mirror of
				https://github.com/Mbed-TLS/mbedtls.git
				synced 2025-10-27 12:15:33 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			3660 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3660 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Elliptic curves over GF(p): generic functions
 | |
|  *
 | |
|  *  Copyright The Mbed TLS Contributors
 | |
|  *  SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 | |
|  *  not use this file except in compliance with the License.
 | |
|  *  You may obtain a copy of the License at
 | |
|  *
 | |
|  *  http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  *  Unless required by applicable law or agreed to in writing, software
 | |
|  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | |
|  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  *  See the License for the specific language governing permissions and
 | |
|  *  limitations under the License.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * References:
 | |
|  *
 | |
|  * SEC1 https://www.secg.org/sec1-v2.pdf
 | |
|  * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
 | |
|  * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
 | |
|  * RFC 4492 for the related TLS structures and constants
 | |
|  * - https://www.rfc-editor.org/rfc/rfc4492
 | |
|  * RFC 7748 for the Curve448 and Curve25519 curve definitions
 | |
|  * - https://www.rfc-editor.org/rfc/rfc7748
 | |
|  *
 | |
|  * [Curve25519] https://cr.yp.to/ecdh/curve25519-20060209.pdf
 | |
|  *
 | |
|  * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
 | |
|  *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
 | |
|  *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
 | |
|  *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
 | |
|  *
 | |
|  * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
 | |
|  *     render ECC resistant against Side Channel Attacks. IACR Cryptology
 | |
|  *     ePrint Archive, 2004, vol. 2004, p. 342.
 | |
|  *     <http://eprint.iacr.org/2004/342.pdf>
 | |
|  */
 | |
| 
 | |
| #include "common.h"
 | |
| 
 | |
| /**
 | |
|  * \brief Function level alternative implementation.
 | |
|  *
 | |
|  * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
 | |
|  * replace certain functions in this module. The alternative implementations are
 | |
|  * typically hardware accelerators and need to activate the hardware before the
 | |
|  * computation starts and deactivate it after it finishes. The
 | |
|  * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
 | |
|  * this purpose.
 | |
|  *
 | |
|  * To preserve the correct functionality the following conditions must hold:
 | |
|  *
 | |
|  * - The alternative implementation must be activated by
 | |
|  *   mbedtls_internal_ecp_init() before any of the replaceable functions is
 | |
|  *   called.
 | |
|  * - mbedtls_internal_ecp_free() must \b only be called when the alternative
 | |
|  *   implementation is activated.
 | |
|  * - mbedtls_internal_ecp_init() must \b not be called when the alternative
 | |
|  *   implementation is activated.
 | |
|  * - Public functions must not return while the alternative implementation is
 | |
|  *   activated.
 | |
|  * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
 | |
|  *   before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
 | |
|  *   \endcode ensures that the alternative implementation supports the current
 | |
|  *   group.
 | |
|  */
 | |
| #if defined(MBEDTLS_ECP_INTERNAL_ALT)
 | |
| #endif
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_C)
 | |
| 
 | |
| #include "mbedtls/ecp.h"
 | |
| #include "mbedtls/threading.h"
 | |
| #include "mbedtls/platform_util.h"
 | |
| #include "mbedtls/error.h"
 | |
| #include "mbedtls/bn_mul.h"
 | |
| 
 | |
| #include "ecp_invasive.h"
 | |
| 
 | |
| #include <string.h>
 | |
| 
 | |
| #if !defined(MBEDTLS_ECP_ALT)
 | |
| 
 | |
| /* Parameter validation macros based on platform_util.h */
 | |
| #define ECP_VALIDATE_RET(cond)    \
 | |
|     MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA)
 | |
| #define ECP_VALIDATE(cond)        \
 | |
|     MBEDTLS_INTERNAL_VALIDATE(cond)
 | |
| 
 | |
| #include "mbedtls/platform.h"
 | |
| 
 | |
| #include "mbedtls/ecp_internal.h"
 | |
| 
 | |
| #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | |
| #if defined(MBEDTLS_HMAC_DRBG_C)
 | |
| #include "mbedtls/hmac_drbg.h"
 | |
| #elif defined(MBEDTLS_CTR_DRBG_C)
 | |
| #include "mbedtls/ctr_drbg.h"
 | |
| #else
 | |
| #error \
 | |
|     "Invalid configuration detected. Include check_config.h to ensure that the configuration is valid."
 | |
| #endif
 | |
| #endif /* MBEDTLS_ECP_NO_INTERNAL_RNG */
 | |
| 
 | |
| #if defined(MBEDTLS_SELF_TEST)
 | |
| /*
 | |
|  * Counts of point addition and doubling, and field multiplications.
 | |
|  * Used to test resistance of point multiplication to simple timing attacks.
 | |
|  */
 | |
| static unsigned long add_count, dbl_count, mul_count;
 | |
| #endif
 | |
| 
 | |
| #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | |
| /*
 | |
|  * Currently ecp_mul() takes a RNG function as an argument, used for
 | |
|  * side-channel protection, but it can be NULL. The initial reasoning was
 | |
|  * that people will pass non-NULL RNG when they care about side-channels, but
 | |
|  * unfortunately we have some APIs that call ecp_mul() with a NULL RNG, with
 | |
|  * no opportunity for the user to do anything about it.
 | |
|  *
 | |
|  * The obvious strategies for addressing that include:
 | |
|  * - change those APIs so that they take RNG arguments;
 | |
|  * - require a global RNG to be available to all crypto modules.
 | |
|  *
 | |
|  * Unfortunately those would break compatibility. So what we do instead is
 | |
|  * have our own internal DRBG instance, seeded from the secret scalar.
 | |
|  *
 | |
|  * The following is a light-weight abstraction layer for doing that with
 | |
|  * HMAC_DRBG (first choice) or CTR_DRBG.
 | |
|  */
 | |
| 
 | |
| #if defined(MBEDTLS_HMAC_DRBG_C)
 | |
| 
 | |
| /* DRBG context type */
 | |
| typedef mbedtls_hmac_drbg_context ecp_drbg_context;
 | |
| 
 | |
| /* DRBG context init */
 | |
| static inline void ecp_drbg_init(ecp_drbg_context *ctx)
 | |
| {
 | |
|     mbedtls_hmac_drbg_init(ctx);
 | |
| }
 | |
| 
 | |
| /* DRBG context free */
 | |
| static inline void ecp_drbg_free(ecp_drbg_context *ctx)
 | |
| {
 | |
|     mbedtls_hmac_drbg_free(ctx);
 | |
| }
 | |
| 
 | |
| /* DRBG function */
 | |
| static inline int ecp_drbg_random(void *p_rng,
 | |
|                                   unsigned char *output, size_t output_len)
 | |
| {
 | |
|     return mbedtls_hmac_drbg_random(p_rng, output, output_len);
 | |
| }
 | |
| 
 | |
| /* DRBG context seeding */
 | |
| static int ecp_drbg_seed(ecp_drbg_context *ctx,
 | |
|                          const mbedtls_mpi *secret, size_t secret_len)
 | |
| {
 | |
|     int ret;
 | |
|     unsigned char secret_bytes[MBEDTLS_ECP_MAX_BYTES];
 | |
|     /* The list starts with strong hashes */
 | |
|     const mbedtls_md_type_t md_type =
 | |
|         (const mbedtls_md_type_t) (mbedtls_md_list()[0]);
 | |
|     const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type(md_type);
 | |
| 
 | |
|     if (secret_len > MBEDTLS_ECP_MAX_BYTES) {
 | |
|         ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(secret,
 | |
|                                              secret_bytes, secret_len));
 | |
| 
 | |
|     ret = mbedtls_hmac_drbg_seed_buf(ctx, md_info, secret_bytes, secret_len);
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_platform_zeroize(secret_bytes, secret_len);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #elif defined(MBEDTLS_CTR_DRBG_C)
 | |
| 
 | |
| /* DRBG context type */
 | |
| typedef mbedtls_ctr_drbg_context ecp_drbg_context;
 | |
| 
 | |
| /* DRBG context init */
 | |
| static inline void ecp_drbg_init(ecp_drbg_context *ctx)
 | |
| {
 | |
|     mbedtls_ctr_drbg_init(ctx);
 | |
| }
 | |
| 
 | |
| /* DRBG context free */
 | |
| static inline void ecp_drbg_free(ecp_drbg_context *ctx)
 | |
| {
 | |
|     mbedtls_ctr_drbg_free(ctx);
 | |
| }
 | |
| 
 | |
| /* DRBG function */
 | |
| static inline int ecp_drbg_random(void *p_rng,
 | |
|                                   unsigned char *output, size_t output_len)
 | |
| {
 | |
|     return mbedtls_ctr_drbg_random(p_rng, output, output_len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Since CTR_DRBG doesn't have a seed_buf() function the way HMAC_DRBG does,
 | |
|  * we need to pass an entropy function when seeding. So we use a dummy
 | |
|  * function for that, and pass the actual entropy as customisation string.
 | |
|  * (During seeding of CTR_DRBG the entropy input and customisation string are
 | |
|  * concatenated before being used to update the secret state.)
 | |
|  */
 | |
| static int ecp_ctr_drbg_null_entropy(void *ctx, unsigned char *out, size_t len)
 | |
| {
 | |
|     (void) ctx;
 | |
|     memset(out, 0, len);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* DRBG context seeding */
 | |
| static int ecp_drbg_seed(ecp_drbg_context *ctx,
 | |
|                          const mbedtls_mpi *secret, size_t secret_len)
 | |
| {
 | |
|     int ret;
 | |
|     unsigned char secret_bytes[MBEDTLS_ECP_MAX_BYTES];
 | |
| 
 | |
|     if (secret_len > MBEDTLS_ECP_MAX_BYTES) {
 | |
|         ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(secret,
 | |
|                                              secret_bytes, secret_len));
 | |
| 
 | |
|     ret = mbedtls_ctr_drbg_seed(ctx, ecp_ctr_drbg_null_entropy, NULL,
 | |
|                                 secret_bytes, secret_len);
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_platform_zeroize(secret_bytes, secret_len);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #else
 | |
| #error \
 | |
|     "Invalid configuration detected. Include check_config.h to ensure that the configuration is valid."
 | |
| #endif /* DRBG modules */
 | |
| #endif /* MBEDTLS_ECP_NO_INTERNAL_RNG */
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
| /*
 | |
|  * Maximum number of "basic operations" to be done in a row.
 | |
|  *
 | |
|  * Default value 0 means that ECC operations will not yield.
 | |
|  * Note that regardless of the value of ecp_max_ops, always at
 | |
|  * least one step is performed before yielding.
 | |
|  *
 | |
|  * Setting ecp_max_ops=1 can be suitable for testing purposes
 | |
|  * as it will interrupt computation at all possible points.
 | |
|  */
 | |
| static unsigned ecp_max_ops = 0;
 | |
| 
 | |
| /*
 | |
|  * Set ecp_max_ops
 | |
|  */
 | |
| void mbedtls_ecp_set_max_ops(unsigned max_ops)
 | |
| {
 | |
|     ecp_max_ops = max_ops;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if restart is enabled
 | |
|  */
 | |
| int mbedtls_ecp_restart_is_enabled(void)
 | |
| {
 | |
|     return ecp_max_ops != 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Restart sub-context for ecp_mul_comb()
 | |
|  */
 | |
| struct mbedtls_ecp_restart_mul {
 | |
|     mbedtls_ecp_point R;    /* current intermediate result                  */
 | |
|     size_t i;               /* current index in various loops, 0 outside    */
 | |
|     mbedtls_ecp_point *T;   /* table for precomputed points                 */
 | |
|     unsigned char T_size;   /* number of points in table T                  */
 | |
|     enum {                  /* what were we doing last time we returned?    */
 | |
|         ecp_rsm_init = 0,       /* nothing so far, dummy initial state      */
 | |
|         ecp_rsm_pre_dbl,        /* precompute 2^n multiples                 */
 | |
|         ecp_rsm_pre_norm_dbl,   /* normalize precomputed 2^n multiples      */
 | |
|         ecp_rsm_pre_add,        /* precompute remaining points by adding    */
 | |
|         ecp_rsm_pre_norm_add,   /* normalize all precomputed points         */
 | |
|         ecp_rsm_comb_core,      /* ecp_mul_comb_core()                      */
 | |
|         ecp_rsm_final_norm,     /* do the final normalization               */
 | |
|     } state;
 | |
| #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | |
|     ecp_drbg_context drbg_ctx;
 | |
|     unsigned char drbg_seeded;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Init restart_mul sub-context
 | |
|  */
 | |
| static void ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx *ctx)
 | |
| {
 | |
|     mbedtls_ecp_point_init(&ctx->R);
 | |
|     ctx->i = 0;
 | |
|     ctx->T = NULL;
 | |
|     ctx->T_size = 0;
 | |
|     ctx->state = ecp_rsm_init;
 | |
| #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | |
|     ecp_drbg_init(&ctx->drbg_ctx);
 | |
|     ctx->drbg_seeded = 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free the components of a restart_mul sub-context
 | |
|  */
 | |
| static void ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx *ctx)
 | |
| {
 | |
|     unsigned char i;
 | |
| 
 | |
|     if (ctx == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     mbedtls_ecp_point_free(&ctx->R);
 | |
| 
 | |
|     if (ctx->T != NULL) {
 | |
|         for (i = 0; i < ctx->T_size; i++) {
 | |
|             mbedtls_ecp_point_free(ctx->T + i);
 | |
|         }
 | |
|         mbedtls_free(ctx->T);
 | |
|     }
 | |
| 
 | |
| #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | |
|     ecp_drbg_free(&ctx->drbg_ctx);
 | |
| #endif
 | |
| 
 | |
|     ecp_restart_rsm_init(ctx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Restart context for ecp_muladd()
 | |
|  */
 | |
| struct mbedtls_ecp_restart_muladd {
 | |
|     mbedtls_ecp_point mP;       /* mP value                             */
 | |
|     mbedtls_ecp_point R;        /* R intermediate result                */
 | |
|     enum {                      /* what should we do next?              */
 | |
|         ecp_rsma_mul1 = 0,      /* first multiplication                 */
 | |
|         ecp_rsma_mul2,          /* second multiplication                */
 | |
|         ecp_rsma_add,           /* addition                             */
 | |
|         ecp_rsma_norm,          /* normalization                        */
 | |
|     } state;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Init restart_muladd sub-context
 | |
|  */
 | |
| static void ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx *ctx)
 | |
| {
 | |
|     mbedtls_ecp_point_init(&ctx->mP);
 | |
|     mbedtls_ecp_point_init(&ctx->R);
 | |
|     ctx->state = ecp_rsma_mul1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free the components of a restart_muladd sub-context
 | |
|  */
 | |
| static void ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx *ctx)
 | |
| {
 | |
|     if (ctx == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     mbedtls_ecp_point_free(&ctx->mP);
 | |
|     mbedtls_ecp_point_free(&ctx->R);
 | |
| 
 | |
|     ecp_restart_ma_init(ctx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize a restart context
 | |
|  */
 | |
| void mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx *ctx)
 | |
| {
 | |
|     ECP_VALIDATE(ctx != NULL);
 | |
|     ctx->ops_done = 0;
 | |
|     ctx->depth = 0;
 | |
|     ctx->rsm = NULL;
 | |
|     ctx->ma = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free the components of a restart context
 | |
|  */
 | |
| void mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx *ctx)
 | |
| {
 | |
|     if (ctx == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     ecp_restart_rsm_free(ctx->rsm);
 | |
|     mbedtls_free(ctx->rsm);
 | |
| 
 | |
|     ecp_restart_ma_free(ctx->ma);
 | |
|     mbedtls_free(ctx->ma);
 | |
| 
 | |
|     mbedtls_ecp_restart_init(ctx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if we can do the next step
 | |
|  */
 | |
| int mbedtls_ecp_check_budget(const mbedtls_ecp_group *grp,
 | |
|                              mbedtls_ecp_restart_ctx *rs_ctx,
 | |
|                              unsigned ops)
 | |
| {
 | |
|     ECP_VALIDATE_RET(grp != NULL);
 | |
| 
 | |
|     if (rs_ctx != NULL && ecp_max_ops != 0) {
 | |
|         /* scale depending on curve size: the chosen reference is 256-bit,
 | |
|          * and multiplication is quadratic. Round to the closest integer. */
 | |
|         if (grp->pbits >= 512) {
 | |
|             ops *= 4;
 | |
|         } else if (grp->pbits >= 384) {
 | |
|             ops *= 2;
 | |
|         }
 | |
| 
 | |
|         /* Avoid infinite loops: always allow first step.
 | |
|          * Because of that, however, it's not generally true
 | |
|          * that ops_done <= ecp_max_ops, so the check
 | |
|          * ops_done > ecp_max_ops below is mandatory. */
 | |
|         if ((rs_ctx->ops_done != 0) &&
 | |
|             (rs_ctx->ops_done > ecp_max_ops ||
 | |
|              ops > ecp_max_ops - rs_ctx->ops_done)) {
 | |
|             return MBEDTLS_ERR_ECP_IN_PROGRESS;
 | |
|         }
 | |
| 
 | |
|         /* update running count */
 | |
|         rs_ctx->ops_done += ops;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Call this when entering a function that needs its own sub-context */
 | |
| #define ECP_RS_ENTER(SUB)   do {                                      \
 | |
|         /* reset ops count for this call if top-level */                    \
 | |
|         if (rs_ctx != NULL && rs_ctx->depth++ == 0)                        \
 | |
|         rs_ctx->ops_done = 0;                                           \
 | |
|                                                                         \
 | |
|         /* set up our own sub-context if needed */                          \
 | |
|         if (mbedtls_ecp_restart_is_enabled() &&                             \
 | |
|             rs_ctx != NULL && rs_ctx->SUB == NULL)                         \
 | |
|         {                                                                   \
 | |
|             rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB));      \
 | |
|             if (rs_ctx->SUB == NULL)                                       \
 | |
|             return MBEDTLS_ERR_ECP_ALLOC_FAILED;                     \
 | |
|                                                                       \
 | |
|             ecp_restart_## SUB ##_init(rs_ctx->SUB);                      \
 | |
|         }                                                                   \
 | |
| } while (0)
 | |
| 
 | |
| /* Call this when leaving a function that needs its own sub-context */
 | |
| #define ECP_RS_LEAVE(SUB)   do {                                      \
 | |
|         /* clear our sub-context when not in progress (done or error) */    \
 | |
|         if (rs_ctx != NULL && rs_ctx->SUB != NULL &&                        \
 | |
|             ret != MBEDTLS_ERR_ECP_IN_PROGRESS)                            \
 | |
|         {                                                                   \
 | |
|             ecp_restart_## SUB ##_free(rs_ctx->SUB);                      \
 | |
|             mbedtls_free(rs_ctx->SUB);                                    \
 | |
|             rs_ctx->SUB = NULL;                                             \
 | |
|         }                                                                   \
 | |
|                                                                         \
 | |
|         if (rs_ctx != NULL)                                                \
 | |
|         rs_ctx->depth--;                                                \
 | |
| } while (0)
 | |
| 
 | |
| #else /* MBEDTLS_ECP_RESTARTABLE */
 | |
| 
 | |
| #define ECP_RS_ENTER(sub)     (void) rs_ctx;
 | |
| #define ECP_RS_LEAVE(sub)     (void) rs_ctx;
 | |
| 
 | |
| #endif /* MBEDTLS_ECP_RESTARTABLE */
 | |
| 
 | |
| /*
 | |
|  * List of supported curves:
 | |
|  *  - internal ID
 | |
|  *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)
 | |
|  *  - size in bits
 | |
|  *  - readable name
 | |
|  *
 | |
|  * Curves are listed in order: largest curves first, and for a given size,
 | |
|  * fastest curves first. This provides the default order for the SSL module.
 | |
|  *
 | |
|  * Reminder: update profiles in x509_crt.c when adding a new curves!
 | |
|  */
 | |
| static const mbedtls_ecp_curve_info ecp_supported_curves[] =
 | |
| {
 | |
| #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
 | |
|     { MBEDTLS_ECP_DP_SECP521R1,    25,     521,    "secp521r1"         },
 | |
| #endif
 | |
| #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
 | |
|     { MBEDTLS_ECP_DP_BP512R1,      28,     512,    "brainpoolP512r1"   },
 | |
| #endif
 | |
| #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
 | |
|     { MBEDTLS_ECP_DP_SECP384R1,    24,     384,    "secp384r1"         },
 | |
| #endif
 | |
| #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
 | |
|     { MBEDTLS_ECP_DP_BP384R1,      27,     384,    "brainpoolP384r1"   },
 | |
| #endif
 | |
| #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
 | |
|     { MBEDTLS_ECP_DP_SECP256R1,    23,     256,    "secp256r1"         },
 | |
| #endif
 | |
| #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
 | |
|     { MBEDTLS_ECP_DP_SECP256K1,    22,     256,    "secp256k1"         },
 | |
| #endif
 | |
| #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
 | |
|     { MBEDTLS_ECP_DP_BP256R1,      26,     256,    "brainpoolP256r1"   },
 | |
| #endif
 | |
| #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
 | |
|     { MBEDTLS_ECP_DP_SECP224R1,    21,     224,    "secp224r1"         },
 | |
| #endif
 | |
| #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
 | |
|     { MBEDTLS_ECP_DP_SECP224K1,    20,     224,    "secp224k1"         },
 | |
| #endif
 | |
| #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
 | |
|     { MBEDTLS_ECP_DP_SECP192R1,    19,     192,    "secp192r1"         },
 | |
| #endif
 | |
| #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
 | |
|     { MBEDTLS_ECP_DP_SECP192K1,    18,     192,    "secp192k1"         },
 | |
| #endif
 | |
| #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
 | |
|     { MBEDTLS_ECP_DP_CURVE25519,   29,     256,    "x25519"            },
 | |
| #endif
 | |
| #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
 | |
|     { MBEDTLS_ECP_DP_CURVE448,     30,     448,    "x448"              },
 | |
| #endif
 | |
|     { MBEDTLS_ECP_DP_NONE,          0,     0,      NULL                },
 | |
| };
 | |
| 
 | |
| #define ECP_NB_CURVES   sizeof(ecp_supported_curves) /    \
 | |
|     sizeof(ecp_supported_curves[0])
 | |
| 
 | |
| static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
 | |
| 
 | |
| /*
 | |
|  * List of supported curves and associated info
 | |
|  */
 | |
| const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list(void)
 | |
| {
 | |
|     return ecp_supported_curves;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * List of supported curves, group ID only
 | |
|  */
 | |
| const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list(void)
 | |
| {
 | |
|     static int init_done = 0;
 | |
| 
 | |
|     if (!init_done) {
 | |
|         size_t i = 0;
 | |
|         const mbedtls_ecp_curve_info *curve_info;
 | |
| 
 | |
|         for (curve_info = mbedtls_ecp_curve_list();
 | |
|              curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
 | |
|              curve_info++) {
 | |
|             ecp_supported_grp_id[i++] = curve_info->grp_id;
 | |
|         }
 | |
|         ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
 | |
| 
 | |
|         init_done = 1;
 | |
|     }
 | |
| 
 | |
|     return ecp_supported_grp_id;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the curve info for the internal identifier
 | |
|  */
 | |
| const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)
 | |
| {
 | |
|     const mbedtls_ecp_curve_info *curve_info;
 | |
| 
 | |
|     for (curve_info = mbedtls_ecp_curve_list();
 | |
|          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
 | |
|          curve_info++) {
 | |
|         if (curve_info->grp_id == grp_id) {
 | |
|             return curve_info;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the curve info from the TLS identifier
 | |
|  */
 | |
| const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)
 | |
| {
 | |
|     const mbedtls_ecp_curve_info *curve_info;
 | |
| 
 | |
|     for (curve_info = mbedtls_ecp_curve_list();
 | |
|          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
 | |
|          curve_info++) {
 | |
|         if (curve_info->tls_id == tls_id) {
 | |
|             return curve_info;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the curve info from the name
 | |
|  */
 | |
| const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name(const char *name)
 | |
| {
 | |
|     const mbedtls_ecp_curve_info *curve_info;
 | |
| 
 | |
|     if (name == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     for (curve_info = mbedtls_ecp_curve_list();
 | |
|          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
 | |
|          curve_info++) {
 | |
|         if (strcmp(curve_info->name, name) == 0) {
 | |
|             return curve_info;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the type of a curve
 | |
|  */
 | |
| mbedtls_ecp_curve_type mbedtls_ecp_get_type(const mbedtls_ecp_group *grp)
 | |
| {
 | |
|     if (grp->G.X.p == NULL) {
 | |
|         return MBEDTLS_ECP_TYPE_NONE;
 | |
|     }
 | |
| 
 | |
|     if (grp->G.Y.p == NULL) {
 | |
|         return MBEDTLS_ECP_TYPE_MONTGOMERY;
 | |
|     } else {
 | |
|         return MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize (the components of) a point
 | |
|  */
 | |
| void mbedtls_ecp_point_init(mbedtls_ecp_point *pt)
 | |
| {
 | |
|     ECP_VALIDATE(pt != NULL);
 | |
| 
 | |
|     mbedtls_mpi_init(&pt->X);
 | |
|     mbedtls_mpi_init(&pt->Y);
 | |
|     mbedtls_mpi_init(&pt->Z);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize (the components of) a group
 | |
|  */
 | |
| void mbedtls_ecp_group_init(mbedtls_ecp_group *grp)
 | |
| {
 | |
|     ECP_VALIDATE(grp != NULL);
 | |
| 
 | |
|     grp->id = MBEDTLS_ECP_DP_NONE;
 | |
|     mbedtls_mpi_init(&grp->P);
 | |
|     mbedtls_mpi_init(&grp->A);
 | |
|     mbedtls_mpi_init(&grp->B);
 | |
|     mbedtls_ecp_point_init(&grp->G);
 | |
|     mbedtls_mpi_init(&grp->N);
 | |
|     grp->pbits = 0;
 | |
|     grp->nbits = 0;
 | |
|     grp->h = 0;
 | |
|     grp->modp = NULL;
 | |
|     grp->t_pre = NULL;
 | |
|     grp->t_post = NULL;
 | |
|     grp->t_data = NULL;
 | |
|     grp->T = NULL;
 | |
|     grp->T_size = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize (the components of) a key pair
 | |
|  */
 | |
| void mbedtls_ecp_keypair_init(mbedtls_ecp_keypair *key)
 | |
| {
 | |
|     ECP_VALIDATE(key != NULL);
 | |
| 
 | |
|     mbedtls_ecp_group_init(&key->grp);
 | |
|     mbedtls_mpi_init(&key->d);
 | |
|     mbedtls_ecp_point_init(&key->Q);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unallocate (the components of) a point
 | |
|  */
 | |
| void mbedtls_ecp_point_free(mbedtls_ecp_point *pt)
 | |
| {
 | |
|     if (pt == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     mbedtls_mpi_free(&(pt->X));
 | |
|     mbedtls_mpi_free(&(pt->Y));
 | |
|     mbedtls_mpi_free(&(pt->Z));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unallocate (the components of) a group
 | |
|  */
 | |
| void mbedtls_ecp_group_free(mbedtls_ecp_group *grp)
 | |
| {
 | |
|     size_t i;
 | |
| 
 | |
|     if (grp == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (grp->h != 1) {
 | |
|         mbedtls_mpi_free(&grp->P);
 | |
|         mbedtls_mpi_free(&grp->A);
 | |
|         mbedtls_mpi_free(&grp->B);
 | |
|         mbedtls_ecp_point_free(&grp->G);
 | |
|         mbedtls_mpi_free(&grp->N);
 | |
|     }
 | |
| 
 | |
|     if (grp->T != NULL) {
 | |
|         for (i = 0; i < grp->T_size; i++) {
 | |
|             mbedtls_ecp_point_free(&grp->T[i]);
 | |
|         }
 | |
|         mbedtls_free(grp->T);
 | |
|     }
 | |
| 
 | |
|     mbedtls_platform_zeroize(grp, sizeof(mbedtls_ecp_group));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unallocate (the components of) a key pair
 | |
|  */
 | |
| void mbedtls_ecp_keypair_free(mbedtls_ecp_keypair *key)
 | |
| {
 | |
|     if (key == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     mbedtls_ecp_group_free(&key->grp);
 | |
|     mbedtls_mpi_free(&key->d);
 | |
|     mbedtls_ecp_point_free(&key->Q);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy the contents of a point
 | |
|  */
 | |
| int mbedtls_ecp_copy(mbedtls_ecp_point *P, const mbedtls_ecp_point *Q)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     ECP_VALIDATE_RET(P != NULL);
 | |
|     ECP_VALIDATE_RET(Q != NULL);
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->X, &Q->X));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Y, &Q->Y));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Z, &Q->Z));
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy the contents of a group object
 | |
|  */
 | |
| int mbedtls_ecp_group_copy(mbedtls_ecp_group *dst, const mbedtls_ecp_group *src)
 | |
| {
 | |
|     ECP_VALIDATE_RET(dst != NULL);
 | |
|     ECP_VALIDATE_RET(src != NULL);
 | |
| 
 | |
|     return mbedtls_ecp_group_load(dst, src->id);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set point to zero
 | |
|  */
 | |
| int mbedtls_ecp_set_zero(mbedtls_ecp_point *pt)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     ECP_VALIDATE_RET(pt != NULL);
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->X, 1));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Y, 1));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 0));
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tell if a point is zero
 | |
|  */
 | |
| int mbedtls_ecp_is_zero(mbedtls_ecp_point *pt)
 | |
| {
 | |
|     ECP_VALIDATE_RET(pt != NULL);
 | |
| 
 | |
|     return mbedtls_mpi_cmp_int(&pt->Z, 0) == 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compare two points lazily
 | |
|  */
 | |
| int mbedtls_ecp_point_cmp(const mbedtls_ecp_point *P,
 | |
|                           const mbedtls_ecp_point *Q)
 | |
| {
 | |
|     ECP_VALIDATE_RET(P != NULL);
 | |
|     ECP_VALIDATE_RET(Q != NULL);
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_mpi(&P->X, &Q->X) == 0 &&
 | |
|         mbedtls_mpi_cmp_mpi(&P->Y, &Q->Y) == 0 &&
 | |
|         mbedtls_mpi_cmp_mpi(&P->Z, &Q->Z) == 0) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Import a non-zero point from ASCII strings
 | |
|  */
 | |
| int mbedtls_ecp_point_read_string(mbedtls_ecp_point *P, int radix,
 | |
|                                   const char *x, const char *y)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     ECP_VALIDATE_RET(P != NULL);
 | |
|     ECP_VALIDATE_RET(x != NULL);
 | |
|     ECP_VALIDATE_RET(y != NULL);
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->X, radix, x));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->Y, radix, y));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1));
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
 | |
|  */
 | |
| int mbedtls_ecp_point_write_binary(const mbedtls_ecp_group *grp,
 | |
|                                    const mbedtls_ecp_point *P,
 | |
|                                    int format, size_t *olen,
 | |
|                                    unsigned char *buf, size_t buflen)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | |
|     size_t plen;
 | |
|     ECP_VALIDATE_RET(grp  != NULL);
 | |
|     ECP_VALIDATE_RET(P    != NULL);
 | |
|     ECP_VALIDATE_RET(olen != NULL);
 | |
|     ECP_VALIDATE_RET(buf  != NULL);
 | |
|     ECP_VALIDATE_RET(format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
 | |
|                      format == MBEDTLS_ECP_PF_COMPRESSED);
 | |
| 
 | |
|     plen = mbedtls_mpi_size(&grp->P);
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | |
|     (void) format; /* Montgomery curves always use the same point format */
 | |
|     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
 | |
|         *olen = plen;
 | |
|         if (buflen < *olen) {
 | |
|             return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
 | |
|         }
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&P->X, buf, plen));
 | |
|     }
 | |
| #endif
 | |
| #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | |
|     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
 | |
|         /*
 | |
|          * Common case: P == 0
 | |
|          */
 | |
|         if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) {
 | |
|             if (buflen < 1) {
 | |
|                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
 | |
|             }
 | |
| 
 | |
|             buf[0] = 0x00;
 | |
|             *olen = 1;
 | |
| 
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         if (format == MBEDTLS_ECP_PF_UNCOMPRESSED) {
 | |
|             *olen = 2 * plen + 1;
 | |
| 
 | |
|             if (buflen < *olen) {
 | |
|                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
 | |
|             }
 | |
| 
 | |
|             buf[0] = 0x04;
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->Y, buf + 1 + plen, plen));
 | |
|         } else if (format == MBEDTLS_ECP_PF_COMPRESSED) {
 | |
|             *olen = plen + 1;
 | |
| 
 | |
|             if (buflen < *olen) {
 | |
|                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
 | |
|             }
 | |
| 
 | |
|             buf[0] = 0x02 + mbedtls_mpi_get_bit(&P->Y, 0);
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
 | |
|  */
 | |
| int mbedtls_ecp_point_read_binary(const mbedtls_ecp_group *grp,
 | |
|                                   mbedtls_ecp_point *pt,
 | |
|                                   const unsigned char *buf, size_t ilen)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | |
|     size_t plen;
 | |
|     ECP_VALIDATE_RET(grp != NULL);
 | |
|     ECP_VALIDATE_RET(pt  != NULL);
 | |
|     ECP_VALIDATE_RET(buf != NULL);
 | |
| 
 | |
|     if (ilen < 1) {
 | |
|         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     plen = mbedtls_mpi_size(&grp->P);
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | |
|     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
 | |
|         if (plen != ilen) {
 | |
|             return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | |
|         }
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&pt->X, buf, plen));
 | |
|         mbedtls_mpi_free(&pt->Y);
 | |
| 
 | |
|         if (grp->id == MBEDTLS_ECP_DP_CURVE25519) {
 | |
|             /* Set most significant bit to 0 as prescribed in RFC7748 §5 */
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&pt->X, plen * 8 - 1, 0));
 | |
|         }
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
 | |
|     }
 | |
| #endif
 | |
| #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | |
|     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
 | |
|         if (buf[0] == 0x00) {
 | |
|             if (ilen == 1) {
 | |
|                 return mbedtls_ecp_set_zero(pt);
 | |
|             } else {
 | |
|                 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (buf[0] != 0x04) {
 | |
|             return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | |
|         }
 | |
| 
 | |
|         if (ilen != 2 * plen + 1) {
 | |
|             return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | |
|         }
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->X, buf + 1, plen));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->Y,
 | |
|                                                 buf + 1 + plen, plen));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Import a point from a TLS ECPoint record (RFC 4492)
 | |
|  *      struct {
 | |
|  *          opaque point <1..2^8-1>;
 | |
|  *      } ECPoint;
 | |
|  */
 | |
| int mbedtls_ecp_tls_read_point(const mbedtls_ecp_group *grp,
 | |
|                                mbedtls_ecp_point *pt,
 | |
|                                const unsigned char **buf, size_t buf_len)
 | |
| {
 | |
|     unsigned char data_len;
 | |
|     const unsigned char *buf_start;
 | |
|     ECP_VALIDATE_RET(grp != NULL);
 | |
|     ECP_VALIDATE_RET(pt  != NULL);
 | |
|     ECP_VALIDATE_RET(buf != NULL);
 | |
|     ECP_VALIDATE_RET(*buf != NULL);
 | |
| 
 | |
|     /*
 | |
|      * We must have at least two bytes (1 for length, at least one for data)
 | |
|      */
 | |
|     if (buf_len < 2) {
 | |
|         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     data_len = *(*buf)++;
 | |
|     if (data_len < 1 || data_len > buf_len - 1) {
 | |
|         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Save buffer start for read_binary and update buf
 | |
|      */
 | |
|     buf_start = *buf;
 | |
|     *buf += data_len;
 | |
| 
 | |
|     return mbedtls_ecp_point_read_binary(grp, pt, buf_start, data_len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Export a point as a TLS ECPoint record (RFC 4492)
 | |
|  *      struct {
 | |
|  *          opaque point <1..2^8-1>;
 | |
|  *      } ECPoint;
 | |
|  */
 | |
| int mbedtls_ecp_tls_write_point(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
 | |
|                                 int format, size_t *olen,
 | |
|                                 unsigned char *buf, size_t blen)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     ECP_VALIDATE_RET(grp  != NULL);
 | |
|     ECP_VALIDATE_RET(pt   != NULL);
 | |
|     ECP_VALIDATE_RET(olen != NULL);
 | |
|     ECP_VALIDATE_RET(buf  != NULL);
 | |
|     ECP_VALIDATE_RET(format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
 | |
|                      format == MBEDTLS_ECP_PF_COMPRESSED);
 | |
| 
 | |
|     /*
 | |
|      * buffer length must be at least one, for our length byte
 | |
|      */
 | |
|     if (blen < 1) {
 | |
|         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if ((ret = mbedtls_ecp_point_write_binary(grp, pt, format,
 | |
|                                               olen, buf + 1, blen - 1)) != 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * write length to the first byte and update total length
 | |
|      */
 | |
|     buf[0] = (unsigned char) *olen;
 | |
|     ++*olen;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set a group from an ECParameters record (RFC 4492)
 | |
|  */
 | |
| int mbedtls_ecp_tls_read_group(mbedtls_ecp_group *grp,
 | |
|                                const unsigned char **buf, size_t len)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     mbedtls_ecp_group_id grp_id;
 | |
|     ECP_VALIDATE_RET(grp  != NULL);
 | |
|     ECP_VALIDATE_RET(buf  != NULL);
 | |
|     ECP_VALIDATE_RET(*buf != NULL);
 | |
| 
 | |
|     if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, len)) != 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     return mbedtls_ecp_group_load(grp, grp_id);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read a group id from an ECParameters record (RFC 4492) and convert it to
 | |
|  * mbedtls_ecp_group_id.
 | |
|  */
 | |
| int mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id *grp,
 | |
|                                   const unsigned char **buf, size_t len)
 | |
| {
 | |
|     uint16_t tls_id;
 | |
|     const mbedtls_ecp_curve_info *curve_info;
 | |
|     ECP_VALIDATE_RET(grp  != NULL);
 | |
|     ECP_VALIDATE_RET(buf  != NULL);
 | |
|     ECP_VALIDATE_RET(*buf != NULL);
 | |
| 
 | |
|     /*
 | |
|      * We expect at least three bytes (see below)
 | |
|      */
 | |
|     if (len < 3) {
 | |
|         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * First byte is curve_type; only named_curve is handled
 | |
|      */
 | |
|     if (*(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE) {
 | |
|         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Next two bytes are the namedcurve value
 | |
|      */
 | |
|     tls_id = *(*buf)++;
 | |
|     tls_id <<= 8;
 | |
|     tls_id |= *(*buf)++;
 | |
| 
 | |
|     if ((curve_info = mbedtls_ecp_curve_info_from_tls_id(tls_id)) == NULL) {
 | |
|         return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | |
|     }
 | |
| 
 | |
|     *grp = curve_info->grp_id;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write the ECParameters record corresponding to a group (RFC 4492)
 | |
|  */
 | |
| int mbedtls_ecp_tls_write_group(const mbedtls_ecp_group *grp, size_t *olen,
 | |
|                                 unsigned char *buf, size_t blen)
 | |
| {
 | |
|     const mbedtls_ecp_curve_info *curve_info;
 | |
|     ECP_VALIDATE_RET(grp  != NULL);
 | |
|     ECP_VALIDATE_RET(buf  != NULL);
 | |
|     ECP_VALIDATE_RET(olen != NULL);
 | |
| 
 | |
|     if ((curve_info = mbedtls_ecp_curve_info_from_grp_id(grp->id)) == NULL) {
 | |
|         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * We are going to write 3 bytes (see below)
 | |
|      */
 | |
|     *olen = 3;
 | |
|     if (blen < *olen) {
 | |
|         return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * First byte is curve_type, always named_curve
 | |
|      */
 | |
|     *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
 | |
| 
 | |
|     /*
 | |
|      * Next two bytes are the namedcurve value
 | |
|      */
 | |
|     MBEDTLS_PUT_UINT16_BE(curve_info->tls_id, buf, 0);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
 | |
|  * See the documentation of struct mbedtls_ecp_group.
 | |
|  *
 | |
|  * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
 | |
|  */
 | |
| static int ecp_modp(mbedtls_mpi *N, const mbedtls_ecp_group *grp)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
| 
 | |
|     if (grp->modp == NULL) {
 | |
|         return mbedtls_mpi_mod_mpi(N, N, &grp->P);
 | |
|     }
 | |
| 
 | |
|     /* N->s < 0 is a much faster test, which fails only if N is 0 */
 | |
|     if ((N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) ||
 | |
|         mbedtls_mpi_bitlen(N) > 2 * grp->pbits) {
 | |
|         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(grp->modp(N));
 | |
| 
 | |
|     /* N->s < 0 is a much faster test, which fails only if N is 0 */
 | |
|     while (N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &grp->P));
 | |
|     }
 | |
| 
 | |
|     while (mbedtls_mpi_cmp_mpi(N, &grp->P) >= 0) {
 | |
|         /* we known P, N and the result are positive */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(N, N, &grp->P));
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fast mod-p functions expect their argument to be in the 0..p^2 range.
 | |
|  *
 | |
|  * In order to guarantee that, we need to ensure that operands of
 | |
|  * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
 | |
|  * bring the result back to this range.
 | |
|  *
 | |
|  * The following macros are shortcuts for doing that.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
 | |
|  */
 | |
| #if defined(MBEDTLS_SELF_TEST)
 | |
| #define INC_MUL_COUNT   mul_count++;
 | |
| #else
 | |
| #define INC_MUL_COUNT
 | |
| #endif
 | |
| 
 | |
| #define MOD_MUL(N)                                                    \
 | |
|     do                                                                  \
 | |
|     {                                                                   \
 | |
|         MBEDTLS_MPI_CHK(ecp_modp(&(N), grp));                       \
 | |
|         INC_MUL_COUNT                                                   \
 | |
|     } while (0)
 | |
| 
 | |
| static inline int mbedtls_mpi_mul_mod(const mbedtls_ecp_group *grp,
 | |
|                                       mbedtls_mpi *X,
 | |
|                                       const mbedtls_mpi *A,
 | |
|                                       const mbedtls_mpi *B)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(X, A, B));
 | |
|     MOD_MUL(*X);
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
 | |
|  * N->s < 0 is a very fast test, which fails only if N is 0
 | |
|  */
 | |
| #define MOD_SUB(N)                                                    \
 | |
|     while ((N).s < 0 && mbedtls_mpi_cmp_int(&(N), 0) != 0)           \
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&(N), &(N), &grp->P))
 | |
| 
 | |
| #if (defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \
 | |
|     !(defined(MBEDTLS_ECP_NO_FALLBACK) && \
 | |
|     defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \
 | |
|     defined(MBEDTLS_ECP_ADD_MIXED_ALT))) || \
 | |
|     (defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) && \
 | |
|     !(defined(MBEDTLS_ECP_NO_FALLBACK) && \
 | |
|     defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)))
 | |
| static inline int mbedtls_mpi_sub_mod(const mbedtls_ecp_group *grp,
 | |
|                                       mbedtls_mpi *X,
 | |
|                                       const mbedtls_mpi *A,
 | |
|                                       const mbedtls_mpi *B)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(X, A, B));
 | |
|     MOD_SUB(*X);
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| #endif /* All functions referencing mbedtls_mpi_sub_mod() are alt-implemented without fallback */
 | |
| 
 | |
| /*
 | |
|  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
 | |
|  * We known P, N and the result are positive, so sub_abs is correct, and
 | |
|  * a bit faster.
 | |
|  */
 | |
| #define MOD_ADD(N)                                                    \
 | |
|     while (mbedtls_mpi_cmp_mpi(&(N), &grp->P) >= 0)                  \
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&(N), &(N), &grp->P))
 | |
| 
 | |
| static inline int mbedtls_mpi_add_mod(const mbedtls_ecp_group *grp,
 | |
|                                       mbedtls_mpi *X,
 | |
|                                       const mbedtls_mpi *A,
 | |
|                                       const mbedtls_mpi *B)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, A, B));
 | |
|     MOD_ADD(*X);
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \
 | |
|     !(defined(MBEDTLS_ECP_NO_FALLBACK) && \
 | |
|     defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \
 | |
|     defined(MBEDTLS_ECP_ADD_MIXED_ALT))
 | |
| static inline int mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group *grp,
 | |
|                                           mbedtls_mpi *X,
 | |
|                                           size_t count)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, count));
 | |
|     MOD_ADD(*X);
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| #endif \
 | |
|     /* All functions referencing mbedtls_mpi_shift_l_mod() are alt-implemented without fallback */
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | |
| /*
 | |
|  * For curves in short Weierstrass form, we do all the internal operations in
 | |
|  * Jacobian coordinates.
 | |
|  *
 | |
|  * For multiplication, we'll use a comb method with countermeasures against
 | |
|  * SPA, hence timing attacks.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1)
 | |
|  * Cost: 1N := 1I + 3M + 1S
 | |
|  */
 | |
| static int ecp_normalize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt)
 | |
| {
 | |
|     if (mbedtls_mpi_cmp_int(&pt->Z, 0) == 0) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
 | |
|     if (mbedtls_internal_ecp_grp_capable(grp)) {
 | |
|         return mbedtls_internal_ecp_normalize_jac(grp, pt);
 | |
|     }
 | |
| #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
 | |
|     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | |
| #else
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     mbedtls_mpi Zi, ZZi;
 | |
|     mbedtls_mpi_init(&Zi); mbedtls_mpi_init(&ZZi);
 | |
| 
 | |
|     /*
 | |
|      * X = X / Z^2  mod p
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&Zi,      &pt->Z,     &grp->P));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &ZZi,     &Zi,        &Zi));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &pt->X,   &pt->X,     &ZZi));
 | |
| 
 | |
|     /*
 | |
|      * Y = Y / Z^3  mod p
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &pt->Y,   &pt->Y,     &ZZi));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &pt->Y,   &pt->Y,     &Zi));
 | |
| 
 | |
|     /*
 | |
|      * Z = 1
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free(&Zi); mbedtls_mpi_free(&ZZi);
 | |
| 
 | |
|     return ret;
 | |
| #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Normalize jacobian coordinates of an array of (pointers to) points,
 | |
|  * using Montgomery's trick to perform only one inversion mod P.
 | |
|  * (See for example Cohen's "A Course in Computational Algebraic Number
 | |
|  * Theory", Algorithm 10.3.4.)
 | |
|  *
 | |
|  * Warning: fails (returning an error) if one of the points is zero!
 | |
|  * This should never happen, see choice of w in ecp_mul_comb().
 | |
|  *
 | |
|  * Cost: 1N(t) := 1I + (6t - 3)M + 1S
 | |
|  */
 | |
| static int ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
 | |
|                                   mbedtls_ecp_point *T[], size_t T_size)
 | |
| {
 | |
|     if (T_size < 2) {
 | |
|         return ecp_normalize_jac(grp, *T);
 | |
|     }
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
 | |
|     if (mbedtls_internal_ecp_grp_capable(grp)) {
 | |
|         return mbedtls_internal_ecp_normalize_jac_many(grp, T, T_size);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
 | |
|     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | |
| #else
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t i;
 | |
|     mbedtls_mpi *c, u, Zi, ZZi;
 | |
| 
 | |
|     if ((c = mbedtls_calloc(T_size, sizeof(mbedtls_mpi))) == NULL) {
 | |
|         return MBEDTLS_ERR_ECP_ALLOC_FAILED;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < T_size; i++) {
 | |
|         mbedtls_mpi_init(&c[i]);
 | |
|     }
 | |
| 
 | |
|     mbedtls_mpi_init(&u); mbedtls_mpi_init(&Zi); mbedtls_mpi_init(&ZZi);
 | |
| 
 | |
|     /*
 | |
|      * c[i] = Z_0 * ... * Z_i
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&c[0], &T[0]->Z));
 | |
|     for (i = 1; i < T_size; i++) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &c[i], &c[i-1], &T[i]->Z));
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * u = 1 / (Z_0 * ... * Z_n) mod P
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&u, &c[T_size-1], &grp->P));
 | |
| 
 | |
|     for (i = T_size - 1;; i--) {
 | |
|         /*
 | |
|          * Zi = 1 / Z_i mod p
 | |
|          * u = 1 / (Z_0 * ... * Z_i) mod P
 | |
|          */
 | |
|         if (i == 0) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Zi, &u));
 | |
|         } else {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &Zi, &u, &c[i-1]));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &u,  &u, &T[i]->Z));
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * proceed as in normalize()
 | |
|          */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &ZZi,     &Zi,      &Zi));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T[i]->X, &T[i]->X, &ZZi));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T[i]->Y, &T[i]->Y, &ZZi));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T[i]->Y, &T[i]->Y, &Zi));
 | |
| 
 | |
|         /*
 | |
|          * Post-precessing: reclaim some memory by shrinking coordinates
 | |
|          * - not storing Z (always 1)
 | |
|          * - shrinking other coordinates, but still keeping the same number of
 | |
|          *   limbs as P, as otherwise it will too likely be regrown too fast.
 | |
|          */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->X, grp->P.n));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->Y, grp->P.n));
 | |
|         mbedtls_mpi_free(&T[i]->Z);
 | |
| 
 | |
|         if (i == 0) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free(&u); mbedtls_mpi_free(&Zi); mbedtls_mpi_free(&ZZi);
 | |
|     for (i = 0; i < T_size; i++) {
 | |
|         mbedtls_mpi_free(&c[i]);
 | |
|     }
 | |
|     mbedtls_free(c);
 | |
| 
 | |
|     return ret;
 | |
| #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
 | |
|  * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
 | |
|  */
 | |
| static int ecp_safe_invert_jac(const mbedtls_ecp_group *grp,
 | |
|                                mbedtls_ecp_point *Q,
 | |
|                                unsigned char inv)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     unsigned char nonzero;
 | |
|     mbedtls_mpi mQY;
 | |
| 
 | |
|     mbedtls_mpi_init(&mQY);
 | |
| 
 | |
|     /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mQY, &grp->P, &Q->Y));
 | |
|     nonzero = mbedtls_mpi_cmp_int(&Q->Y, 0) != 0;
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&Q->Y, &mQY, inv & nonzero));
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free(&mQY);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Point doubling R = 2 P, Jacobian coordinates
 | |
|  *
 | |
|  * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
 | |
|  *
 | |
|  * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
 | |
|  * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
 | |
|  *
 | |
|  * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
 | |
|  *
 | |
|  * Cost: 1D := 3M + 4S          (A ==  0)
 | |
|  *             4M + 4S          (A == -3)
 | |
|  *             3M + 6S + 1a     otherwise
 | |
|  */
 | |
| static int ecp_double_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
 | |
|                           const mbedtls_ecp_point *P)
 | |
| {
 | |
| #if defined(MBEDTLS_SELF_TEST)
 | |
|     dbl_count++;
 | |
| #endif
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
 | |
|     if (mbedtls_internal_ecp_grp_capable(grp)) {
 | |
|         return mbedtls_internal_ecp_double_jac(grp, R, P);
 | |
|     }
 | |
| #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
 | |
|     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | |
| #else
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     mbedtls_mpi M, S, T, U;
 | |
| 
 | |
|     mbedtls_mpi_init(&M); mbedtls_mpi_init(&S); mbedtls_mpi_init(&T); mbedtls_mpi_init(&U);
 | |
| 
 | |
|     /* Special case for A = -3 */
 | |
|     if (grp->A.p == NULL) {
 | |
|         /* M = 3(X + Z^2)(X - Z^2) */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S,  &P->Z,  &P->Z));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &T,  &P->X,  &S));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &U,  &P->X,  &S));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S,  &T,     &U));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&M,  &S,     3)); MOD_ADD(M);
 | |
|     } else {
 | |
|         /* M = 3.X^2 */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S,  &P->X,  &P->X));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&M,  &S,     3)); MOD_ADD(M);
 | |
| 
 | |
|         /* Optimize away for "koblitz" curves with A = 0 */
 | |
|         if (mbedtls_mpi_cmp_int(&grp->A, 0) != 0) {
 | |
|             /* M += A.Z^4 */
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S,  &P->Z,  &P->Z));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T,  &S,     &S));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S,  &T,     &grp->A));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &M,  &M,     &S));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* S = 4.X.Y^2 */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T,  &P->Y,  &P->Y));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, &T,  1));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S,  &P->X,  &T));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, &S,  1));
 | |
| 
 | |
|     /* U = 8.Y^4 */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &U,  &T,     &T));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, &U,  1));
 | |
| 
 | |
|     /* T = M^2 - 2.S */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T,  &M,     &M));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &T,  &T,     &S));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &T,  &T,     &S));
 | |
| 
 | |
|     /* S = M(S - T) - U */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &S,  &S,     &T));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S,  &S,     &M));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &S,  &S,     &U));
 | |
| 
 | |
|     /* U = 2.Y.Z */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &U,  &P->Y,  &P->Z));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, &U,  1));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R->X, &T));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R->Y, &S));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R->Z, &U));
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free(&M); mbedtls_mpi_free(&S); mbedtls_mpi_free(&T); mbedtls_mpi_free(&U);
 | |
| 
 | |
|     return ret;
 | |
| #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
 | |
|  *
 | |
|  * The coordinates of Q must be normalized (= affine),
 | |
|  * but those of P don't need to. R is not normalized.
 | |
|  *
 | |
|  * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
 | |
|  * None of these cases can happen as intermediate step in ecp_mul_comb():
 | |
|  * - at each step, P, Q and R are multiples of the base point, the factor
 | |
|  *   being less than its order, so none of them is zero;
 | |
|  * - Q is an odd multiple of the base point, P an even multiple,
 | |
|  *   due to the choice of precomputed points in the modified comb method.
 | |
|  * So branches for these cases do not leak secret information.
 | |
|  *
 | |
|  * We accept Q->Z being unset (saving memory in tables) as meaning 1.
 | |
|  *
 | |
|  * Cost: 1A := 8M + 3S
 | |
|  */
 | |
| static int ecp_add_mixed(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
 | |
|                          const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q)
 | |
| {
 | |
| #if defined(MBEDTLS_SELF_TEST)
 | |
|     add_count++;
 | |
| #endif
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
 | |
|     if (mbedtls_internal_ecp_grp_capable(grp)) {
 | |
|         return mbedtls_internal_ecp_add_mixed(grp, R, P, Q);
 | |
|     }
 | |
| #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT)
 | |
|     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | |
| #else
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     mbedtls_mpi T1, T2, T3, T4, X, Y, Z;
 | |
| 
 | |
|     /*
 | |
|      * Trivial cases: P == 0 or Q == 0 (case 1)
 | |
|      */
 | |
|     if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) {
 | |
|         return mbedtls_ecp_copy(R, Q);
 | |
|     }
 | |
| 
 | |
|     if (Q->Z.p != NULL && mbedtls_mpi_cmp_int(&Q->Z, 0) == 0) {
 | |
|         return mbedtls_ecp_copy(R, P);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Make sure Q coordinates are normalized
 | |
|      */
 | |
|     if (Q->Z.p != NULL && mbedtls_mpi_cmp_int(&Q->Z, 1) != 0) {
 | |
|         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     mbedtls_mpi_init(&T1); mbedtls_mpi_init(&T2); mbedtls_mpi_init(&T3); mbedtls_mpi_init(&T4);
 | |
|     mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T1,  &P->Z,  &P->Z));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T2,  &T1,    &P->Z));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T1,  &T1,    &Q->X));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T2,  &T2,    &Q->Y));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &T1,  &T1,    &P->X));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &T2,  &T2,    &P->Y));
 | |
| 
 | |
|     /* Special cases (2) and (3) */
 | |
|     if (mbedtls_mpi_cmp_int(&T1, 0) == 0) {
 | |
|         if (mbedtls_mpi_cmp_int(&T2, 0) == 0) {
 | |
|             ret = ecp_double_jac(grp, R, P);
 | |
|             goto cleanup;
 | |
|         } else {
 | |
|             ret = mbedtls_ecp_set_zero(R);
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &Z,   &P->Z,  &T1));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T3,  &T1,    &T1));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T4,  &T3,    &T1));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T3,  &T3,    &P->X));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &T3));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, &T1,  1));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &X,   &T2,    &T2));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &X,   &X,     &T1));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &X,   &X,     &T4));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &T3,  &T3,    &X));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T3,  &T3,    &T2));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T4,  &T4,    &P->Y));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &Y,   &T3,    &T4));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R->X, &X));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R->Y, &Y));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R->Z, &Z));
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free(&T1); mbedtls_mpi_free(&T2); mbedtls_mpi_free(&T3); mbedtls_mpi_free(&T4);
 | |
|     mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
 | |
| 
 | |
|     return ret;
 | |
| #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Randomize jacobian coordinates:
 | |
|  * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
 | |
|  * This is sort of the reverse operation of ecp_normalize_jac().
 | |
|  *
 | |
|  * This countermeasure was first suggested in [2].
 | |
|  */
 | |
| static int ecp_randomize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
 | |
|                              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
 | |
| {
 | |
| #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
 | |
|     if (mbedtls_internal_ecp_grp_capable(grp)) {
 | |
|         return mbedtls_internal_ecp_randomize_jac(grp, pt, f_rng, p_rng);
 | |
|     }
 | |
| #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
 | |
|     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | |
| #else
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     mbedtls_mpi l, ll;
 | |
| 
 | |
|     mbedtls_mpi_init(&l); mbedtls_mpi_init(&ll);
 | |
| 
 | |
|     /* Generate l such that 1 < l < p */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_random(&l, 2, &grp->P, f_rng, p_rng));
 | |
| 
 | |
|     /* Z = l * Z */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &pt->Z,   &pt->Z,     &l));
 | |
| 
 | |
|     /* X = l^2 * X */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &ll,      &l,         &l));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &pt->X,   &pt->X,     &ll));
 | |
| 
 | |
|     /* Y = l^3 * Y */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &ll,      &ll,        &l));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &pt->Y,   &pt->Y,     &ll));
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free(&l); mbedtls_mpi_free(&ll);
 | |
| 
 | |
|     if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
 | |
|         ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
 | |
|     }
 | |
|     return ret;
 | |
| #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check and define parameters used by the comb method (see below for details)
 | |
|  */
 | |
| #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
 | |
| #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
 | |
| #endif
 | |
| 
 | |
| /* d = ceil( n / w ) */
 | |
| #define COMB_MAX_D      (MBEDTLS_ECP_MAX_BITS + 1) / 2
 | |
| 
 | |
| /* number of precomputed points */
 | |
| #define COMB_MAX_PRE    (1 << (MBEDTLS_ECP_WINDOW_SIZE - 1))
 | |
| 
 | |
| /*
 | |
|  * Compute the representation of m that will be used with our comb method.
 | |
|  *
 | |
|  * The basic comb method is described in GECC 3.44 for example. We use a
 | |
|  * modified version that provides resistance to SPA by avoiding zero
 | |
|  * digits in the representation as in [3]. We modify the method further by
 | |
|  * requiring that all K_i be odd, which has the small cost that our
 | |
|  * representation uses one more K_i, due to carries, but saves on the size of
 | |
|  * the precomputed table.
 | |
|  *
 | |
|  * Summary of the comb method and its modifications:
 | |
|  *
 | |
|  * - The goal is to compute m*P for some w*d-bit integer m.
 | |
|  *
 | |
|  * - The basic comb method splits m into the w-bit integers
 | |
|  *   x[0] .. x[d-1] where x[i] consists of the bits in m whose
 | |
|  *   index has residue i modulo d, and computes m * P as
 | |
|  *   S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
 | |
|  *   S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
 | |
|  *
 | |
|  * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
 | |
|  *    .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
 | |
|  *   thereby successively converting it into a form where all summands
 | |
|  *   are nonzero, at the cost of negative summands. This is the basic idea of [3].
 | |
|  *
 | |
|  * - More generally, even if x[i+1] != 0, we can first transform the sum as
 | |
|  *   .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
 | |
|  *   and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
 | |
|  *   Performing and iterating this procedure for those x[i] that are even
 | |
|  *   (keeping track of carry), we can transform the original sum into one of the form
 | |
|  *   S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
 | |
|  *   with all x'[i] odd. It is therefore only necessary to know S at odd indices,
 | |
|  *   which is why we are only computing half of it in the first place in
 | |
|  *   ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
 | |
|  *
 | |
|  * - For the sake of compactness, only the seven low-order bits of x[i]
 | |
|  *   are used to represent its absolute value (K_i in the paper), and the msb
 | |
|  *   of x[i] encodes the sign (s_i in the paper): it is set if and only if
 | |
|  *   if s_i == -1;
 | |
|  *
 | |
|  * Calling conventions:
 | |
|  * - x is an array of size d + 1
 | |
|  * - w is the size, ie number of teeth, of the comb, and must be between
 | |
|  *   2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
 | |
|  * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
 | |
|  *   (the result will be incorrect if these assumptions are not satisfied)
 | |
|  */
 | |
| static void ecp_comb_recode_core(unsigned char x[], size_t d,
 | |
|                                  unsigned char w, const mbedtls_mpi *m)
 | |
| {
 | |
|     size_t i, j;
 | |
|     unsigned char c, cc, adjust;
 | |
| 
 | |
|     memset(x, 0, d+1);
 | |
| 
 | |
|     /* First get the classical comb values (except for x_d = 0) */
 | |
|     for (i = 0; i < d; i++) {
 | |
|         for (j = 0; j < w; j++) {
 | |
|             x[i] |= mbedtls_mpi_get_bit(m, i + d * j) << j;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Now make sure x_1 .. x_d are odd */
 | |
|     c = 0;
 | |
|     for (i = 1; i <= d; i++) {
 | |
|         /* Add carry and update it */
 | |
|         cc   = x[i] & c;
 | |
|         x[i] = x[i] ^ c;
 | |
|         c = cc;
 | |
| 
 | |
|         /* Adjust if needed, avoiding branches */
 | |
|         adjust = 1 - (x[i] & 0x01);
 | |
|         c   |= x[i] & (x[i-1] * adjust);
 | |
|         x[i] = x[i] ^ (x[i-1] * adjust);
 | |
|         x[i-1] |= adjust << 7;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Precompute points for the adapted comb method
 | |
|  *
 | |
|  * Assumption: T must be able to hold 2^{w - 1} elements.
 | |
|  *
 | |
|  * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
 | |
|  *            sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
 | |
|  *
 | |
|  * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
 | |
|  *
 | |
|  * Note: Even comb values (those where P would be omitted from the
 | |
|  *       sum defining T[i] above) are not needed in our adaption
 | |
|  *       the comb method. See ecp_comb_recode_core().
 | |
|  *
 | |
|  * This function currently works in four steps:
 | |
|  * (1) [dbl]      Computation of intermediate T[i] for 2-power values of i
 | |
|  * (2) [norm_dbl] Normalization of coordinates of these T[i]
 | |
|  * (3) [add]      Computation of all T[i]
 | |
|  * (4) [norm_add] Normalization of all T[i]
 | |
|  *
 | |
|  * Step 1 can be interrupted but not the others; together with the final
 | |
|  * coordinate normalization they are the largest steps done at once, depending
 | |
|  * on the window size. Here are operation counts for P-256:
 | |
|  *
 | |
|  * step     (2)     (3)     (4)
 | |
|  * w = 5    142     165     208
 | |
|  * w = 4    136      77     160
 | |
|  * w = 3    130      33     136
 | |
|  * w = 2    124      11     124
 | |
|  *
 | |
|  * So if ECC operations are blocking for too long even with a low max_ops
 | |
|  * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
 | |
|  * to minimize maximum blocking time.
 | |
|  */
 | |
| static int ecp_precompute_comb(const mbedtls_ecp_group *grp,
 | |
|                                mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
 | |
|                                unsigned char w, size_t d,
 | |
|                                mbedtls_ecp_restart_ctx *rs_ctx)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     unsigned char i;
 | |
|     size_t j = 0;
 | |
|     const unsigned char T_size = 1U << (w - 1);
 | |
|     mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1];
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
 | |
|         if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
 | |
|             goto dbl;
 | |
|         }
 | |
|         if (rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl) {
 | |
|             goto norm_dbl;
 | |
|         }
 | |
|         if (rs_ctx->rsm->state == ecp_rsm_pre_add) {
 | |
|             goto add;
 | |
|         }
 | |
|         if (rs_ctx->rsm->state == ecp_rsm_pre_norm_add) {
 | |
|             goto norm_add;
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     (void) rs_ctx;
 | |
| #endif
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
 | |
|         rs_ctx->rsm->state = ecp_rsm_pre_dbl;
 | |
| 
 | |
|         /* initial state for the loop */
 | |
|         rs_ctx->rsm->i = 0;
 | |
|     }
 | |
| 
 | |
| dbl:
 | |
| #endif
 | |
|     /*
 | |
|      * Set T[0] = P and
 | |
|      * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&T[0], P));
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
 | |
|         j = rs_ctx->rsm->i;
 | |
|     } else
 | |
| #endif
 | |
|     j = 0;
 | |
| 
 | |
|     for (; j < d * (w - 1); j++) {
 | |
|         MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL);
 | |
| 
 | |
|         i = 1U << (j / d);
 | |
|         cur = T + i;
 | |
| 
 | |
|         if (j % d == 0) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_ecp_copy(cur, T + (i >> 1)));
 | |
|         }
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(ecp_double_jac(grp, cur, cur));
 | |
|     }
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
 | |
|         rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
 | |
|     }
 | |
| 
 | |
| norm_dbl:
 | |
| #endif
 | |
|     /*
 | |
|      * Normalize current elements in T. As T has holes,
 | |
|      * use an auxiliary array of pointers to elements in T.
 | |
|      */
 | |
|     j = 0;
 | |
|     for (i = 1; i < T_size; i <<= 1) {
 | |
|         TT[j++] = T + i;
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
 | |
|         rs_ctx->rsm->state = ecp_rsm_pre_add;
 | |
|     }
 | |
| 
 | |
| add:
 | |
| #endif
 | |
|     /*
 | |
|      * Compute the remaining ones using the minimal number of additions
 | |
|      * Be careful to update T[2^l] only after using it!
 | |
|      */
 | |
|     MBEDTLS_ECP_BUDGET((T_size - 1) * MBEDTLS_ECP_OPS_ADD);
 | |
| 
 | |
|     for (i = 1; i < T_size; i <<= 1) {
 | |
|         j = i;
 | |
|         while (j--) {
 | |
|             MBEDTLS_MPI_CHK(ecp_add_mixed(grp, &T[i + j], &T[j], &T[i]));
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
 | |
|         rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
 | |
|     }
 | |
| 
 | |
| norm_add:
 | |
| #endif
 | |
|     /*
 | |
|      * Normalize final elements in T. Even though there are no holes now, we
 | |
|      * still need the auxiliary array for homogeneity with the previous
 | |
|      * call. Also, skip T[0] which is already normalised, being a copy of P.
 | |
|      */
 | |
|     for (j = 0; j + 1 < T_size; j++) {
 | |
|         TT[j] = T + j + 1;
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
 | |
| 
 | |
| cleanup:
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
 | |
|         ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
 | |
|         if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
 | |
|             rs_ctx->rsm->i = j;
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
 | |
|  *
 | |
|  * See ecp_comb_recode_core() for background
 | |
|  */
 | |
| static int ecp_select_comb(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
 | |
|                            const mbedtls_ecp_point T[], unsigned char T_size,
 | |
|                            unsigned char i)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     unsigned char ii, j;
 | |
| 
 | |
|     /* Ignore the "sign" bit and scale down */
 | |
|     ii =  (i & 0x7Fu) >> 1;
 | |
| 
 | |
|     /* Read the whole table to thwart cache-based timing attacks */
 | |
|     for (j = 0; j < T_size; j++) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&R->X, &T[j].X, j == ii));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&R->Y, &T[j].Y, j == ii));
 | |
|     }
 | |
| 
 | |
|     /* Safely invert result if i is "negative" */
 | |
|     MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, R, i >> 7));
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Core multiplication algorithm for the (modified) comb method.
 | |
|  * This part is actually common with the basic comb method (GECC 3.44)
 | |
|  *
 | |
|  * Cost: d A + d D + 1 R
 | |
|  */
 | |
| static int ecp_mul_comb_core(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
 | |
|                              const mbedtls_ecp_point T[], unsigned char T_size,
 | |
|                              const unsigned char x[], size_t d,
 | |
|                              int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                              void *p_rng,
 | |
|                              mbedtls_ecp_restart_ctx *rs_ctx)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     mbedtls_ecp_point Txi;
 | |
|     size_t i;
 | |
| 
 | |
|     mbedtls_ecp_point_init(&Txi);
 | |
| 
 | |
| #if !defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     (void) rs_ctx;
 | |
| #endif
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
 | |
|         rs_ctx->rsm->state != ecp_rsm_comb_core) {
 | |
|         rs_ctx->rsm->i = 0;
 | |
|         rs_ctx->rsm->state = ecp_rsm_comb_core;
 | |
|     }
 | |
| 
 | |
|     /* new 'if' instead of nested for the sake of the 'else' branch */
 | |
|     if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
 | |
|         /* restore current index (R already pointing to rs_ctx->rsm->R) */
 | |
|         i = rs_ctx->rsm->i;
 | |
|     } else
 | |
| #endif
 | |
|     {
 | |
|         int have_rng = 1;
 | |
| 
 | |
|         /* Start with a non-zero point and randomize its coordinates */
 | |
|         i = d;
 | |
|         MBEDTLS_MPI_CHK(ecp_select_comb(grp, R, T, T_size, x[i]));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&R->Z, 1));
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | |
|         if (f_rng == NULL) {
 | |
|             have_rng = 0;
 | |
|         }
 | |
| #endif
 | |
|         if (have_rng) {
 | |
|             MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, R, f_rng, p_rng));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     while (i != 0) {
 | |
|         MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD);
 | |
|         --i;
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(ecp_double_jac(grp, R, R));
 | |
|         MBEDTLS_MPI_CHK(ecp_select_comb(grp, &Txi, T, T_size, x[i]));
 | |
|         MBEDTLS_MPI_CHK(ecp_add_mixed(grp, R, R, &Txi));
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_ecp_point_free(&Txi);
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
 | |
|         ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
 | |
|         rs_ctx->rsm->i = i;
 | |
|         /* no need to save R, already pointing to rs_ctx->rsm->R */
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Recode the scalar to get constant-time comb multiplication
 | |
|  *
 | |
|  * As the actual scalar recoding needs an odd scalar as a starting point,
 | |
|  * this wrapper ensures that by replacing m by N - m if necessary, and
 | |
|  * informs the caller that the result of multiplication will be negated.
 | |
|  *
 | |
|  * This works because we only support large prime order for Short Weierstrass
 | |
|  * curves, so N is always odd hence either m or N - m is.
 | |
|  *
 | |
|  * See ecp_comb_recode_core() for background.
 | |
|  */
 | |
| static int ecp_comb_recode_scalar(const mbedtls_ecp_group *grp,
 | |
|                                   const mbedtls_mpi *m,
 | |
|                                   unsigned char k[COMB_MAX_D + 1],
 | |
|                                   size_t d,
 | |
|                                   unsigned char w,
 | |
|                                   unsigned char *parity_trick)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     mbedtls_mpi M, mm;
 | |
| 
 | |
|     mbedtls_mpi_init(&M);
 | |
|     mbedtls_mpi_init(&mm);
 | |
| 
 | |
|     /* N is always odd (see above), just make extra sure */
 | |
|     if (mbedtls_mpi_get_bit(&grp->N, 0) != 1) {
 | |
|         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     /* do we need the parity trick? */
 | |
|     *parity_trick = (mbedtls_mpi_get_bit(m, 0) == 0);
 | |
| 
 | |
|     /* execute parity fix in constant time */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&M, m));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mm, &grp->N, m));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&M, &mm, *parity_trick));
 | |
| 
 | |
|     /* actual scalar recoding */
 | |
|     ecp_comb_recode_core(k, d, w, &M);
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free(&mm);
 | |
|     mbedtls_mpi_free(&M);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform comb multiplication (for short Weierstrass curves)
 | |
|  * once the auxiliary table has been pre-computed.
 | |
|  *
 | |
|  * Scalar recoding may use a parity trick that makes us compute -m * P,
 | |
|  * if that is the case we'll need to recover m * P at the end.
 | |
|  */
 | |
| static int ecp_mul_comb_after_precomp(const mbedtls_ecp_group *grp,
 | |
|                                       mbedtls_ecp_point *R,
 | |
|                                       const mbedtls_mpi *m,
 | |
|                                       const mbedtls_ecp_point *T,
 | |
|                                       unsigned char T_size,
 | |
|                                       unsigned char w,
 | |
|                                       size_t d,
 | |
|                                       int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                                       void *p_rng,
 | |
|                                       mbedtls_ecp_restart_ctx *rs_ctx)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     unsigned char parity_trick;
 | |
|     unsigned char k[COMB_MAX_D + 1];
 | |
|     mbedtls_ecp_point *RR = R;
 | |
|     int have_rng = 1;
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
 | |
|         RR = &rs_ctx->rsm->R;
 | |
| 
 | |
|         if (rs_ctx->rsm->state == ecp_rsm_final_norm) {
 | |
|             goto final_norm;
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(ecp_comb_recode_scalar(grp, m, k, d, w,
 | |
|                                            &parity_trick));
 | |
|     MBEDTLS_MPI_CHK(ecp_mul_comb_core(grp, RR, T, T_size, k, d,
 | |
|                                       f_rng, p_rng, rs_ctx));
 | |
|     MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, RR, parity_trick));
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
 | |
|         rs_ctx->rsm->state = ecp_rsm_final_norm;
 | |
|     }
 | |
| 
 | |
| final_norm:
 | |
|     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
 | |
| #endif
 | |
|     /*
 | |
|      * Knowledge of the jacobian coordinates may leak the last few bits of the
 | |
|      * scalar [1], and since our MPI implementation isn't constant-flow,
 | |
|      * inversion (used for coordinate normalization) may leak the full value
 | |
|      * of its input via side-channels [2].
 | |
|      *
 | |
|      * [1] https://eprint.iacr.org/2003/191
 | |
|      * [2] https://eprint.iacr.org/2020/055
 | |
|      *
 | |
|      * Avoid the leak by randomizing coordinates before we normalize them.
 | |
|      */
 | |
| #if defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | |
|     if (f_rng == NULL) {
 | |
|         have_rng = 0;
 | |
|     }
 | |
| #endif
 | |
|     if (have_rng) {
 | |
|         MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, RR, f_rng, p_rng));
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, RR));
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, RR));
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pick window size based on curve size and whether we optimize for base point
 | |
|  */
 | |
| static unsigned char ecp_pick_window_size(const mbedtls_ecp_group *grp,
 | |
|                                           unsigned char p_eq_g)
 | |
| {
 | |
|     unsigned char w;
 | |
| 
 | |
|     /*
 | |
|      * Minimize the number of multiplications, that is minimize
 | |
|      * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
 | |
|      * (see costs of the various parts, with 1S = 1M)
 | |
|      */
 | |
|     w = grp->nbits >= 384 ? 5 : 4;
 | |
| 
 | |
|     /*
 | |
|      * If P == G, pre-compute a bit more, since this may be re-used later.
 | |
|      * Just adding one avoids upping the cost of the first mul too much,
 | |
|      * and the memory cost too.
 | |
|      */
 | |
|     if (p_eq_g) {
 | |
|         w++;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Make sure w is within bounds.
 | |
|      * (The last test is useful only for very small curves in the test suite.)
 | |
|      */
 | |
| #if (MBEDTLS_ECP_WINDOW_SIZE < 6)
 | |
|     if (w > MBEDTLS_ECP_WINDOW_SIZE) {
 | |
|         w = MBEDTLS_ECP_WINDOW_SIZE;
 | |
|     }
 | |
| #endif
 | |
|     if (w >= grp->nbits) {
 | |
|         w = 2;
 | |
|     }
 | |
| 
 | |
|     return w;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Multiplication using the comb method - for curves in short Weierstrass form
 | |
|  *
 | |
|  * This function is mainly responsible for administrative work:
 | |
|  * - managing the restart context if enabled
 | |
|  * - managing the table of precomputed points (passed between the below two
 | |
|  *   functions): allocation, computation, ownership transfer, freeing.
 | |
|  *
 | |
|  * It delegates the actual arithmetic work to:
 | |
|  *      ecp_precompute_comb() and ecp_mul_comb_with_precomp()
 | |
|  *
 | |
|  * See comments on ecp_comb_recode_core() regarding the computation strategy.
 | |
|  */
 | |
| static int ecp_mul_comb(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
 | |
|                         const mbedtls_mpi *m, const mbedtls_ecp_point *P,
 | |
|                         int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                         void *p_rng,
 | |
|                         mbedtls_ecp_restart_ctx *rs_ctx)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     unsigned char w, p_eq_g, i;
 | |
|     size_t d;
 | |
|     unsigned char T_size = 0, T_ok = 0;
 | |
|     mbedtls_ecp_point *T = NULL;
 | |
| #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | |
|     ecp_drbg_context drbg_ctx;
 | |
| 
 | |
|     ecp_drbg_init(&drbg_ctx);
 | |
| #endif
 | |
| 
 | |
|     ECP_RS_ENTER(rsm);
 | |
| 
 | |
| #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | |
|     if (f_rng == NULL) {
 | |
|         /* Adjust pointers */
 | |
|         f_rng = &ecp_drbg_random;
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|         if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
 | |
|             p_rng = &rs_ctx->rsm->drbg_ctx;
 | |
|         } else
 | |
| #endif
 | |
|         p_rng = &drbg_ctx;
 | |
| 
 | |
|         /* Initialize internal DRBG if necessary */
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|         if (rs_ctx == NULL || rs_ctx->rsm == NULL ||
 | |
|             rs_ctx->rsm->drbg_seeded == 0)
 | |
| #endif
 | |
|         {
 | |
|             const size_t m_len = (grp->nbits + 7) / 8;
 | |
|             MBEDTLS_MPI_CHK(ecp_drbg_seed(p_rng, m, m_len));
 | |
|         }
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|         if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
 | |
|             rs_ctx->rsm->drbg_seeded = 1;
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| #endif /* !MBEDTLS_ECP_NO_INTERNAL_RNG */
 | |
| 
 | |
|     /* Is P the base point ? */
 | |
| #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
 | |
|     p_eq_g = (mbedtls_mpi_cmp_mpi(&P->Y, &grp->G.Y) == 0 &&
 | |
|               mbedtls_mpi_cmp_mpi(&P->X, &grp->G.X) == 0);
 | |
| #else
 | |
|     p_eq_g = 0;
 | |
| #endif
 | |
| 
 | |
|     /* Pick window size and deduce related sizes */
 | |
|     w = ecp_pick_window_size(grp, p_eq_g);
 | |
|     T_size = 1U << (w - 1);
 | |
|     d = (grp->nbits + w - 1) / w;
 | |
| 
 | |
|     /* Pre-computed table: do we have it already for the base point? */
 | |
|     if (p_eq_g && grp->T != NULL) {
 | |
|         /* second pointer to the same table, will be deleted on exit */
 | |
|         T = grp->T;
 | |
|         T_ok = 1;
 | |
|     } else
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     /* Pre-computed table: do we have one in progress? complete? */
 | |
|     if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL) {
 | |
|         /* transfer ownership of T from rsm to local function */
 | |
|         T = rs_ctx->rsm->T;
 | |
|         rs_ctx->rsm->T = NULL;
 | |
|         rs_ctx->rsm->T_size = 0;
 | |
| 
 | |
|         /* This effectively jumps to the call to mul_comb_after_precomp() */
 | |
|         T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
 | |
|     } else
 | |
| #endif
 | |
|     /* Allocate table if we didn't have any */
 | |
|     {
 | |
|         T = mbedtls_calloc(T_size, sizeof(mbedtls_ecp_point));
 | |
|         if (T == NULL) {
 | |
|             ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < T_size; i++) {
 | |
|             mbedtls_ecp_point_init(&T[i]);
 | |
|         }
 | |
| 
 | |
|         T_ok = 0;
 | |
|     }
 | |
| 
 | |
|     /* Compute table (or finish computing it) if not done already */
 | |
|     if (!T_ok) {
 | |
|         MBEDTLS_MPI_CHK(ecp_precompute_comb(grp, T, P, w, d, rs_ctx));
 | |
| 
 | |
|         if (p_eq_g) {
 | |
|             /* almost transfer ownership of T to the group, but keep a copy of
 | |
|              * the pointer to use for calling the next function more easily */
 | |
|             grp->T = T;
 | |
|             grp->T_size = T_size;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Actual comb multiplication using precomputed points */
 | |
|     MBEDTLS_MPI_CHK(ecp_mul_comb_after_precomp(grp, R, m,
 | |
|                                                T, T_size, w, d,
 | |
|                                                f_rng, p_rng, rs_ctx));
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
| #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | |
|     ecp_drbg_free(&drbg_ctx);
 | |
| #endif
 | |
| 
 | |
|     /* does T belong to the group? */
 | |
|     if (T == grp->T) {
 | |
|         T = NULL;
 | |
|     }
 | |
| 
 | |
|     /* does T belong to the restart context? */
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL) {
 | |
|         /* transfer ownership of T from local function to rsm */
 | |
|         rs_ctx->rsm->T_size = T_size;
 | |
|         rs_ctx->rsm->T = T;
 | |
|         T = NULL;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* did T belong to us? then let's destroy it! */
 | |
|     if (T != NULL) {
 | |
|         for (i = 0; i < T_size; i++) {
 | |
|             mbedtls_ecp_point_free(&T[i]);
 | |
|         }
 | |
|         mbedtls_free(T);
 | |
|     }
 | |
| 
 | |
|     /* prevent caller from using invalid value */
 | |
|     int should_free_R = (ret != 0);
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     /* don't free R while in progress in case R == P */
 | |
|     if (ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
 | |
|         should_free_R = 0;
 | |
|     }
 | |
| #endif
 | |
|     if (should_free_R) {
 | |
|         mbedtls_ecp_point_free(R);
 | |
|     }
 | |
| 
 | |
|     ECP_RS_LEAVE(rsm);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | |
| /*
 | |
|  * For Montgomery curves, we do all the internal arithmetic in projective
 | |
|  * coordinates. Import/export of points uses only the x coordinates, which is
 | |
|  * internally represented as X / Z.
 | |
|  *
 | |
|  * For scalar multiplication, we'll use a Montgomery ladder.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
 | |
|  * Cost: 1M + 1I
 | |
|  */
 | |
| static int ecp_normalize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P)
 | |
| {
 | |
| #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
 | |
|     if (mbedtls_internal_ecp_grp_capable(grp)) {
 | |
|         return mbedtls_internal_ecp_normalize_mxz(grp, P);
 | |
|     }
 | |
| #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
 | |
|     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | |
| #else
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&P->Z, &P->Z, &grp->P));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &P->X, &P->X, &P->Z));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1));
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Randomize projective x/z coordinates:
 | |
|  * (X, Z) -> (l X, l Z) for random l
 | |
|  * This is sort of the reverse operation of ecp_normalize_mxz().
 | |
|  *
 | |
|  * This countermeasure was first suggested in [2].
 | |
|  * Cost: 2M
 | |
|  */
 | |
| static int ecp_randomize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
 | |
|                              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
 | |
| {
 | |
| #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
 | |
|     if (mbedtls_internal_ecp_grp_capable(grp)) {
 | |
|         return mbedtls_internal_ecp_randomize_mxz(grp, P, f_rng, p_rng);
 | |
|     }
 | |
| #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
 | |
|     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | |
| #else
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     mbedtls_mpi l;
 | |
|     mbedtls_mpi_init(&l);
 | |
| 
 | |
|     /* Generate l such that 1 < l < p */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_random(&l, 2, &grp->P, f_rng, p_rng));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &P->X, &P->X, &l));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &P->Z, &P->Z, &l));
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free(&l);
 | |
| 
 | |
|     if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
 | |
|         ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
 | |
|     }
 | |
|     return ret;
 | |
| #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
 | |
|  * for Montgomery curves in x/z coordinates.
 | |
|  *
 | |
|  * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
 | |
|  * with
 | |
|  * d =  X1
 | |
|  * P = (X2, Z2)
 | |
|  * Q = (X3, Z3)
 | |
|  * R = (X4, Z4)
 | |
|  * S = (X5, Z5)
 | |
|  * and eliminating temporary variables tO, ..., t4.
 | |
|  *
 | |
|  * Cost: 5M + 4S
 | |
|  */
 | |
| static int ecp_double_add_mxz(const mbedtls_ecp_group *grp,
 | |
|                               mbedtls_ecp_point *R, mbedtls_ecp_point *S,
 | |
|                               const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
 | |
|                               const mbedtls_mpi *d)
 | |
| {
 | |
| #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
 | |
|     if (mbedtls_internal_ecp_grp_capable(grp)) {
 | |
|         return mbedtls_internal_ecp_double_add_mxz(grp, R, S, P, Q, d);
 | |
|     }
 | |
| #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
 | |
|     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | |
| #else
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     mbedtls_mpi A, AA, B, BB, E, C, D, DA, CB;
 | |
| 
 | |
|     mbedtls_mpi_init(&A); mbedtls_mpi_init(&AA); mbedtls_mpi_init(&B);
 | |
|     mbedtls_mpi_init(&BB); mbedtls_mpi_init(&E); mbedtls_mpi_init(&C);
 | |
|     mbedtls_mpi_init(&D); mbedtls_mpi_init(&DA); mbedtls_mpi_init(&CB);
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &A,    &P->X,   &P->Z));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &AA,   &A,      &A));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &B,    &P->X,   &P->Z));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &BB,   &B,      &B));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &E,    &AA,     &BB));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &C,    &Q->X,   &Q->Z));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &D,    &Q->X,   &Q->Z));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &DA,   &D,      &A));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &CB,   &C,      &B));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &S->X, &DA,     &CB));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S->X, &S->X,   &S->X));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &S->Z, &DA,     &CB));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S->Z, &S->Z,   &S->Z));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S->Z, d,       &S->Z));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &R->X, &AA,     &BB));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &R->Z, &grp->A, &E));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &R->Z, &BB,     &R->Z));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &R->Z, &E,      &R->Z));
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free(&A); mbedtls_mpi_free(&AA); mbedtls_mpi_free(&B);
 | |
|     mbedtls_mpi_free(&BB); mbedtls_mpi_free(&E); mbedtls_mpi_free(&C);
 | |
|     mbedtls_mpi_free(&D); mbedtls_mpi_free(&DA); mbedtls_mpi_free(&CB);
 | |
| 
 | |
|     return ret;
 | |
| #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Multiplication with Montgomery ladder in x/z coordinates,
 | |
|  * for curves in Montgomery form
 | |
|  */
 | |
| static int ecp_mul_mxz(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
 | |
|                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,
 | |
|                        int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                        void *p_rng)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     size_t i;
 | |
|     unsigned char b;
 | |
|     mbedtls_ecp_point RP;
 | |
|     mbedtls_mpi PX;
 | |
| #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | |
|     ecp_drbg_context drbg_ctx;
 | |
| 
 | |
|     ecp_drbg_init(&drbg_ctx);
 | |
| #endif
 | |
|     mbedtls_ecp_point_init(&RP); mbedtls_mpi_init(&PX);
 | |
| 
 | |
| #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | |
|     if (f_rng == NULL) {
 | |
|         const size_t m_len = (grp->nbits + 7) / 8;
 | |
|         MBEDTLS_MPI_CHK(ecp_drbg_seed(&drbg_ctx, m, m_len));
 | |
|         f_rng = &ecp_drbg_random;
 | |
|         p_rng = &drbg_ctx;
 | |
|     }
 | |
| #endif /* !MBEDTLS_ECP_NO_INTERNAL_RNG */
 | |
| 
 | |
|     /* Save PX and read from P before writing to R, in case P == R */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&PX, &P->X));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&RP, P));
 | |
| 
 | |
|     /* Set R to zero in modified x/z coordinates */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&R->X, 1));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&R->Z, 0));
 | |
|     mbedtls_mpi_free(&R->Y);
 | |
| 
 | |
|     /* RP.X might be slightly larger than P, so reduce it */
 | |
|     MOD_ADD(RP.X);
 | |
| 
 | |
|     /* Randomize coordinates of the starting point */
 | |
|     int have_rng = 1;
 | |
| #if defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | |
|     if (f_rng == NULL) {
 | |
|         have_rng = 0;
 | |
|     }
 | |
| #endif
 | |
|     if (have_rng) {
 | |
|         MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, &RP, f_rng, p_rng));
 | |
|     }
 | |
| 
 | |
|     /* Loop invariant: R = result so far, RP = R + P */
 | |
|     i = grp->nbits + 1; /* one past the (zero-based) required msb for private keys */
 | |
|     while (i-- > 0) {
 | |
|         b = mbedtls_mpi_get_bit(m, i);
 | |
|         /*
 | |
|          *  if (b) R = 2R + P else R = 2R,
 | |
|          * which is:
 | |
|          *  if (b) double_add( RP, R, RP, R )
 | |
|          *  else   double_add( R, RP, R, RP )
 | |
|          * but using safe conditional swaps to avoid leaks
 | |
|          */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap(&R->X, &RP.X, b));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap(&R->Z, &RP.Z, b));
 | |
|         MBEDTLS_MPI_CHK(ecp_double_add_mxz(grp, R, &RP, R, &RP, &PX));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap(&R->X, &RP.X, b));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap(&R->Z, &RP.Z, b));
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Knowledge of the projective coordinates may leak the last few bits of the
 | |
|      * scalar [1], and since our MPI implementation isn't constant-flow,
 | |
|      * inversion (used for coordinate normalization) may leak the full value
 | |
|      * of its input via side-channels [2].
 | |
|      *
 | |
|      * [1] https://eprint.iacr.org/2003/191
 | |
|      * [2] https://eprint.iacr.org/2020/055
 | |
|      *
 | |
|      * Avoid the leak by randomizing coordinates before we normalize them.
 | |
|      */
 | |
|     have_rng = 1;
 | |
| #if defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | |
|     if (f_rng == NULL) {
 | |
|         have_rng = 0;
 | |
|     }
 | |
| #endif
 | |
|     if (have_rng) {
 | |
|         MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, R, f_rng, p_rng));
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(ecp_normalize_mxz(grp, R));
 | |
| 
 | |
| cleanup:
 | |
| #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG)
 | |
|     ecp_drbg_free(&drbg_ctx);
 | |
| #endif
 | |
| 
 | |
|     mbedtls_ecp_point_free(&RP); mbedtls_mpi_free(&PX);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
 | |
| 
 | |
| /*
 | |
|  * Restartable multiplication R = m * P
 | |
|  */
 | |
| int mbedtls_ecp_mul_restartable(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
 | |
|                                 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
 | |
|                                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
 | |
|                                 mbedtls_ecp_restart_ctx *rs_ctx)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | |
| #if defined(MBEDTLS_ECP_INTERNAL_ALT)
 | |
|     char is_grp_capable = 0;
 | |
| #endif
 | |
|     ECP_VALIDATE_RET(grp != NULL);
 | |
|     ECP_VALIDATE_RET(R   != NULL);
 | |
|     ECP_VALIDATE_RET(m   != NULL);
 | |
|     ECP_VALIDATE_RET(P   != NULL);
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     /* reset ops count for this call if top-level */
 | |
|     if (rs_ctx != NULL && rs_ctx->depth++ == 0) {
 | |
|         rs_ctx->ops_done = 0;
 | |
|     }
 | |
| #else
 | |
|     (void) rs_ctx;
 | |
| #endif
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_INTERNAL_ALT)
 | |
|     if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
 | |
|     }
 | |
| #endif /* MBEDTLS_ECP_INTERNAL_ALT */
 | |
| 
 | |
|     int restarting = 0;
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     restarting = (rs_ctx != NULL && rs_ctx->rsm != NULL);
 | |
| #endif
 | |
|     /* skip argument check when restarting */
 | |
|     if (!restarting) {
 | |
|         /* check_privkey is free */
 | |
|         MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_CHK);
 | |
| 
 | |
|         /* Common sanity checks */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(grp, m));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
 | |
|     }
 | |
| 
 | |
|     ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | |
| #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | |
|     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
 | |
|         MBEDTLS_MPI_CHK(ecp_mul_mxz(grp, R, m, P, f_rng, p_rng));
 | |
|     }
 | |
| #endif
 | |
| #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | |
|     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
 | |
|         MBEDTLS_MPI_CHK(ecp_mul_comb(grp, R, m, P, f_rng, p_rng, rs_ctx));
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_INTERNAL_ALT)
 | |
|     if (is_grp_capable) {
 | |
|         mbedtls_internal_ecp_free(grp);
 | |
|     }
 | |
| #endif /* MBEDTLS_ECP_INTERNAL_ALT */
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     if (rs_ctx != NULL) {
 | |
|         rs_ctx->depth--;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Multiplication R = m * P
 | |
|  */
 | |
| int mbedtls_ecp_mul(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
 | |
|                     const mbedtls_mpi *m, const mbedtls_ecp_point *P,
 | |
|                     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
 | |
| {
 | |
|     ECP_VALIDATE_RET(grp != NULL);
 | |
|     ECP_VALIDATE_RET(R   != NULL);
 | |
|     ECP_VALIDATE_RET(m   != NULL);
 | |
|     ECP_VALIDATE_RET(P   != NULL);
 | |
|     return mbedtls_ecp_mul_restartable(grp, R, m, P, f_rng, p_rng, NULL);
 | |
| }
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | |
| /*
 | |
|  * Check that an affine point is valid as a public key,
 | |
|  * short weierstrass curves (SEC1 3.2.3.1)
 | |
|  */
 | |
| static int ecp_check_pubkey_sw(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     mbedtls_mpi YY, RHS;
 | |
| 
 | |
|     /* pt coordinates must be normalized for our checks */
 | |
|     if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0 ||
 | |
|         mbedtls_mpi_cmp_int(&pt->Y, 0) < 0 ||
 | |
|         mbedtls_mpi_cmp_mpi(&pt->X, &grp->P) >= 0 ||
 | |
|         mbedtls_mpi_cmp_mpi(&pt->Y, &grp->P) >= 0) {
 | |
|         return MBEDTLS_ERR_ECP_INVALID_KEY;
 | |
|     }
 | |
| 
 | |
|     mbedtls_mpi_init(&YY); mbedtls_mpi_init(&RHS);
 | |
| 
 | |
|     /*
 | |
|      * YY = Y^2
 | |
|      * RHS = X (X^2 + A) + B = X^3 + A X + B
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &YY,  &pt->Y,   &pt->Y));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &RHS, &pt->X,   &pt->X));
 | |
| 
 | |
|     /* Special case for A = -3 */
 | |
|     if (grp->A.p == NULL) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&RHS, &RHS, 3));  MOD_SUB(RHS);
 | |
|     } else {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &RHS, &RHS, &grp->A));
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &RHS, &RHS,     &pt->X));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &RHS, &RHS,     &grp->B));
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_mpi(&YY, &RHS) != 0) {
 | |
|         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free(&YY); mbedtls_mpi_free(&RHS);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | |
| /*
 | |
|  * R = m * P with shortcuts for m == 0, m == 1 and m == -1
 | |
|  * NOT constant-time - ONLY for short Weierstrass!
 | |
|  */
 | |
| static int mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group *grp,
 | |
|                                      mbedtls_ecp_point *R,
 | |
|                                      const mbedtls_mpi *m,
 | |
|                                      const mbedtls_ecp_point *P,
 | |
|                                      mbedtls_ecp_restart_ctx *rs_ctx)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(m, 0) == 0) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R));
 | |
|     } else if (mbedtls_mpi_cmp_int(m, 1) == 0) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
 | |
|     } else if (mbedtls_mpi_cmp_int(m, -1) == 0) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
 | |
|         if (mbedtls_mpi_cmp_int(&R->Y, 0) != 0) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&R->Y, &grp->P, &R->Y));
 | |
|         }
 | |
|     } else {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_ecp_mul_restartable(grp, R, m, P,
 | |
|                                                     NULL, NULL, rs_ctx));
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Restartable linear combination
 | |
|  * NOT constant-time
 | |
|  */
 | |
| int mbedtls_ecp_muladd_restartable(
 | |
|     mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
 | |
|     const mbedtls_mpi *m, const mbedtls_ecp_point *P,
 | |
|     const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
 | |
|     mbedtls_ecp_restart_ctx *rs_ctx)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     mbedtls_ecp_point mP;
 | |
|     mbedtls_ecp_point *pmP = &mP;
 | |
|     mbedtls_ecp_point *pR = R;
 | |
| #if defined(MBEDTLS_ECP_INTERNAL_ALT)
 | |
|     char is_grp_capable = 0;
 | |
| #endif
 | |
|     ECP_VALIDATE_RET(grp != NULL);
 | |
|     ECP_VALIDATE_RET(R   != NULL);
 | |
|     ECP_VALIDATE_RET(m   != NULL);
 | |
|     ECP_VALIDATE_RET(P   != NULL);
 | |
|     ECP_VALIDATE_RET(n   != NULL);
 | |
|     ECP_VALIDATE_RET(Q   != NULL);
 | |
| 
 | |
|     if (mbedtls_ecp_get_type(grp) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
 | |
|         return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | |
|     }
 | |
| 
 | |
|     mbedtls_ecp_point_init(&mP);
 | |
| 
 | |
|     ECP_RS_ENTER(ma);
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
 | |
|         /* redirect intermediate results to restart context */
 | |
|         pmP = &rs_ctx->ma->mP;
 | |
|         pR  = &rs_ctx->ma->R;
 | |
| 
 | |
|         /* jump to next operation */
 | |
|         if (rs_ctx->ma->state == ecp_rsma_mul2) {
 | |
|             goto mul2;
 | |
|         }
 | |
|         if (rs_ctx->ma->state == ecp_rsma_add) {
 | |
|             goto add;
 | |
|         }
 | |
|         if (rs_ctx->ma->state == ecp_rsma_norm) {
 | |
|             goto norm;
 | |
|         }
 | |
|     }
 | |
| #endif /* MBEDTLS_ECP_RESTARTABLE */
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pmP, m, P, rs_ctx));
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
 | |
|         rs_ctx->ma->state = ecp_rsma_mul2;
 | |
|     }
 | |
| 
 | |
| mul2:
 | |
| #endif
 | |
|     MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pR,  n, Q, rs_ctx));
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_INTERNAL_ALT)
 | |
|     if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
 | |
|     }
 | |
| #endif /* MBEDTLS_ECP_INTERNAL_ALT */
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
 | |
|         rs_ctx->ma->state = ecp_rsma_add;
 | |
|     }
 | |
| 
 | |
| add:
 | |
| #endif
 | |
|     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_ADD);
 | |
|     MBEDTLS_MPI_CHK(ecp_add_mixed(grp, pR, pmP, pR));
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
 | |
|         rs_ctx->ma->state = ecp_rsma_norm;
 | |
|     }
 | |
| 
 | |
| norm:
 | |
| #endif
 | |
|     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
 | |
|     MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, pR));
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_RESTARTABLE)
 | |
|     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, pR));
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| cleanup:
 | |
| #if defined(MBEDTLS_ECP_INTERNAL_ALT)
 | |
|     if (is_grp_capable) {
 | |
|         mbedtls_internal_ecp_free(grp);
 | |
|     }
 | |
| #endif /* MBEDTLS_ECP_INTERNAL_ALT */
 | |
| 
 | |
|     mbedtls_ecp_point_free(&mP);
 | |
| 
 | |
|     ECP_RS_LEAVE(ma);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Linear combination
 | |
|  * NOT constant-time
 | |
|  */
 | |
| int mbedtls_ecp_muladd(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
 | |
|                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,
 | |
|                        const mbedtls_mpi *n, const mbedtls_ecp_point *Q)
 | |
| {
 | |
|     ECP_VALIDATE_RET(grp != NULL);
 | |
|     ECP_VALIDATE_RET(R   != NULL);
 | |
|     ECP_VALIDATE_RET(m   != NULL);
 | |
|     ECP_VALIDATE_RET(P   != NULL);
 | |
|     ECP_VALIDATE_RET(n   != NULL);
 | |
|     ECP_VALIDATE_RET(Q   != NULL);
 | |
|     return mbedtls_ecp_muladd_restartable(grp, R, m, P, n, Q, NULL);
 | |
| }
 | |
| #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | |
| #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
 | |
| #define ECP_MPI_INIT(s, n, p) { s, (n), (mbedtls_mpi_uint *) (p) }
 | |
| #define ECP_MPI_INIT_ARRAY(x)   \
 | |
|     ECP_MPI_INIT(1, sizeof(x) / sizeof(mbedtls_mpi_uint), x)
 | |
| /*
 | |
|  * Constants for the two points other than 0, 1, -1 (mod p) in
 | |
|  * https://cr.yp.to/ecdh.html#validate
 | |
|  * See ecp_check_pubkey_x25519().
 | |
|  */
 | |
| static const mbedtls_mpi_uint x25519_bad_point_1[] = {
 | |
|     MBEDTLS_BYTES_TO_T_UINT_8(0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae),
 | |
|     MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a),
 | |
|     MBEDTLS_BYTES_TO_T_UINT_8(0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd),
 | |
|     MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00),
 | |
| };
 | |
| static const mbedtls_mpi_uint x25519_bad_point_2[] = {
 | |
|     MBEDTLS_BYTES_TO_T_UINT_8(0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24),
 | |
|     MBEDTLS_BYTES_TO_T_UINT_8(0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b),
 | |
|     MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86),
 | |
|     MBEDTLS_BYTES_TO_T_UINT_8(0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57),
 | |
| };
 | |
| static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(
 | |
|     x25519_bad_point_1);
 | |
| static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(
 | |
|     x25519_bad_point_2);
 | |
| #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
 | |
| 
 | |
| /*
 | |
|  * Check that the input point is not one of the low-order points.
 | |
|  * This is recommended by the "May the Fourth" paper:
 | |
|  * https://eprint.iacr.org/2017/806.pdf
 | |
|  * Those points are never sent by an honest peer.
 | |
|  */
 | |
| static int ecp_check_bad_points_mx(const mbedtls_mpi *X, const mbedtls_mpi *P,
 | |
|                                    const mbedtls_ecp_group_id grp_id)
 | |
| {
 | |
|     int ret;
 | |
|     mbedtls_mpi XmP;
 | |
| 
 | |
|     mbedtls_mpi_init(&XmP);
 | |
| 
 | |
|     /* Reduce X mod P so that we only need to check values less than P.
 | |
|      * We know X < 2^256 so we can proceed by subtraction. */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&XmP, X));
 | |
|     while (mbedtls_mpi_cmp_mpi(&XmP, P) >= 0) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&XmP, &XmP, P));
 | |
|     }
 | |
| 
 | |
|     /* Check against the known bad values that are less than P. For Curve448
 | |
|      * these are 0, 1 and -1. For Curve25519 we check the values less than P
 | |
|      * from the following list: https://cr.yp.to/ecdh.html#validate */
 | |
|     if (mbedtls_mpi_cmp_int(&XmP, 1) <= 0) {  /* takes care of 0 and 1 */
 | |
|         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
 | |
|     if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
 | |
|         if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_1) == 0) {
 | |
|             ret = MBEDTLS_ERR_ECP_INVALID_KEY;
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_2) == 0) {
 | |
|             ret = MBEDTLS_ERR_ECP_INVALID_KEY;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     (void) grp_id;
 | |
| #endif
 | |
| 
 | |
|     /* Final check: check if XmP + 1 is P (final because it changes XmP!) */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&XmP, &XmP, 1));
 | |
|     if (mbedtls_mpi_cmp_mpi(&XmP, P) == 0) {
 | |
|         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     ret = 0;
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free(&XmP);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check validity of a public key for Montgomery curves with x-only schemes
 | |
|  */
 | |
| static int ecp_check_pubkey_mx(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
 | |
| {
 | |
|     /* [Curve25519 p. 5] Just check X is the correct number of bytes */
 | |
|     /* Allow any public value, if it's too big then we'll just reduce it mod p
 | |
|      * (RFC 7748 sec. 5 para. 3). */
 | |
|     if (mbedtls_mpi_size(&pt->X) > (grp->nbits + 7) / 8) {
 | |
|         return MBEDTLS_ERR_ECP_INVALID_KEY;
 | |
|     }
 | |
| 
 | |
|     /* Implicit in all standards (as they don't consider negative numbers):
 | |
|      * X must be non-negative. This is normally ensured by the way it's
 | |
|      * encoded for transmission, but let's be extra sure. */
 | |
|     if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0) {
 | |
|         return MBEDTLS_ERR_ECP_INVALID_KEY;
 | |
|     }
 | |
| 
 | |
|     return ecp_check_bad_points_mx(&pt->X, &grp->P, grp->id);
 | |
| }
 | |
| #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
 | |
| 
 | |
| /*
 | |
|  * Check that a point is valid as a public key
 | |
|  */
 | |
| int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp,
 | |
|                              const mbedtls_ecp_point *pt)
 | |
| {
 | |
|     ECP_VALIDATE_RET(grp != NULL);
 | |
|     ECP_VALIDATE_RET(pt  != NULL);
 | |
| 
 | |
|     /* Must use affine coordinates */
 | |
|     if (mbedtls_mpi_cmp_int(&pt->Z, 1) != 0) {
 | |
|         return MBEDTLS_ERR_ECP_INVALID_KEY;
 | |
|     }
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | |
|     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
 | |
|         return ecp_check_pubkey_mx(grp, pt);
 | |
|     }
 | |
| #endif
 | |
| #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | |
|     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
 | |
|         return ecp_check_pubkey_sw(grp, pt);
 | |
|     }
 | |
| #endif
 | |
|     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that an mbedtls_mpi is valid as a private key
 | |
|  */
 | |
| int mbedtls_ecp_check_privkey(const mbedtls_ecp_group *grp,
 | |
|                               const mbedtls_mpi *d)
 | |
| {
 | |
|     ECP_VALIDATE_RET(grp != NULL);
 | |
|     ECP_VALIDATE_RET(d   != NULL);
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | |
|     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
 | |
|         /* see RFC 7748 sec. 5 para. 5 */
 | |
|         if (mbedtls_mpi_get_bit(d, 0) != 0 ||
 | |
|             mbedtls_mpi_get_bit(d, 1) != 0 ||
 | |
|             mbedtls_mpi_bitlen(d) - 1 != grp->nbits) {  /* mbedtls_mpi_bitlen is one-based! */
 | |
|             return MBEDTLS_ERR_ECP_INVALID_KEY;
 | |
|         }
 | |
| 
 | |
|         /* see [Curve25519] page 5 */
 | |
|         if (grp->nbits == 254 && mbedtls_mpi_get_bit(d, 2) != 0) {
 | |
|             return MBEDTLS_ERR_ECP_INVALID_KEY;
 | |
|         }
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
 | |
| #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | |
|     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
 | |
|         /* see SEC1 3.2 */
 | |
|         if (mbedtls_mpi_cmp_int(d, 1) < 0 ||
 | |
|             mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) {
 | |
|             return MBEDTLS_ERR_ECP_INVALID_KEY;
 | |
|         } else {
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
 | |
| 
 | |
|     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | |
| }
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | |
| MBEDTLS_STATIC_TESTABLE
 | |
| int mbedtls_ecp_gen_privkey_mx(size_t high_bit,
 | |
|                                mbedtls_mpi *d,
 | |
|                                int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                                void *p_rng)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | |
|     size_t n_random_bytes = high_bit / 8 + 1;
 | |
| 
 | |
|     /* [Curve25519] page 5 */
 | |
|     /* Generate a (high_bit+1)-bit random number by generating just enough
 | |
|      * random bytes, then shifting out extra bits from the top (necessary
 | |
|      * when (high_bit+1) is not a multiple of 8). */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(d, n_random_bytes,
 | |
|                                             f_rng, p_rng));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(d, 8 * n_random_bytes - high_bit - 1));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, high_bit, 1));
 | |
| 
 | |
|     /* Make sure the last two bits are unset for Curve448, three bits for
 | |
|        Curve25519 */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 0, 0));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 1, 0));
 | |
|     if (high_bit == 254) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 2, 0));
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | |
| static int mbedtls_ecp_gen_privkey_sw(
 | |
|     const mbedtls_mpi *N, mbedtls_mpi *d,
 | |
|     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
 | |
| {
 | |
|     int ret = mbedtls_mpi_random(d, 1, N, f_rng, p_rng);
 | |
|     switch (ret) {
 | |
|         case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
 | |
|             return MBEDTLS_ERR_ECP_RANDOM_FAILED;
 | |
|         default:
 | |
|             return ret;
 | |
|     }
 | |
| }
 | |
| #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
 | |
| 
 | |
| /*
 | |
|  * Generate a private key
 | |
|  */
 | |
| int mbedtls_ecp_gen_privkey(const mbedtls_ecp_group *grp,
 | |
|                             mbedtls_mpi *d,
 | |
|                             int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                             void *p_rng)
 | |
| {
 | |
|     ECP_VALIDATE_RET(grp   != NULL);
 | |
|     ECP_VALIDATE_RET(d     != NULL);
 | |
|     ECP_VALIDATE_RET(f_rng != NULL);
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | |
|     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
 | |
|         return mbedtls_ecp_gen_privkey_mx(grp->nbits, d, f_rng, p_rng);
 | |
|     }
 | |
| #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | |
|     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
 | |
|         return mbedtls_ecp_gen_privkey_sw(&grp->N, d, f_rng, p_rng);
 | |
|     }
 | |
| #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
 | |
| 
 | |
|     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generate a keypair with configurable base point
 | |
|  */
 | |
| int mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group *grp,
 | |
|                                  const mbedtls_ecp_point *G,
 | |
|                                  mbedtls_mpi *d, mbedtls_ecp_point *Q,
 | |
|                                  int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                                  void *p_rng)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     ECP_VALIDATE_RET(grp   != NULL);
 | |
|     ECP_VALIDATE_RET(d     != NULL);
 | |
|     ECP_VALIDATE_RET(G     != NULL);
 | |
|     ECP_VALIDATE_RET(Q     != NULL);
 | |
|     ECP_VALIDATE_RET(f_rng != NULL);
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, Q, d, G, f_rng, p_rng));
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generate key pair, wrapper for conventional base point
 | |
|  */
 | |
| int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp,
 | |
|                             mbedtls_mpi *d, mbedtls_ecp_point *Q,
 | |
|                             int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                             void *p_rng)
 | |
| {
 | |
|     ECP_VALIDATE_RET(grp   != NULL);
 | |
|     ECP_VALIDATE_RET(d     != NULL);
 | |
|     ECP_VALIDATE_RET(Q     != NULL);
 | |
|     ECP_VALIDATE_RET(f_rng != NULL);
 | |
| 
 | |
|     return mbedtls_ecp_gen_keypair_base(grp, &grp->G, d, Q, f_rng, p_rng);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generate a keypair, prettier wrapper
 | |
|  */
 | |
| int mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
 | |
|                         int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     ECP_VALIDATE_RET(key   != NULL);
 | |
|     ECP_VALIDATE_RET(f_rng != NULL);
 | |
| 
 | |
|     if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     return mbedtls_ecp_gen_keypair(&key->grp, &key->d, &key->Q, f_rng, p_rng);
 | |
| }
 | |
| 
 | |
| #define ECP_CURVE25519_KEY_SIZE 32
 | |
| /*
 | |
|  * Read a private key.
 | |
|  */
 | |
| int mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
 | |
|                          const unsigned char *buf, size_t buflen)
 | |
| {
 | |
|     int ret = 0;
 | |
| 
 | |
|     ECP_VALIDATE_RET(key  != NULL);
 | |
|     ECP_VALIDATE_RET(buf  != NULL);
 | |
| 
 | |
|     if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | |
|     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
 | |
|         /*
 | |
|          * If it is Curve25519 curve then mask the key as mandated by RFC7748
 | |
|          */
 | |
|         if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
 | |
|             if (buflen != ECP_CURVE25519_KEY_SIZE) {
 | |
|                 return MBEDTLS_ERR_ECP_INVALID_KEY;
 | |
|             }
 | |
| 
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
 | |
| 
 | |
|             /* Set the three least significant bits to 0 */
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 2, 0));
 | |
| 
 | |
|             /* Set the most significant bit to 0 */
 | |
|             MBEDTLS_MPI_CHK(
 | |
|                 mbedtls_mpi_set_bit(&key->d,
 | |
|                                     ECP_CURVE25519_KEY_SIZE * 8 - 1, 0)
 | |
|                 );
 | |
| 
 | |
|             /* Set the second most significant bit to 1 */
 | |
|             MBEDTLS_MPI_CHK(
 | |
|                 mbedtls_mpi_set_bit(&key->d,
 | |
|                                     ECP_CURVE25519_KEY_SIZE * 8 - 2, 1)
 | |
|                 );
 | |
|         } else {
 | |
|             ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #endif
 | |
| #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | |
|     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&key->d, buf, buflen));
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(&key->grp, &key->d));
 | |
|     }
 | |
| 
 | |
| #endif
 | |
| cleanup:
 | |
| 
 | |
|     if (ret != 0) {
 | |
|         mbedtls_mpi_free(&key->d);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write a private key.
 | |
|  */
 | |
| int mbedtls_ecp_write_key(mbedtls_ecp_keypair *key,
 | |
|                           unsigned char *buf, size_t buflen)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | |
| 
 | |
|     ECP_VALIDATE_RET(key != NULL);
 | |
|     ECP_VALIDATE_RET(buf != NULL);
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | |
|     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
 | |
|         if (key->grp.id == MBEDTLS_ECP_DP_CURVE25519) {
 | |
|             if (buflen < ECP_CURVE25519_KEY_SIZE) {
 | |
|                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
 | |
|             }
 | |
| 
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&key->d, buf, buflen));
 | |
|         } else {
 | |
|             ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #endif
 | |
| #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | |
|     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&key->d, buf, buflen));
 | |
|     }
 | |
| 
 | |
| #endif
 | |
| cleanup:
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Check a public-private key pair
 | |
|  */
 | |
| int mbedtls_ecp_check_pub_priv(const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     mbedtls_ecp_point Q;
 | |
|     mbedtls_ecp_group grp;
 | |
|     ECP_VALIDATE_RET(pub != NULL);
 | |
|     ECP_VALIDATE_RET(prv != NULL);
 | |
| 
 | |
|     if (pub->grp.id == MBEDTLS_ECP_DP_NONE ||
 | |
|         pub->grp.id != prv->grp.id ||
 | |
|         mbedtls_mpi_cmp_mpi(&pub->Q.X, &prv->Q.X) ||
 | |
|         mbedtls_mpi_cmp_mpi(&pub->Q.Y, &prv->Q.Y) ||
 | |
|         mbedtls_mpi_cmp_mpi(&pub->Q.Z, &prv->Q.Z)) {
 | |
|         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     mbedtls_ecp_point_init(&Q);
 | |
|     mbedtls_ecp_group_init(&grp);
 | |
| 
 | |
|     /* mbedtls_ecp_mul() needs a non-const group... */
 | |
|     mbedtls_ecp_group_copy(&grp, &prv->grp);
 | |
| 
 | |
|     /* Also checks d is valid */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &Q, &prv->d, &prv->grp.G, NULL, NULL));
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_mpi(&Q.X, &prv->Q.X) ||
 | |
|         mbedtls_mpi_cmp_mpi(&Q.Y, &prv->Q.Y) ||
 | |
|         mbedtls_mpi_cmp_mpi(&Q.Z, &prv->Q.Z)) {
 | |
|         ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_ecp_point_free(&Q);
 | |
|     mbedtls_ecp_group_free(&grp);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #if defined(MBEDTLS_SELF_TEST)
 | |
| 
 | |
| /* Adjust the exponent to be a valid private point for the specified curve.
 | |
|  * This is sometimes necessary because we use a single set of exponents
 | |
|  * for all curves but the validity of values depends on the curve. */
 | |
| static int self_test_adjust_exponent(const mbedtls_ecp_group *grp,
 | |
|                                      mbedtls_mpi *m)
 | |
| {
 | |
|     int ret = 0;
 | |
|     switch (grp->id) {
 | |
|     /* If Curve25519 is available, then that's what we use for the
 | |
|      * Montgomery test, so we don't need the adjustment code. */
 | |
| #if !defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
 | |
| #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
 | |
|         case MBEDTLS_ECP_DP_CURVE448:
 | |
|             /* Move highest bit from 254 to N-1. Setting bit N-1 is
 | |
|              * necessary to enforce the highest-bit-set constraint. */
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, 254, 0));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, grp->nbits, 1));
 | |
|             /* Copy second-highest bit from 253 to N-2. This is not
 | |
|              * necessary but improves the test variety a bit. */
 | |
|             MBEDTLS_MPI_CHK(
 | |
|                 mbedtls_mpi_set_bit(m, grp->nbits - 1,
 | |
|                                     mbedtls_mpi_get_bit(m, 253)));
 | |
|             break;
 | |
| #endif
 | |
| #endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */
 | |
|         default:
 | |
|             /* Non-Montgomery curves and Curve25519 need no adjustment. */
 | |
|             (void) grp;
 | |
|             (void) m;
 | |
|             goto cleanup;
 | |
|     }
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Calculate R = m.P for each m in exponents. Check that the number of
 | |
|  * basic operations doesn't depend on the value of m. */
 | |
| static int self_test_point(int verbose,
 | |
|                            mbedtls_ecp_group *grp,
 | |
|                            mbedtls_ecp_point *R,
 | |
|                            mbedtls_mpi *m,
 | |
|                            const mbedtls_ecp_point *P,
 | |
|                            const char *const *exponents,
 | |
|                            size_t n_exponents)
 | |
| {
 | |
|     int ret = 0;
 | |
|     size_t i = 0;
 | |
|     unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
 | |
|     add_count = 0;
 | |
|     dbl_count = 0;
 | |
|     mul_count = 0;
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[0]));
 | |
|     MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, NULL, NULL));
 | |
| 
 | |
|     for (i = 1; i < n_exponents; i++) {
 | |
|         add_c_prev = add_count;
 | |
|         dbl_c_prev = dbl_count;
 | |
|         mul_c_prev = mul_count;
 | |
|         add_count = 0;
 | |
|         dbl_count = 0;
 | |
|         mul_count = 0;
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[i]));
 | |
|         MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, NULL, NULL));
 | |
| 
 | |
|         if (add_count != add_c_prev ||
 | |
|             dbl_count != dbl_c_prev ||
 | |
|             mul_count != mul_c_prev) {
 | |
|             ret = 1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     if (verbose != 0) {
 | |
|         if (ret != 0) {
 | |
|             mbedtls_printf("failed (%u)\n", (unsigned int) i);
 | |
|         } else {
 | |
|             mbedtls_printf("passed\n");
 | |
|         }
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checkup routine
 | |
|  */
 | |
| int mbedtls_ecp_self_test(int verbose)
 | |
| {
 | |
|     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | |
|     mbedtls_ecp_group grp;
 | |
|     mbedtls_ecp_point R, P;
 | |
|     mbedtls_mpi m;
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | |
|     /* Exponents especially adapted for secp192k1, which has the lowest
 | |
|      * order n of all supported curves (secp192r1 is in a slightly larger
 | |
|      * field but the order of its base point is slightly smaller). */
 | |
|     const char *sw_exponents[] =
 | |
|     {
 | |
|         "000000000000000000000000000000000000000000000001", /* one */
 | |
|         "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */
 | |
|         "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
 | |
|         "400000000000000000000000000000000000000000000000", /* one and zeros */
 | |
|         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
 | |
|         "555555555555555555555555555555555555555555555555", /* 101010... */
 | |
|     };
 | |
| #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
 | |
| #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | |
|     const char *m_exponents[] =
 | |
|     {
 | |
|         /* Valid private values for Curve25519. In a build with Curve448
 | |
|          * but not Curve25519, they will be adjusted in
 | |
|          * self_test_adjust_exponent(). */
 | |
|         "4000000000000000000000000000000000000000000000000000000000000000",
 | |
|         "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",
 | |
|         "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",
 | |
|         "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",
 | |
|         "5555555555555555555555555555555555555555555555555555555555555550",
 | |
|         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",
 | |
|     };
 | |
| #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
 | |
| 
 | |
|     mbedtls_ecp_group_init(&grp);
 | |
|     mbedtls_ecp_point_init(&R);
 | |
|     mbedtls_ecp_point_init(&P);
 | |
|     mbedtls_mpi_init(&m);
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
 | |
|     /* Use secp192r1 if available, or any available curve */
 | |
| #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
 | |
|     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP192R1));
 | |
| #else
 | |
|     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, mbedtls_ecp_curve_list()->grp_id));
 | |
| #endif
 | |
| 
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("  ECP SW test #1 (constant op_count, base point G): ");
 | |
|     }
 | |
|     /* Do a dummy multiplication first to trigger precomputation */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&m, 2));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &P, &m, &grp.G, NULL, NULL));
 | |
|     ret = self_test_point(verbose,
 | |
|                           &grp, &R, &m, &grp.G,
 | |
|                           sw_exponents,
 | |
|                           sizeof(sw_exponents) / sizeof(sw_exponents[0]));
 | |
|     if (ret != 0) {
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("  ECP SW test #2 (constant op_count, other point): ");
 | |
|     }
 | |
|     /* We computed P = 2G last time, use it */
 | |
|     ret = self_test_point(verbose,
 | |
|                           &grp, &R, &m, &P,
 | |
|                           sw_exponents,
 | |
|                           sizeof(sw_exponents) / sizeof(sw_exponents[0]));
 | |
|     if (ret != 0) {
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     mbedtls_ecp_group_free(&grp);
 | |
|     mbedtls_ecp_point_free(&R);
 | |
| #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
 | |
| 
 | |
| #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("  ECP Montgomery test (constant op_count): ");
 | |
|     }
 | |
| #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
 | |
|     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE25519));
 | |
| #elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
 | |
|     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE448));
 | |
| #else
 | |
| #error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"
 | |
| #endif
 | |
|     ret = self_test_point(verbose,
 | |
|                           &grp, &R, &m, &grp.G,
 | |
|                           m_exponents,
 | |
|                           sizeof(m_exponents) / sizeof(m_exponents[0]));
 | |
|     if (ret != 0) {
 | |
|         goto cleanup;
 | |
|     }
 | |
| #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     if (ret < 0 && verbose != 0) {
 | |
|         mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
 | |
|     }
 | |
| 
 | |
|     mbedtls_ecp_group_free(&grp);
 | |
|     mbedtls_ecp_point_free(&R);
 | |
|     mbedtls_ecp_point_free(&P);
 | |
|     mbedtls_mpi_free(&m);
 | |
| 
 | |
|     if (verbose != 0) {
 | |
|         mbedtls_printf("\n");
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #endif /* MBEDTLS_SELF_TEST */
 | |
| 
 | |
| #endif /* !MBEDTLS_ECP_ALT */
 | |
| 
 | |
| #endif /* MBEDTLS_ECP_C */
 |