| int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count)
 | |
| {
 | |
|     size_t i, v0, v1;
 | |
|     mbedtls_mpi_uint r0 = 0, r1;
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
| 
 | |
|     v0 = count /  biL;
 | |
|     v1 = count & (biL - 1);
 | |
| 
 | |
|     if (v0 > X->n || (v0 == X->n && v1 > 0)) {
 | |
|         return mbedtls_mpi_lset(X, 0);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * shift by count / limb_size
 | |
|      */
 | |
|     if (v0 > 0) {
 | |
|         for (i = 0; i < X->n - v0; i++) {
 | |
|             X->p[i] = X->p[i + v0];
 | |
|         }
 | |
| 
 | |
|         for (; i < X->n; i++) {
 | |
|             X->p[i] = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * shift by count % limb_size
 | |
|      */
 | |
|     if (v1 > 0) {
 | |
|         for (i = X->n; i > 0; i--) {
 | |
|             r1 = X->p[i - 1] << (biL - v1);
 | |
|             X->p[i - 1] >>= v1;
 | |
|             X->p[i - 1] |= r0;
 | |
|             r0 = r1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compare unsigned values
 | |
|  */
 | |
| int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y)
 | |
| {
 | |
|     size_t i, j;
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
|     MPI_VALIDATE_RET(Y != NULL);
 | |
| 
 | |
|     for (i = X->n; i > 0; i--) {
 | |
|         if (X->p[i - 1] != 0) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (j = Y->n; j > 0; j--) {
 | |
|         if (Y->p[j - 1] != 0) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (i == 0 && j == 0) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (i > j) {
 | |
|         return 1;
 | |
|     }
 | |
|     if (j > i) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     for (; i > 0; i--) {
 | |
|         if (X->p[i - 1] > Y->p[i - 1]) {
 | |
|             return 1;
 | |
|         }
 | |
|         if (X->p[i - 1] < Y->p[i - 1]) {
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compare signed values
 | |
|  */
 | |
| int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)
 | |
| {
 | |
|     size_t i, j;
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
|     MPI_VALIDATE_RET(Y != NULL);
 | |
| 
 | |
|     for (i = X->n; i > 0; i--) {
 | |
|         if (X->p[i - 1] != 0) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (j = Y->n; j > 0; j--) {
 | |
|         if (Y->p[j - 1] != 0) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (i == 0 && j == 0) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (i > j) {
 | |
|         return X->s;
 | |
|     }
 | |
|     if (j > i) {
 | |
|         return -Y->s;
 | |
|     }
 | |
| 
 | |
|     if (X->s > 0 && Y->s < 0) {
 | |
|         return 1;
 | |
|     }
 | |
|     if (Y->s > 0 && X->s < 0) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     for (; i > 0; i--) {
 | |
|         if (X->p[i - 1] > Y->p[i - 1]) {
 | |
|             return X->s;
 | |
|         }
 | |
|         if (X->p[i - 1] < Y->p[i - 1]) {
 | |
|             return -X->s;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compare signed values
 | |
|  */
 | |
| int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z)
 | |
| {
 | |
|     mbedtls_mpi Y;
 | |
|     mbedtls_mpi_uint p[1];
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
| 
 | |
|     *p  = mpi_sint_abs(z);
 | |
|     Y.s = (z < 0) ? -1 : 1;
 | |
|     Y.n = 1;
 | |
|     Y.p = p;
 | |
| 
 | |
|     return mbedtls_mpi_cmp_mpi(X, &Y);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unsigned addition: X = |A| + |B|  (HAC 14.7)
 | |
|  */
 | |
| int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t i, j;
 | |
|     mbedtls_mpi_uint *o, *p, c, tmp;
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
|     MPI_VALIDATE_RET(A != NULL);
 | |
|     MPI_VALIDATE_RET(B != NULL);
 | |
| 
 | |
|     if (X == B) {
 | |
|         const mbedtls_mpi *T = A; A = X; B = T;
 | |
|     }
 | |
| 
 | |
|     if (X != A) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * X should always be positive as a result of unsigned additions.
 | |
|      */
 | |
|     X->s = 1;
 | |
| 
 | |
|     for (j = B->n; j > 0; j--) {
 | |
|         if (B->p[j - 1] != 0) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
 | |
|      * and B is 0 (of any size). */
 | |
|     if (j == 0) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
 | |
| 
 | |
|     o = B->p; p = X->p; c = 0;
 | |
| 
 | |
|     /*
 | |
|      * tmp is used because it might happen that p == o
 | |
|      */
 | |
|     for (i = 0; i < j; i++, o++, p++) {
 | |
|         tmp = *o;
 | |
|         *p +=  c; c  = (*p <  c);
 | |
|         *p += tmp; c += (*p < tmp);
 | |
|     }
 | |
| 
 | |
|     while (c != 0) {
 | |
|         if (i >= X->n) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + 1));
 | |
|             p = X->p + i;
 | |
|         }
 | |
| 
 | |
|         *p += c; c = (*p < c); i++; p++;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Helper for mbedtls_mpi subtraction.
 | |
|  *
 | |
|  * Calculate l - r where l and r have the same size.
 | |
|  * This function operates modulo (2^ciL)^n and returns the carry
 | |
|  * (1 if there was a wraparound, i.e. if `l < r`, and 0 otherwise).
 | |
|  *
 | |
|  * d may be aliased to l or r.
 | |
|  *
 | |
|  * \param n             Number of limbs of \p d, \p l and \p r.
 | |
|  * \param[out] d        The result of the subtraction.
 | |
|  * \param[in] l         The left operand.
 | |
|  * \param[in] r         The right operand.
 | |
|  *
 | |
|  * \return              1 if `l < r`.
 | |
|  *                      0 if `l >= r`.
 | |
|  */
 | |
| static mbedtls_mpi_uint mpi_sub_hlp(size_t n,
 | |
|                                     mbedtls_mpi_uint *d,
 | |
|                                     const mbedtls_mpi_uint *l,
 | |
|                                     const mbedtls_mpi_uint *r)
 | |
| {
 | |
|     size_t i;
 | |
|     mbedtls_mpi_uint c = 0, t, z;
 | |
| 
 | |
|     for (i = 0; i < n; i++) {
 | |
|         z = (l[i] <  c);    t = l[i] - c;
 | |
|         c = (t < r[i]) + z; d[i] = t - r[i];
 | |
|     }
 | |
| 
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unsigned subtraction: X = |A| - |B|  (HAC 14.9, 14.10)
 | |
|  */
 | |
| int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t n;
 | |
|     mbedtls_mpi_uint carry;
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
|     MPI_VALIDATE_RET(A != NULL);
 | |
|     MPI_VALIDATE_RET(B != NULL);
 | |
| 
 | |
|     for (n = B->n; n > 0; n--) {
 | |
|         if (B->p[n - 1] != 0) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (n > A->n) {
 | |
|         /* B >= (2^ciL)^n > A */
 | |
|         ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n));
 | |
| 
 | |
|     /* Set the high limbs of X to match A. Don't touch the lower limbs
 | |
|      * because X might be aliased to B, and we must not overwrite the
 | |
|      * significant digits of B. */
 | |
|     if (A->n > n && A != X) {
 | |
|         memcpy(X->p + n, A->p + n, (A->n - n) * ciL);
 | |
|     }
 | |
|     if (X->n > A->n) {
 | |
|         memset(X->p + A->n, 0, (X->n - A->n) * ciL);
 | |
|     }
 | |
| 
 | |
|     carry = mpi_sub_hlp(n, X->p, A->p, B->p);
 | |
|     if (carry != 0) {
 | |
|         /* Propagate the carry to the first nonzero limb of X. */
 | |
|         for (; n < X->n && X->p[n] == 0; n++) {
 | |
|             --X->p[n];
 | |
|         }
 | |
|         /* If we ran out of space for the carry, it means that the result
 | |
|          * is negative. */
 | |
|         if (n == X->n) {
 | |
|             ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
 | |
|             goto cleanup;
 | |
|         }
 | |
|         --X->p[n];
 | |
|     }
 | |
| 
 | |
|     /* X should always be positive as a result of unsigned subtractions. */
 | |
|     X->s = 1;
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Common function for signed addition and subtraction.
 | |
|  * Calculate A + B * flip_B where flip_B is 1 or -1.
 | |
|  */
 | |
| static int add_sub_mpi(mbedtls_mpi *X,
 | |
|                        const mbedtls_mpi *A, const mbedtls_mpi *B,
 | |
|                        int flip_B)
 | |
| {
 | |
|     int ret, s;
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
|     MPI_VALIDATE_RET(A != NULL);
 | |
|     MPI_VALIDATE_RET(B != NULL);
 | |
| 
 | |
|     s = A->s;
 | |
|     if (A->s * B->s * flip_B < 0) {
 | |
|         int cmp = mbedtls_mpi_cmp_abs(A, B);
 | |
|         if (cmp >= 0) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
 | |
|             /* If |A| = |B|, the result is 0 and we must set the sign bit
 | |
|              * to +1 regardless of which of A or B was negative. Otherwise,
 | |
|              * since |A| > |B|, the sign is the sign of A. */
 | |
|             X->s = cmp == 0 ? 1 : s;
 | |
|         } else {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
 | |
|             /* Since |A| < |B|, the sign is the opposite of A. */
 | |
|             X->s = -s;
 | |
|         }
 | |
|     } else {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
 | |
|         X->s = s;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Signed addition: X = A + B
 | |
|  */
 | |
| int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
 | |
| {
 | |
|     return add_sub_mpi(X, A, B, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Signed subtraction: X = A - B
 | |
|  */
 | |
| int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
 | |
| {
 | |
|     return add_sub_mpi(X, A, B, -1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Signed addition: X = A + b
 | |
|  */
 | |
| int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
 | |
| {
 | |
|     mbedtls_mpi B;
 | |
|     mbedtls_mpi_uint p[1];
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
|     MPI_VALIDATE_RET(A != NULL);
 | |
| 
 | |
|     p[0] = mpi_sint_abs(b);
 | |
|     B.s = (b < 0) ? -1 : 1;
 | |
|     B.n = 1;
 | |
|     B.p = p;
 | |
| 
 | |
|     return mbedtls_mpi_add_mpi(X, A, &B);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Signed subtraction: X = A - b
 | |
|  */
 | |
| int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
 | |
| {
 | |
|     mbedtls_mpi B;
 | |
|     mbedtls_mpi_uint p[1];
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
|     MPI_VALIDATE_RET(A != NULL);
 | |
| 
 | |
|     p[0] = mpi_sint_abs(b);
 | |
|     B.s = (b < 0) ? -1 : 1;
 | |
|     B.n = 1;
 | |
|     B.p = p;
 | |
| 
 | |
|     return mbedtls_mpi_sub_mpi(X, A, &B);
 | |
| }
 | |
| 
 | |
| /** Helper for mbedtls_mpi multiplication.
 | |
|  *
 | |
|  * Add \p b * \p s to \p d.
 | |
|  *
 | |
|  * \param i             The number of limbs of \p s.
 | |
|  * \param[in] s         A bignum to multiply, of size \p i.
 | |
|  *                      It may overlap with \p d, but only if
 | |
|  *                      \p d <= \p s.
 | |
|  *                      Its leading limb must not be \c 0.
 | |
|  * \param[in,out] d     The bignum to add to.
 | |
|  *                      It must be sufficiently large to store the
 | |
|  *                      result of the multiplication. This means
 | |
|  *                      \p i + 1 limbs if \p d[\p i - 1] started as 0 and \p b
 | |
|  *                      is not known a priori.
 | |
|  * \param b             A scalar to multiply.
 | |
|  */
 | |
| static
 | |
| #if defined(__APPLE__) && defined(__arm__)
 | |
| /*
 | |
|  * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn)
 | |
|  * appears to need this to prevent bad ARM code generation at -O3.
 | |
|  */
 | |
| __attribute__((noinline))
 | |
| #endif
 | |
| void mpi_mul_hlp(size_t i,
 | |
|                  const mbedtls_mpi_uint *s,
 | |
|                  mbedtls_mpi_uint *d,
 | |
|                  mbedtls_mpi_uint b)
 | |
| {
 | |
|     mbedtls_mpi_uint c = 0, t = 0;
 | |
|     (void) t;                   /* Unused in some architectures */
 | |
| 
 | |
| #if defined(MULADDC_HUIT)
 | |
|     for (; i >= 8; i -= 8) {
 | |
|         MULADDC_INIT
 | |
|         MULADDC_HUIT
 | |
|             MULADDC_STOP
 | |
|     }
 | |
| 
 | |
|     for (; i > 0; i--) {
 | |
|         MULADDC_INIT
 | |
|         MULADDC_CORE
 | |
|             MULADDC_STOP
 | |
|     }
 | |
| #else /* MULADDC_HUIT */
 | |
|     for (; i >= 16; i -= 16) {
 | |
|         MULADDC_INIT
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
| 
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
|             MULADDC_STOP
 | |
|     }
 | |
| 
 | |
|     for (; i >= 8; i -= 8) {
 | |
|         MULADDC_INIT
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
| 
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
|             MULADDC_STOP
 | |
|     }
 | |
| 
 | |
|     for (; i > 0; i--) {
 | |
|         MULADDC_INIT
 | |
|         MULADDC_CORE
 | |
|             MULADDC_STOP
 | |
|     }
 | |
| #endif /* MULADDC_HUIT */
 | |
| 
 | |
|     while (c != 0) {
 | |
|         *d += c; c = (*d < c); d++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Baseline multiplication: X = A * B  (HAC 14.12)
 | |
|  */
 | |
| int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t i, j;
 | |
|     mbedtls_mpi TA, TB;
 | |
|     int result_is_zero = 0;
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
|     MPI_VALIDATE_RET(A != NULL);
 | |
|     MPI_VALIDATE_RET(B != NULL);
 | |
| 
 | |
|     mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
 | |
| 
 | |
|     if (X == A) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA;
 | |
|     }
 | |
|     if (X == B) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB;
 | |
|     }
 | |
| 
 | |
|     for (i = A->n; i > 0; i--) {
 | |
|         if (A->p[i - 1] != 0) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (i == 0) {
 | |
|         result_is_zero = 1;
 | |
|     }
 | |
| 
 | |
|     for (j = B->n; j > 0; j--) {
 | |
|         if (B->p[j - 1] != 0) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (j == 0) {
 | |
|         result_is_zero = 1;
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
 | |
| 
 | |
|     for (; j > 0; j--) {
 | |
|         mpi_mul_hlp(i, A->p, X->p + j - 1, B->p[j - 1]);
 | |
|     }
 | |
| 
 | |
|     /* If the result is 0, we don't shortcut the operation, which reduces
 | |
|      * but does not eliminate side channels leaking the zero-ness. We do
 | |
|      * need to take care to set the sign bit properly since the library does
 | |
|      * not fully support an MPI object with a value of 0 and s == -1. */
 | |
|     if (result_is_zero) {
 | |
|         X->s = 1;
 | |
|     } else {
 | |
|         X->s = A->s * B->s;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Baseline multiplication: X = A * b
 | |
|  */
 | |
| int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b)
 | |
| {
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
|     MPI_VALIDATE_RET(A != NULL);
 | |
| 
 | |
|     /* mpi_mul_hlp can't deal with a leading 0. */
 | |
|     size_t n = A->n;
 | |
|     while (n > 0 && A->p[n - 1] == 0) {
 | |
|         --n;
 | |
|     }
 | |
| 
 | |
|     /* The general method below doesn't work if n==0 or b==0. By chance
 | |
|      * calculating the result is trivial in those cases. */
 | |
|     if (b == 0 || n == 0) {
 | |
|         return mbedtls_mpi_lset(X, 0);
 | |
|     }
 | |
| 
 | |
|     /* Calculate A*b as A + A*(b-1) to take advantage of mpi_mul_hlp */
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     /* In general, A * b requires 1 limb more than b. If
 | |
|      * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
 | |
|      * number of limbs as A and the call to grow() is not required since
 | |
|      * copy() will take care of the growth if needed. However, experimentally,
 | |
|      * making the call to grow() unconditional causes slightly fewer
 | |
|      * calls to calloc() in ECP code, presumably because it reuses the
 | |
|      * same mpi for a while and this way the mpi is more likely to directly
 | |
|      * grow to its final size. */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
 | |
|     mpi_mul_hlp(n, A->p, X->p, b - 1);
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
 | |
|  * mbedtls_mpi_uint divisor, d
 | |
|  */
 | |
| static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
 | |
|                                             mbedtls_mpi_uint u0,
 | |
|                                             mbedtls_mpi_uint d,
 | |
|                                             mbedtls_mpi_uint *r)
 | |
| {
 | |
| #if defined(MBEDTLS_HAVE_UDBL)
 | |
|     mbedtls_t_udbl dividend, quotient;
 | |
| #else
 | |
|     const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
 | |
|     const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;
 | |
|     mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
 | |
|     mbedtls_mpi_uint u0_msw, u0_lsw;
 | |
|     size_t s;
 | |
| #endif
 | |
| 
 | |
|     /*
 | |
|      * Check for overflow
 | |
|      */
 | |
|     if (0 == d || u1 >= d) {
 | |
|         if (r != NULL) {
 | |
|             *r = ~(mbedtls_mpi_uint) 0u;
 | |
|         }
 | |
| 
 | |
|         return ~(mbedtls_mpi_uint) 0u;
 | |
|     }
 | |
| 
 | |
| #if defined(MBEDTLS_HAVE_UDBL)
 | |
|     dividend  = (mbedtls_t_udbl) u1 << biL;
 | |
|     dividend |= (mbedtls_t_udbl) u0;
 | |
|     quotient = dividend / d;
 | |
|     if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) {
 | |
|         quotient = ((mbedtls_t_udbl) 1 << biL) - 1;
 | |
|     }
 | |
| 
 | |
|     if (r != NULL) {
 | |
|         *r = (mbedtls_mpi_uint) (dividend - (quotient * d));
 | |
|     }
 | |
| 
 | |
|     return (mbedtls_mpi_uint) quotient;
 | |
| #else
 | |
| 
 | |
|     /*
 | |
|      * Algorithm D, Section 4.3.1 - The Art of Computer Programming
 | |
|      *   Vol. 2 - Seminumerical Algorithms, Knuth
 | |
|      */
 | |
| 
 | |
|     /*
 | |
|      * Normalize the divisor, d, and dividend, u0, u1
 | |
|      */
 | |
|     s = mbedtls_clz(d);
 | |
|     d = d << s;
 | |
| 
 | |
|     u1 = u1 << s;
 | |
|     u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1));
 | |
|     u0 =  u0 << s;
 | |
| 
 | |
|     d1 = d >> biH;
 | |
|     d0 = d & uint_halfword_mask;
 | |
| 
 | |
|     u0_msw = u0 >> biH;
 | |
|     u0_lsw = u0 & uint_halfword_mask;
 | |
| 
 | |
|     /*
 | |
|      * Find the first quotient and remainder
 | |
|      */
 | |
|     q1 = u1 / d1;
 | |
|     r0 = u1 - d1 * q1;
 | |
| 
 | |
|     while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) {
 | |
|         q1 -= 1;
 | |
|         r0 += d1;
 | |
| 
 | |
|         if (r0 >= radix) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     rAX = (u1 * radix) + (u0_msw - q1 * d);
 | |
|     q0 = rAX / d1;
 | |
|     r0 = rAX - q0 * d1;
 | |
| 
 | |
|     while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) {
 | |
|         q0 -= 1;
 | |
|         r0 += d1;
 | |
| 
 | |
|         if (r0 >= radix) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (r != NULL) {
 | |
|         *r = (rAX * radix + u0_lsw - q0 * d) >> s;
 | |
|     }
 | |
| 
 | |
|     quotient = q1 * radix + q0;
 | |
| 
 | |
|     return quotient;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Division by mbedtls_mpi: A = Q * B + R  (HAC 14.20)
 | |
|  */
 | |
| int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
 | |
|                         const mbedtls_mpi *B)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t i, n, t, k;
 | |
|     mbedtls_mpi X, Y, Z, T1, T2;
 | |
|     mbedtls_mpi_uint TP2[3];
 | |
|     MPI_VALIDATE_RET(A != NULL);
 | |
|     MPI_VALIDATE_RET(B != NULL);
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(B, 0) == 0) {
 | |
|         return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
 | |
|     }
 | |
| 
 | |
|     mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
 | |
|     mbedtls_mpi_init(&T1);
 | |
|     /*
 | |
|      * Avoid dynamic memory allocations for constant-size T2.
 | |
|      *
 | |
|      * T2 is used for comparison only and the 3 limbs are assigned explicitly,
 | |
|      * so nobody increase the size of the MPI and we're safe to use an on-stack
 | |
|      * buffer.
 | |
|      */
 | |
|     T2.s = 1;
 | |
|     T2.n = sizeof(TP2) / sizeof(*TP2);
 | |
|     T2.p = TP2;
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_abs(A, B) < 0) {
 | |
|         if (Q != NULL) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));
 | |
|         }
 | |
|         if (R != NULL) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));
 | |
|     X.s = Y.s = 1;
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z,  0));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2));
 | |
| 
 | |
|     k = mbedtls_mpi_bitlen(&Y) % biL;
 | |
|     if (k < biL - 1) {
 | |
|         k = biL - 1 - k;
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));
 | |
|     } else {
 | |
|         k = 0;
 | |
|     }
 | |
| 
 | |
|     n = X.n - 1;
 | |
|     t = Y.n - 1;
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));
 | |
| 
 | |
|     while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) {
 | |
|         Z.p[n - t]++;
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));
 | |
|     }
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));
 | |
| 
 | |
|     for (i = n; i > t; i--) {
 | |
|         if (X.p[i] >= Y.p[t]) {
 | |
|             Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u;
 | |
|         } else {
 | |
|             Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],
 | |
|                                                  Y.p[t], NULL);
 | |
|         }
 | |
| 
 | |
|         T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
 | |
|         T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
 | |
|         T2.p[2] = X.p[i];
 | |
| 
 | |
|         Z.p[i - t - 1]++;
 | |
|         do {
 | |
|             Z.p[i - t - 1]--;
 | |
| 
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));
 | |
|             T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
 | |
|             T1.p[1] = Y.p[t];
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));
 | |
|         } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1,  biL * (i - t - 1)));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));
 | |
| 
 | |
|         if (mbedtls_mpi_cmp_int(&X, 0) < 0) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));
 | |
|             Z.p[i - t - 1]--;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (Q != NULL) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));
 | |
|         Q->s = A->s * B->s;
 | |
|     }
 | |
| 
 | |
|     if (R != NULL) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));
 | |
|         X.s = A->s;
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));
 | |
| 
 | |
|         if (mbedtls_mpi_cmp_int(R, 0) == 0) {
 | |
|             R->s = 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
 | |
|     mbedtls_mpi_free(&T1);
 | |
|     mbedtls_platform_zeroize(TP2, sizeof(TP2));
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Division by int: A = Q * b + R
 | |
|  */
 | |
| int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R,
 | |
|                         const mbedtls_mpi *A,
 | |
|                         mbedtls_mpi_sint b)
 | |
| {
 | |
|     mbedtls_mpi B;
 | |
|     mbedtls_mpi_uint p[1];
 | |
|     MPI_VALIDATE_RET(A != NULL);
 | |
| 
 | |
|     p[0] = mpi_sint_abs(b);
 | |
|     B.s = (b < 0) ? -1 : 1;
 | |
|     B.n = 1;
 | |
|     B.p = p;
 | |
| 
 | |
|     return mbedtls_mpi_div_mpi(Q, R, A, &B);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Modulo: R = A mod B
 | |
|  */
 | |
| int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     MPI_VALIDATE_RET(R != NULL);
 | |
|     MPI_VALIDATE_RET(A != NULL);
 | |
|     MPI_VALIDATE_RET(B != NULL);
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(B, 0) < 0) {
 | |
|         return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));
 | |
| 
 | |
|     while (mbedtls_mpi_cmp_int(R, 0) < 0) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));
 | |
|     }
 | |
| 
 | |
|     while (mbedtls_mpi_cmp_mpi(R, B) >= 0) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Modulo: r = A mod b
 | |
|  */
 | |
| int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b)
 | |
| {
 | |
|     size_t i;
 | |
|     mbedtls_mpi_uint x, y, z;
 | |
|     MPI_VALIDATE_RET(r != NULL);
 | |
|     MPI_VALIDATE_RET(A != NULL);
 | |
| 
 | |
|     if (b == 0) {
 | |
|         return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
 | |
|     }
 | |
| 
 | |
|     if (b < 0) {
 | |
|         return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * handle trivial cases
 | |
|      */
 | |
|     if (b == 1 || A->n == 0) {
 | |
|         *r = 0;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (b == 2) {
 | |
|         *r = A->p[0] & 1;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * general case
 | |
|      */
 | |
|     for (i = A->n, y = 0; i > 0; i--) {
 | |
|         x  = A->p[i - 1];
 | |
|         y  = (y << biH) | (x >> biH);
 | |
|         z  = y / b;
 | |
|         y -= z * b;
 | |
| 
 | |
|         x <<= biH;
 | |
|         y  = (y << biH) | (x >> biH);
 | |
|         z  = y / b;
 | |
|         y -= z * b;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * If A is negative, then the current y represents a negative value.
 | |
|      * Flipping it to the positive side.
 | |
|      */
 | |
|     if (A->s < 0 && y != 0) {
 | |
|         y = b - y;
 | |
|     }
 | |
| 
 | |
|     *r = y;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fast Montgomery initialization (thanks to Tom St Denis)
 | |
|  */
 | |
| static void mpi_montg_init(mbedtls_mpi_uint *mm, const mbedtls_mpi *N)
 | |
| {
 | |
|     mbedtls_mpi_uint x, m0 = N->p[0];
 | |
|     unsigned int i;
 | |
| 
 | |
|     x  = m0;
 | |
|     x += ((m0 + 2) & 4) << 1;
 | |
| 
 | |
|     for (i = biL; i >= 8; i /= 2) {
 | |
|         x *= (2 - (m0 * x));
 | |
|     }
 | |
| 
 | |
|     *mm = ~x + 1;
 | |
| }
 | |
| 
 | |
| /** Montgomery multiplication: A = A * B * R^-1 mod N  (HAC 14.36)
 | |
|  *
 | |
|  * \param[in,out]   A   One of the numbers to multiply.
 | |
|  *                      It must have at least as many limbs as N
 | |
|  *                      (A->n >= N->n), and any limbs beyond n are ignored.
 | |
|  *                      On successful completion, A contains the result of
 | |
|  *                      the multiplication A * B * R^-1 mod N where
 | |
|  *                      R = (2^ciL)^n.
 | |
|  * \param[in]       B   One of the numbers to multiply.
 | |
|  *                      It must be nonzero and must not have more limbs than N
 | |
|  *                      (B->n <= N->n).
 | |
|  * \param[in]       N   The modulo. N must be odd.
 | |
|  * \param           mm  The value calculated by `mpi_montg_init(&mm, N)`.
 | |
|  *                      This is -N^-1 mod 2^ciL.
 | |
|  * \param[in,out]   T   A bignum for temporary storage.
 | |
|  *                      It must be at least twice the limb size of N plus 2
 | |
|  *                      (T->n >= 2 * (N->n + 1)).
 | |
|  *                      Its initial content is unused and
 | |
|  *                      its final content is indeterminate.
 | |
|  *                      Note that unlike the usual convention in the library
 | |
|  *                      for `const mbedtls_mpi*`, the content of T can change.
 | |
|  */
 | |
| static void mpi_montmul(mbedtls_mpi *A,
 | |
|                         const mbedtls_mpi *B,
 | |
|                         const mbedtls_mpi *N,
 | |
|                         mbedtls_mpi_uint mm,
 | |
|                         const mbedtls_mpi *T)
 | |
| {
 | |
|     size_t i, n, m;
 | |
|     mbedtls_mpi_uint u0, u1, *d;
 | |
| 
 | |
|     memset(T->p, 0, T->n * ciL);
 | |
| 
 | |
|     d = T->p;
 | |
|     n = N->n;
 | |
|     m = (B->n < n) ? B->n : n;
 | |
| 
 | |
|     for (i = 0; i < n; i++) {
 | |
|         /*
 | |
|          * T = (T + u0*B + u1*N) / 2^biL
 | |
|          */
 | |
|         u0 = A->p[i];
 | |
|         u1 = (d[0] + u0 * B->p[0]) * mm;
 | |
| 
 | |
|         mpi_mul_hlp(m, B->p, d, u0);
 | |
|         mpi_mul_hlp(n, N->p, d, u1);
 | |
| 
 | |
|         *d++ = u0; d[n + 1] = 0;
 | |
|     }
 | |
| 
 | |
|     /* At this point, d is either the desired result or the desired result
 | |
|      * plus N. We now potentially subtract N, avoiding leaking whether the
 | |
|      * subtraction is performed through side channels. */
 | |
| 
 | |
|     /* Copy the n least significant limbs of d to A, so that
 | |
|      * A = d if d < N (recall that N has n limbs). */
 | |
|     memcpy(A->p, d, n * ciL);
 | |
|     /* If d >= N then we want to set A to d - N. To prevent timing attacks,
 | |
|      * do the calculation without using conditional tests. */
 | |
|     /* Set d to d0 + (2^biL)^n - N where d0 is the current value of d. */
 | |
|     d[n] += 1;
 | |
|     d[n] -= mpi_sub_hlp(n, d, d, N->p);
 | |
|     /* If d0 < N then d < (2^biL)^n
 | |
|      * so d[n] == 0 and we want to keep A as it is.
 | |
|      * If d0 >= N then d >= (2^biL)^n, and d <= (2^biL)^n + N < 2 * (2^biL)^n
 | |
|      * so d[n] == 1 and we want to set A to the result of the subtraction
 | |
|      * which is d - (2^biL)^n, i.e. the n least significant limbs of d.
 | |
|      * This exactly corresponds to a conditional assignment. */
 | |
|     mbedtls_ct_mpi_uint_cond_assign(n, A->p, d, (unsigned char) d[n]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Montgomery reduction: A = A * R^-1 mod N
 | |
|  *
 | |
|  * See mpi_montmul() regarding constraints and guarantees on the parameters.
 | |
|  */
 | |
| static void mpi_montred(mbedtls_mpi *A, const mbedtls_mpi *N,
 | |
|                         mbedtls_mpi_uint mm, const mbedtls_mpi *T)
 | |
| {
 | |
|     mbedtls_mpi_uint z = 1;
 | |
|     mbedtls_mpi U;
 | |
| 
 | |
|     U.n = U.s = (int) z;
 | |
|     U.p = &z;
 | |
| 
 | |
|     mpi_montmul(A, &U, N, mm, T);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Select an MPI from a table without leaking the index.
 | |
|  *
 | |
|  * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
 | |
|  * reads the entire table in order to avoid leaking the value of idx to an
 | |
|  * attacker able to observe memory access patterns.
 | |
|  *
 | |
|  * \param[out] R        Where to write the selected MPI.
 | |
|  * \param[in] T         The table to read from.
 | |
|  * \param[in] T_size    The number of elements in the table.
 | |
|  * \param[in] idx       The index of the element to select;
 | |
|  *                      this must satisfy 0 <= idx < T_size.
 | |
|  *
 | |
|  * \return \c 0 on success, or a negative error code.
 | |
|  */
 | |
| static int mpi_select(mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
| 
 | |
|     for (size_t i = 0; i < T_size; i++) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(R, &T[i],
 | |
|                                                      (unsigned char) mbedtls_ct_size_bool_eq(i,
 | |
|                                                                                              idx)));
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sliding-window exponentiation: X = A^E mod N  (HAC 14.85)
 | |
|  */
 | |
| int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
 | |
|                         const mbedtls_mpi *E, const mbedtls_mpi *N,
 | |
|                         mbedtls_mpi *prec_RR)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t window_bitsize;
 | |
|     size_t i, j, nblimbs;
 | |
|     size_t bufsize, nbits;
 | |
|     size_t exponent_bits_in_window = 0;
 | |
|     mbedtls_mpi_uint ei, mm, state;
 | |
|     mbedtls_mpi RR, T, W[(size_t) 1 << MBEDTLS_MPI_WINDOW_SIZE], WW, Apos;
 | |
|     int neg;
 | |
| 
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
|     MPI_VALIDATE_RET(A != NULL);
 | |
|     MPI_VALIDATE_RET(E != NULL);
 | |
|     MPI_VALIDATE_RET(N != NULL);
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) {
 | |
|         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(E, 0) < 0) {
 | |
|         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS ||
 | |
|         mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) {
 | |
|         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Init temps and window size
 | |
|      */
 | |
|     mpi_montg_init(&mm, N);
 | |
|     mbedtls_mpi_init(&RR); mbedtls_mpi_init(&T);
 | |
|     mbedtls_mpi_init(&Apos);
 | |
|     mbedtls_mpi_init(&WW);
 | |
|     memset(W, 0, sizeof(W));
 | |
| 
 | |
|     i = mbedtls_mpi_bitlen(E);
 | |
| 
 | |
|     window_bitsize = (i > 671) ? 6 : (i > 239) ? 5 :
 | |
|                      (i >  79) ? 4 : (i >  23) ? 3 : 1;
 | |
| 
 | |
| #if (MBEDTLS_MPI_WINDOW_SIZE < 6)
 | |
|     if (window_bitsize > MBEDTLS_MPI_WINDOW_SIZE) {
 | |
|         window_bitsize = MBEDTLS_MPI_WINDOW_SIZE;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     const size_t w_table_used_size = (size_t) 1 << window_bitsize;
 | |
| 
 | |
|     /*
 | |
|      * This function is not constant-trace: its memory accesses depend on the
 | |
|      * exponent value. To defend against timing attacks, callers (such as RSA
 | |
|      * and DHM) should use exponent blinding. However this is not enough if the
 | |
|      * adversary can find the exponent in a single trace, so this function
 | |
|      * takes extra precautions against adversaries who can observe memory
 | |
|      * access patterns.
 | |
|      *
 | |
|      * This function performs a series of multiplications by table elements and
 | |
|      * squarings, and we want the prevent the adversary from finding out which
 | |
|      * table element was used, and from distinguishing between multiplications
 | |
|      * and squarings. Firstly, when multiplying by an element of the window
 | |
|      * W[i], we do a constant-trace table lookup to obfuscate i. This leaves
 | |
|      * squarings as having a different memory access patterns from other
 | |
|      * multiplications. So secondly, we put the accumulator X in the table as
 | |
|      * well, and also do a constant-trace table lookup to multiply by X.
 | |
|      *
 | |
|      * This way, all multiplications take the form of a lookup-and-multiply.
 | |
|      * The number of lookup-and-multiply operations inside each iteration of
 | |
|      * the main loop still depends on the bits of the exponent, but since the
 | |
|      * other operations in the loop don't have an easily recognizable memory
 | |
|      * trace, an adversary is unlikely to be able to observe the exact
 | |
|      * patterns.
 | |
|      *
 | |
|      * An adversary may still be able to recover the exponent if they can
 | |
|      * observe both memory accesses and branches. However, branch prediction
 | |
|      * exploitation typically requires many traces of execution over the same
 | |
|      * data, which is defeated by randomized blinding.
 | |
|      *
 | |
|      * To achieve this, we make a copy of X and we use the table entry in each
 | |
|      * calculation from this point on.
 | |
|      */
 | |
|     const size_t x_index = 0;
 | |
|     mbedtls_mpi_init(&W[x_index]);
 | |
|     mbedtls_mpi_copy(&W[x_index], X);
 | |
| 
 | |
|     j = N->n + 1;
 | |
|     /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
 | |
|      * and mpi_montred() calls later. Here we ensure that W[1] and X are
 | |
|      * large enough, and later we'll grow other W[i] to the same length.
 | |
|      * They must not be shrunk midway through this function!
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[x_index], j));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1],  j));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T, j * 2));
 | |
| 
 | |
|     /*
 | |
|      * Compensate for negative A (and correct at the end)
 | |
|      */
 | |
|     neg = (A->s == -1);
 | |
|     if (neg) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Apos, A));
 | |
|         Apos.s = 1;
 | |
|         A = &Apos;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * If 1st call, pre-compute R^2 mod N
 | |
|      */
 | |
|     if (prec_RR == NULL || prec_RR->p == NULL) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&RR, 1));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&RR, N->n * 2 * biL));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&RR, &RR, N));
 | |
| 
 | |
|         if (prec_RR != NULL) {
 | |
|             memcpy(prec_RR, &RR, sizeof(mbedtls_mpi));
 | |
|         }
 | |
|     } else {
 | |
|         memcpy(&RR, prec_RR, sizeof(mbedtls_mpi));
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * W[1] = A * R^2 * R^-1 mod N = A * R mod N
 | |
|      */
 | |
|     if (mbedtls_mpi_cmp_mpi(A, N) >= 0) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&W[1], A, N));
 | |
|         /* This should be a no-op because W[1] is already that large before
 | |
|          * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
 | |
|          * in mpi_montmul() below, so let's make sure. */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], N->n + 1));
 | |
|     } else {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[1], A));
 | |
|     }
 | |
| 
 | |
|     /* Note that this is safe because W[1] always has at least N->n limbs
 | |
|      * (it grew above and was preserved by mbedtls_mpi_copy()). */
 | |
|     mpi_montmul(&W[1], &RR, N, mm, &T);
 | |
| 
 | |
|     /*
 | |
|      * W[x_index] = R^2 * R^-1 mod N = R mod N
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[x_index], &RR));
 | |
|     mpi_montred(&W[x_index], N, mm, &T);
 | |
| 
 | |
| 
 | |
|     if (window_bitsize > 1) {
 | |
|         /*
 | |
|          * W[i] = W[1] ^ i
 | |
|          *
 | |
|          * The first bit of the sliding window is always 1 and therefore we
 | |
|          * only need to store the second half of the table.
 | |
|          *
 | |
|          * (There are two special elements in the table: W[0] for the
 | |
|          * accumulator/result and W[1] for A in Montgomery form. Both of these
 | |
|          * are already set at this point.)
 | |
|          */
 | |
|         j = w_table_used_size / 2;
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[j], N->n + 1));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[j], &W[1]));
 | |
| 
 | |
|         for (i = 0; i < window_bitsize - 1; i++) {
 | |
|             mpi_montmul(&W[j], &W[j], N, mm, &T);
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * W[i] = W[i - 1] * W[1]
 | |
|          */
 | |
|         for (i = j + 1; i < w_table_used_size; i++) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[i], N->n + 1));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[i], &W[i - 1]));
 | |
| 
 | |
|             mpi_montmul(&W[i], &W[1], N, mm, &T);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     nblimbs = E->n;
 | |
|     bufsize = 0;
 | |
|     nbits   = 0;
 | |
|     state   = 0;
 | |
| 
 | |
|     while (1) {
 | |
|         if (bufsize == 0) {
 | |
|             if (nblimbs == 0) {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             nblimbs--;
 | |
| 
 | |
|             bufsize = sizeof(mbedtls_mpi_uint) << 3;
 | |
|         }
 | |
| 
 | |
|         bufsize--;
 | |
| 
 | |
|         ei = (E->p[nblimbs] >> bufsize) & 1;
 | |
| 
 | |
|         /*
 | |
|          * skip leading 0s
 | |
|          */
 | |
|         if (ei == 0 && state == 0) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (ei == 0 && state == 1) {
 | |
|             /*
 | |
|              * out of window, square W[x_index]
 | |
|              */
 | |
|             MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
 | |
|             mpi_montmul(&W[x_index], &WW, N, mm, &T);
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * add ei to current window
 | |
|          */
 | |
|         state = 2;
 | |
| 
 | |
|         nbits++;
 | |
|         exponent_bits_in_window |= (ei << (window_bitsize - nbits));
 | |
| 
 | |
|         if (nbits == window_bitsize) {
 | |
|             /*
 | |
|              * W[x_index] = W[x_index]^window_bitsize R^-1 mod N
 | |
|              */
 | |
|             for (i = 0; i < window_bitsize; i++) {
 | |
|                 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
 | |
|                                            x_index));
 | |
|                 mpi_montmul(&W[x_index], &WW, N, mm, &T);
 | |
|             }
 | |
| 
 | |
|             /*
 | |
|              * W[x_index] = W[x_index] * W[exponent_bits_in_window] R^-1 mod N
 | |
|              */
 | |
|             MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
 | |
|                                        exponent_bits_in_window));
 | |
|             mpi_montmul(&W[x_index], &WW, N, mm, &T);
 | |
| 
 | |
|             state--;
 | |
|             nbits = 0;
 | |
|             exponent_bits_in_window = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * process the remaining bits
 | |
|      */
 | |
|     for (i = 0; i < nbits; i++) {
 | |
|         MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
 | |
|         mpi_montmul(&W[x_index], &WW, N, mm, &T);
 | |
| 
 | |
|         exponent_bits_in_window <<= 1;
 | |
| 
 | |
|         if ((exponent_bits_in_window & ((size_t) 1 << window_bitsize)) != 0) {
 | |
|             MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, 1));
 | |
|             mpi_montmul(&W[x_index], &WW, N, mm, &T);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * W[x_index] = A^E * R * R^-1 mod N = A^E mod N
 | |
|      */
 | |
|     mpi_montred(&W[x_index], N, mm, &T);
 | |
| 
 | |
|     if (neg && E->n != 0 && (E->p[0] & 1) != 0) {
 | |
|         W[x_index].s = -1;
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&W[x_index], N, &W[x_index]));
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Load the result in the output variable.
 | |
|      */
 | |
|     mbedtls_mpi_copy(X, &W[x_index]);
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     /* The first bit of the sliding window is always 1 and therefore the first
 | |
|      * half of the table was unused. */
 | |
|     for (i = w_table_used_size/2; i < w_table_used_size; i++) {
 | |
|         mbedtls_mpi_free(&W[i]);
 | |
|     }
 | |
| 
 | |
|     mbedtls_mpi_free(&W[x_index]);
 | |
|     mbedtls_mpi_free(&W[1]);
 | |
|     mbedtls_mpi_free(&T);
 | |
|     mbedtls_mpi_free(&Apos);
 | |
|     mbedtls_mpi_free(&WW);
 | |
| 
 | |
|     if (prec_RR == NULL || prec_RR->p == NULL) {
 | |
|         mbedtls_mpi_free(&RR);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Greatest common divisor: G = gcd(A, B)  (HAC 14.54)
 | |
|  */
 | |
| int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t lz, lzt;
 | |
|     mbedtls_mpi TA, TB;
 | |
| 
 | |
|     MPI_VALIDATE_RET(G != NULL);
 | |
|     MPI_VALIDATE_RET(A != NULL);
 | |
|     MPI_VALIDATE_RET(B != NULL);
 | |
| 
 | |
|     mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
 | |
| 
 | |
|     lz = mbedtls_mpi_lsb(&TA);
 | |
|     lzt = mbedtls_mpi_lsb(&TB);
 | |
| 
 | |
|     /* The loop below gives the correct result when A==0 but not when B==0.
 | |
|      * So have a special case for B==0. Leverage the fact that we just
 | |
|      * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
 | |
|      * slightly more efficient than cmp_int(). */
 | |
|     if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) {
 | |
|         ret = mbedtls_mpi_copy(G, A);
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if (lzt < lz) {
 | |
|         lz = lzt;
 | |
|     }
 | |
| 
 | |
|     TA.s = TB.s = 1;
 | |
| 
 | |
|     /* We mostly follow the procedure described in HAC 14.54, but with some
 | |
|      * minor differences:
 | |
|      * - Sequences of multiplications or divisions by 2 are grouped into a
 | |
|      *   single shift operation.
 | |
|      * - The procedure in HAC assumes that 0 < TB <= TA.
 | |
|      *     - The condition TB <= TA is not actually necessary for correctness.
 | |
|      *       TA and TB have symmetric roles except for the loop termination
 | |
|      *       condition, and the shifts at the beginning of the loop body
 | |
|      *       remove any significance from the ordering of TA vs TB before
 | |
|      *       the shifts.
 | |
|      *     - If TA = 0, the loop goes through 0 iterations and the result is
 | |
|      *       correctly TB.
 | |
|      *     - The case TB = 0 was short-circuited above.
 | |
|      *
 | |
|      * For the correctness proof below, decompose the original values of
 | |
|      * A and B as
 | |
|      *   A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
 | |
|      *   B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
 | |
|      * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
 | |
|      * and gcd(A',B') is odd or 0.
 | |
|      *
 | |
|      * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
 | |
|      * The code maintains the following invariant:
 | |
|      *     gcd(A,B) = 2^k * gcd(TA,TB) for some k   (I)
 | |
|      */
 | |
| 
 | |
|     /* Proof that the loop terminates:
 | |
|      * At each iteration, either the right-shift by 1 is made on a nonzero
 | |
|      * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
 | |
|      * by at least 1, or the right-shift by 1 is made on zero and then
 | |
|      * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
 | |
|      * since in that case TB is calculated from TB-TA with the condition TB>TA).
 | |
|      */
 | |
|     while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
 | |
|         /* Divisions by 2 preserve the invariant (I). */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
 | |
| 
 | |
|         /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
 | |
|          * TA-TB is even so the division by 2 has an integer result.
 | |
|          * Invariant (I) is preserved since any odd divisor of both TA and TB
 | |
|          * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
 | |
|          * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
 | |
|          * divides TA.
 | |
|          */
 | |
|         if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
 | |
|         } else {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
 | |
|         }
 | |
|         /* Note that one of TA or TB is still odd. */
 | |
|     }
 | |
| 
 | |
|     /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
 | |
|      * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
 | |
|      * - If there was at least one loop iteration, then one of TA or TB is odd,
 | |
|      *   and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
 | |
|      *   lz = min(a,b) so gcd(A,B) = 2^lz * TB.
 | |
|      * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
 | |
|      *   In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
 | |
|      */
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Fill X with n_bytes random bytes.
 | |
|  * X must already have room for those bytes.
 | |
|  * The ordering of the bytes returned from the RNG is suitable for
 | |
|  * deterministic ECDSA (see RFC 6979 §3.3 and mbedtls_mpi_random()).
 | |
|  * The size and sign of X are unchanged.
 | |
|  * n_bytes must not be 0.
 | |
|  */
 | |
| static int mpi_fill_random_internal(
 | |
|     mbedtls_mpi *X, size_t n_bytes,
 | |
|     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     const size_t limbs = CHARS_TO_LIMBS(n_bytes);
 | |
|     const size_t overhead = (limbs * ciL) - n_bytes;
 | |
| 
 | |
|     if (X->n < limbs) {
 | |
|         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     memset(X->p, 0, overhead);
 | |
|     memset((unsigned char *) X->p + limbs * ciL, 0, (X->n - limbs) * ciL);
 | |
|     MBEDTLS_MPI_CHK(f_rng(p_rng, (unsigned char *) X->p + overhead, n_bytes));
 | |
|     mpi_bigendian_to_host(X->p, limbs);
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fill X with size bytes of random.
 | |
|  *
 | |
|  * Use a temporary bytes representation to make sure the result is the same
 | |
|  * regardless of the platform endianness (useful when f_rng is actually
 | |
|  * deterministic, eg for tests).
 | |
|  */
 | |
| int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,
 | |
|                             int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                             void *p_rng)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t const limbs = CHARS_TO_LIMBS(size);
 | |
| 
 | |
|     MPI_VALIDATE_RET(X     != NULL);
 | |
|     MPI_VALIDATE_RET(f_rng != NULL);
 | |
| 
 | |
|     /* Ensure that target MPI has exactly the necessary number of limbs */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
 | |
|     if (size == 0) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     ret = mpi_fill_random_internal(X, size, f_rng, p_rng);
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int mbedtls_mpi_random(mbedtls_mpi *X,
 | |
|                        mbedtls_mpi_sint min,
 | |
|                        const mbedtls_mpi *N,
 | |
|                        int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                        void *p_rng)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|     int count;
 | |
|     unsigned lt_lower = 1, lt_upper = 0;
 | |
|     size_t n_bits = mbedtls_mpi_bitlen(N);
 | |
|     size_t n_bytes = (n_bits + 7) / 8;
 | |
|     mbedtls_mpi lower_bound;
 | |
| 
 | |
|     if (min < 0) {
 | |
|         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|     }
 | |
|     if (mbedtls_mpi_cmp_int(N, min) <= 0) {
 | |
|         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * When min == 0, each try has at worst a probability 1/2 of failing
 | |
|      * (the msb has a probability 1/2 of being 0, and then the result will
 | |
|      * be < N), so after 30 tries failure probability is a most 2**(-30).
 | |
|      *
 | |
|      * When N is just below a power of 2, as is the case when generating
 | |
|      * a random scalar on most elliptic curves, 1 try is enough with
 | |
|      * overwhelming probability. When N is just above a power of 2,
 | |
|      * as when generating a random scalar on secp224k1, each try has
 | |
|      * a probability of failing that is almost 1/2.
 | |
|      *
 | |
|      * The probabilities are almost the same if min is nonzero but negligible
 | |
|      * compared to N. This is always the case when N is crypto-sized, but
 | |
|      * it's convenient to support small N for testing purposes. When N
 | |
|      * is small, use a higher repeat count, otherwise the probability of
 | |
|      * failure is macroscopic.
 | |
|      */
 | |
|     count = (n_bytes > 4 ? 30 : 250);
 | |
| 
 | |
|     mbedtls_mpi_init(&lower_bound);
 | |
| 
 | |
|     /* Ensure that target MPI has exactly the same number of limbs
 | |
|      * as the upper bound, even if the upper bound has leading zeros.
 | |
|      * This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, N->n));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&lower_bound, N->n));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&lower_bound, min));
 | |
| 
 | |
|     /*
 | |
|      * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
 | |
|      * when f_rng is a suitably parametrized instance of HMAC_DRBG:
 | |
|      * - use the same byte ordering;
 | |
|      * - keep the leftmost n_bits bits of the generated octet string;
 | |
|      * - try until result is in the desired range.
 | |
|      * This also avoids any bias, which is especially important for ECDSA.
 | |
|      */
 | |
|     do {
 | |
|         MBEDTLS_MPI_CHK(mpi_fill_random_internal(X, n_bytes, f_rng, p_rng));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, 8 * n_bytes - n_bits));
 | |
| 
 | |
|         if (--count == 0) {
 | |
|             ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_lt_mpi_ct(X, &lower_bound, <_lower));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_lt_mpi_ct(X, N, <_upper));
 | |
|     } while (lt_lower != 0 || lt_upper == 0);
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free(&lower_bound);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Modular inverse: X = A^-1 mod N  (HAC 14.61 / 14.64)
 | |
|  */
 | |
| int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
 | |
|     MPI_VALIDATE_RET(X != NULL);
 | |
|     MPI_VALIDATE_RET(A != NULL);
 | |
|     MPI_VALIDATE_RET(N != NULL);
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
 | |
|         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);
 | |
|     mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);
 | |
|     mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
 | |
|         ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
 | |
| 
 | |
|     do {
 | |
|         while ((TU.p[0] & 1) == 0) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
 | |
| 
 | |
|             if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
 | |
|                 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
 | |
|                 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
 | |
|             }
 | |
| 
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
 | |
|         }
 | |
| 
 | |
|         while ((TV.p[0] & 1) == 0) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
 | |
| 
 | |
|             if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
 | |
|                 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
 | |
|                 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
 | |
|             }
 | |
| 
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
 | |
|         }
 | |
| 
 | |
|         if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
 | |
|         } else {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
 | |
|         }
 | |
|     } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
 | |
| 
 | |
|     while (mbedtls_mpi_cmp_int(&V1, 0) < 0) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
 | |
|     }
 | |
| 
 | |
|     while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);
 | |
|     mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);
 | |
|     mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #if defined(MBEDTLS_GENPRIME)
 | |
| 
 | |
| static const int small_prime[] =
 | |
| {
 | |
|     3,    5,    7,   11,   13,   17,   19,   23,
 | |
|     29,   31,   37,   41,   43,   47,   53,   59,
 | |
|     61,   67,   71,   73,   79,   83,   89,   97,
 | |
|     101,  103,  107,  109,  113,  127,  131,  137,
 | |
|     139,  149,  151,  157,  163,  167,  173,  179,
 | |
|     181,  191,  193,  197,  199,  211,  223,  227,
 | |
|     229,  233,  239,  241,  251,  257,  263,  269,
 | |
|     271,  277,  281,  283,  293,  307,  311,  313,
 | |
|     317,  331,  337,  347,  349,  353,  359,  367,
 | |
|     373,  379,  383,  389,  397,  401,  409,  419,
 | |
|     421,  431,  433,  439,  443,  449,  457,  461,
 | |
|     463,  467,  479,  487,  491,  499,  503,  509,
 | |
|     521,  523,  541,  547,  557,  563,  569,  571,
 | |
|     577,  587,  593,  599,  601,  607,  613,  617,
 | |
|     619,  631,  641,  643,  647,  653,  659,  661,
 | |
|     673,  677,  683,  691,  701,  709,  719,  727,
 | |
|     733,  739,  743,  751,  757,  761,  769,  773,
 | |
|     787,  797,  809,  811,  821,  823,  827,  829,
 | |
|     839,  853,  857,  859,  863,  877,  881,  883,
 | |
|     887,  907,  911,  919,  929,  937,  941,  947,
 | |
|     953,  967,  971,  977,  983,  991,  997, -103
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Small divisors test (X must be positive)
 | |
|  *
 | |
|  * Return values:
 | |
|  * 0: no small factor (possible prime, more tests needed)
 | |
|  * 1: certain prime
 | |
|  * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
 | |
|  * other negative: error
 | |
|  */
 | |
| static int mpi_check_small_factors(const mbedtls_mpi *X)
 | |
| {
 | |
|     int ret = 0;
 | |
|     size_t i;
 | |
|     mbedtls_mpi_uint r;
 | |
| 
 | |
|     if ((X->p[0] & 1) == 0) {
 | |
|         return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; small_prime[i] > 0; i++) {
 | |
|         if (mbedtls_mpi_cmp_int(X, small_prime[i]) <= 0) {
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, small_prime[i]));
 | |
| 
 | |
|         if (r == 0) {
 | |
|             return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Miller-Rabin pseudo-primality test  (HAC 4.24)
 | |
|  */
 | |
| static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds,
 | |
|                             int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                             void *p_rng)
 | |
| {
 | |
|     int ret, count;
 | |
|     size_t i, j, k, s;
 | |
|     mbedtls_mpi W, R, T, A, RR;
 | |
| 
 | |
|     MPI_VALIDATE_RET(X     != NULL);
 | |
|     MPI_VALIDATE_RET(f_rng != NULL);
 | |
| 
 | |
|     mbedtls_mpi_init(&W); mbedtls_mpi_init(&R);
 | |
|     mbedtls_mpi_init(&T); mbedtls_mpi_init(&A);
 | |
|     mbedtls_mpi_init(&RR);
 | |
| 
 | |
|     /*
 | |
|      * W = |X| - 1
 | |
|      * R = W >> lsb( W )
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));
 | |
|     s = mbedtls_mpi_lsb(&W);
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));
 | |
| 
 | |
|     for (i = 0; i < rounds; i++) {
 | |
|         /*
 | |
|          * pick a random A, 1 < A < |X| - 1
 | |
|          */
 | |
|         count = 0;
 | |
|         do {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
 | |
| 
 | |
|             j = mbedtls_mpi_bitlen(&A);
 | |
|             k = mbedtls_mpi_bitlen(&W);
 | |
|             if (j > k) {
 | |
|                 A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1;
 | |
|             }
 | |
| 
 | |
|             if (count++ > 30) {
 | |
|                 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | |
|                 goto cleanup;
 | |
|             }
 | |
| 
 | |
|         } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||
 | |
|                  mbedtls_mpi_cmp_int(&A, 1)  <= 0);
 | |
| 
 | |
|         /*
 | |
|          * A = A^R mod |X|
 | |
|          */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));
 | |
| 
 | |
|         if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||
 | |
|             mbedtls_mpi_cmp_int(&A,  1) == 0) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         j = 1;
 | |
|         while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) {
 | |
|             /*
 | |
|              * A = A * A mod |X|
 | |
|              */
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));
 | |
| 
 | |
|             if (mbedtls_mpi_cmp_int(&A, 1) == 0) {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             j++;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * not prime if A != |X| - 1 or A == 1
 | |
|          */
 | |
|         if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||
 | |
|             mbedtls_mpi_cmp_int(&A,  1) == 0) {
 | |
|             ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free(&W); mbedtls_mpi_free(&R);
 | |
|     mbedtls_mpi_free(&T); mbedtls_mpi_free(&A);
 | |
|     mbedtls_mpi_free(&RR);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pseudo-primality test: small factors, then Miller-Rabin
 | |
|  */
 | |
| int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds,
 | |
|                              int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                              void *p_rng)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     mbedtls_mpi XX;
 | |
|     MPI_VALIDATE_RET(X     != NULL);
 | |
|     MPI_VALIDATE_RET(f_rng != NULL);
 | |
| 
 | |
|     XX.s = 1;
 | |
|     XX.n = X->n;
 | |
|     XX.p = X->p;
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||
 | |
|         mbedtls_mpi_cmp_int(&XX, 1) == 0) {
 | |
|         return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | |
|     }
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(&XX, 2) == 0) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if ((ret = mpi_check_small_factors(&XX)) != 0) {
 | |
|         if (ret == 1) {
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     return mpi_miller_rabin(&XX, rounds, f_rng, p_rng);
 | |
| }
 | |
| 
 | |
| #if !defined(MBEDTLS_DEPRECATED_REMOVED)
 | |
| /*
 | |
|  * Pseudo-primality test, error probability 2^-80
 | |
|  */
 | |
| int mbedtls_mpi_is_prime(const mbedtls_mpi *X,
 | |
|                          int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                          void *p_rng)
 | |
| {
 | |
|     MPI_VALIDATE_RET(X     != NULL);
 | |
|     MPI_VALIDATE_RET(f_rng != NULL);
 | |
| 
 | |
|     /*
 | |
|      * In the past our key generation aimed for an error rate of at most
 | |
|      * 2^-80. Since this function is deprecated, aim for the same certainty
 | |
|      * here as well.
 | |
|      */
 | |
|     return mbedtls_mpi_is_prime_ext(X, 40, f_rng, p_rng);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Prime number generation
 | |
|  *
 | |
|  * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
 | |
|  * be either 1024 bits or 1536 bits long, and flags must contain
 | |
|  * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
 | |
|  */
 | |
| int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags,
 | |
|                           int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                           void *p_rng)
 | |
| {
 | |
| #ifdef MBEDTLS_HAVE_INT64
 | |
| // ceil(2^63.5)
 | |
| #define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
 | |
| #else
 | |
| // ceil(2^31.5)
 | |
| #define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
 | |
| #endif
 | |
|     int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | |
|     size_t k, n;
 | |
|     int rounds;
 | |
|     mbedtls_mpi_uint r;
 | |
|     mbedtls_mpi Y;
 | |
| 
 | |
|     MPI_VALIDATE_RET(X     != NULL);
 | |
|     MPI_VALIDATE_RET(f_rng != NULL);
 | |
| 
 | |
|     if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) {
 | |
|         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     mbedtls_mpi_init(&Y);
 | |
| 
 | |
|     n = BITS_TO_LIMBS(nbits);
 | |
| 
 | |
|     if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) {
 | |
|         /*
 | |
|          * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
 | |
|          */
 | |
|         rounds = ((nbits >= 1300) ?  2 : (nbits >=  850) ?  3 :
 | |
|                   (nbits >=  650) ?  4 : (nbits >=  350) ?  8 :
 | |
|                   (nbits >=  250) ? 12 : (nbits >=  150) ? 18 : 27);
 | |
|     } else {
 | |
|         /*
 | |
|          * 2^-100 error probability, number of rounds computed based on HAC,
 | |
|          * fact 4.48
 | |
|          */
 | |
|         rounds = ((nbits >= 1450) ?  4 : (nbits >=  1150) ?  5 :
 | |
|                   (nbits >= 1000) ?  6 : (nbits >=   850) ?  7 :
 | |
|                   (nbits >=  750) ?  8 : (nbits >=   500) ? 13 :
 | |
|                   (nbits >=  250) ? 28 : (nbits >=   150) ? 40 : 51);
 | |
|     }
 | |
| 
 | |
|     while (1) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));
 | |
|         /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
 | |
|         if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         k = n * biL;
 | |
|         if (k > nbits) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));
 | |
|         }
 | |
|         X->p[0] |= 1;
 | |
| 
 | |
|         if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) {
 | |
|             ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng);
 | |
| 
 | |
|             if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
 | |
|                 goto cleanup;
 | |
|             }
 | |
|         } else {
 | |
|             /*
 | |
|              * A necessary condition for Y and X = 2Y + 1 to be prime
 | |
|              * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
 | |
|              * Make sure it is satisfied, while keeping X = 3 mod 4
 | |
|              */
 | |
| 
 | |
|             X->p[0] |= 2;
 | |
| 
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));
 | |
|             if (r == 0) {
 | |
|                 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));
 | |
|             } else if (r == 1) {
 | |
|                 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));
 | |
|             }
 | |
| 
 | |
|             /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));
 | |
| 
 | |
|             while (1) {
 | |
|                 /*
 | |
|                  * First, check small factors for X and Y
 | |
|                  * before doing Miller-Rabin on any of them
 | |
|                  */
 | |
|                 if ((ret = mpi_check_small_factors(X)) == 0 &&
 | |
|                     (ret = mpi_check_small_factors(&Y)) == 0 &&
 | |
|                     (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng))
 | |
|                     == 0 &&
 | |
|                     (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng))
 | |
|                     == 0) {
 | |
|                     goto cleanup;
 | |
|                 }
 | |
| 
 | |
|                 if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
 | |
|                     goto cleanup;
 | |
|                 }
 | |
| 
 | |
|                 /*
 | |
|                  * Next candidates. We want to preserve Y = (X-1) / 2 and
 | |
|                  * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
 | |
|                  * so up Y by 6 and X by 12.
 | |
|                  */
 | |
|                 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X,  X, 12));
 | |
|                 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free(&Y);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #endif /* MBEDTLS_GENPRIME */
 | |
| 
 | |
| #if defined(MBEDTLS_SELF_TEST)
 | |
| 
 | |
| #define GCD_PAIR_COUNT  3
 | |
| 
 | |
| static const int gcd_pairs[GCD_PAIR_COUNT][3] =
 | |
| {
 | |
|     { 693, 609, 21 },
 | |
|     { 1764, 868, 28 },
 | |
|     { 768454923, 542167814, 1 }
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Checkup routine
 | |
|  */
 | |
| int mbedtls_mpi_self_test(int verbose)
 | |
| {
 | |
|     int ret, i;
 | |
|     mbedtls_mpi A, E, N, X, Y, U, V;
 | |
| 
 | |
|     mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X);
 | |
|     mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V);
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,
 | |
|                                             "EFE021C2645FD1DC586E69184AF4A31E" \
 | |
|                                             "D5F53E93B5F123FA41680867BA110131" \
 | |
|                                             "944FE7952E2517337780CB0DB80E61AA" \
 | |
|                                             "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,
 | |
|                                             "B2E7EFD37075B9F03FF989C7C5051C20" \
 | |
|                                             "34D2A323810251127E7BF8625A4F49A5" \
 | |
|                                             "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
 | |
|                                             "5B5C25763222FEFCCFC38B832366C29E"));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,
 | |
|                                             "0066A198186C18C10B2F5ED9B522752A" \
 | |
|                                             "9830B69916E535C8F047518A889A43A5" \
 | |
|                                             "94B6BED27A168D31D4A52F88925AA8F5"));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
 | |
|                                             "602AB7ECA597A3D6B56FF9829A5E8B85" \
 | |
|                                             "9E857EA95A03512E2BAE7391688D264A" \
 | |
|                                             "A5663B0341DB9CCFD2C4C5F421FEC814" \
 | |
|                                             "8001B72E848A38CAE1C65F78E56ABDEF" \
 | |
|                                             "E12D3C039B8A02D6BE593F0BBBDA56F1" \
 | |
|                                             "ECF677152EF804370C1A305CAF3B5BF1" \
 | |
|                                             "30879B56C61DE584A0F53A2447A51E"));
 | |
| 
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("  MPI test #1 (mul_mpi): ");
 | |
|     }
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
 | |
|         if (verbose != 0) {
 | |
|             mbedtls_printf("failed\n");
 | |
|         }
 | |
| 
 | |
|         ret = 1;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("passed\n");
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
 | |
|                                             "256567336059E52CAE22925474705F39A94"));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,
 | |
|                                             "6613F26162223DF488E9CD48CC132C7A" \
 | |
|                                             "0AC93C701B001B092E4E5B9F73BCD27B" \
 | |
|                                             "9EE50D0657C77F374E903CDFA4C642"));
 | |
| 
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("  MPI test #2 (div_mpi): ");
 | |
|     }
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||
 | |
|         mbedtls_mpi_cmp_mpi(&Y, &V) != 0) {
 | |
|         if (verbose != 0) {
 | |
|             mbedtls_printf("failed\n");
 | |
|         }
 | |
| 
 | |
|         ret = 1;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("passed\n");
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
 | |
|                                             "36E139AEA55215609D2816998ED020BB" \
 | |
|                                             "BD96C37890F65171D948E9BC7CBAA4D9" \
 | |
|                                             "325D24D6A3C12710F10A09FA08AB87"));
 | |
| 
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("  MPI test #3 (exp_mod): ");
 | |
|     }
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
 | |
|         if (verbose != 0) {
 | |
|             mbedtls_printf("failed\n");
 | |
|         }
 | |
| 
 | |
|         ret = 1;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("passed\n");
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
 | |
|                                             "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
 | |
|                                             "C3DBA76456363A10869622EAC2DD84EC" \
 | |
|                                             "C5B8A74DAC4D09E03B5E0BE779F2DF61"));
 | |
| 
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("  MPI test #4 (inv_mod): ");
 | |
|     }
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
 | |
|         if (verbose != 0) {
 | |
|             mbedtls_printf("failed\n");
 | |
|         }
 | |
| 
 | |
|         ret = 1;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("passed\n");
 | |
|     }
 | |
| 
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("  MPI test #5 (simple gcd): ");
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < GCD_PAIR_COUNT; i++) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));
 | |
| 
 | |
|         if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) {
 | |
|             if (verbose != 0) {
 | |
|                 mbedtls_printf("failed at %d\n", i);
 | |
|             }
 | |
| 
 | |
|             ret = 1;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("passed\n");
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     if (ret != 0 && verbose != 0) {
 | |
|         mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
 | |
|     }
 | |
| 
 | |
|     mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X);
 | |
|     mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V);
 | |
| 
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("\n");
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #endif /* MBEDTLS_SELF_TEST */
 | |
| 
 | |
| #endif /* MBEDTLS_BIGNUM_C */
 |