mirror of
				https://github.com/Mbed-TLS/mbedtls.git
				synced 2025-10-30 10:45:34 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			412 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			412 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """Common features for bignum in test generation framework."""
 | |
| # Copyright The Mbed TLS Contributors
 | |
| # SPDX-License-Identifier: Apache-2.0
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License"); you may
 | |
| # not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| # http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | |
| # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from abc import abstractmethod
 | |
| import enum
 | |
| from typing import Iterator, List, Tuple, TypeVar, Any
 | |
| from copy import deepcopy
 | |
| from itertools import chain
 | |
| 
 | |
| from . import test_case
 | |
| from . import test_data_generation
 | |
| from .bignum_data import INPUTS_DEFAULT, MODULI_DEFAULT
 | |
| 
 | |
| T = TypeVar('T') #pylint: disable=invalid-name
 | |
| 
 | |
| def invmod(a: int, n: int) -> int:
 | |
|     """Return inverse of a to modulo n.
 | |
| 
 | |
|     Equivalent to pow(a, -1, n) in Python 3.8+. Implementation is equivalent
 | |
|     to long_invmod() in CPython.
 | |
|     """
 | |
|     b, c = 1, 0
 | |
|     while n:
 | |
|         q, r = divmod(a, n)
 | |
|         a, b, c, n = n, c, b - q*c, r
 | |
|     # at this point a is the gcd of the original inputs
 | |
|     if a == 1:
 | |
|         return b
 | |
|     raise ValueError("Not invertible")
 | |
| 
 | |
| def invmod_positive(a: int, n: int) -> int:
 | |
|     """Return a non-negative inverse of a to modulo n."""
 | |
|     inv = invmod(a, n)
 | |
|     return inv if inv >= 0 else inv + n
 | |
| 
 | |
| def hex_to_int(val: str) -> int:
 | |
|     """Implement the syntax accepted by mbedtls_test_read_mpi().
 | |
| 
 | |
|     This is a superset of what is accepted by mbedtls_test_read_mpi_core().
 | |
|     """
 | |
|     if val in ['', '-']:
 | |
|         return 0
 | |
|     return int(val, 16)
 | |
| 
 | |
| def quote_str(val: str) -> str:
 | |
|     return "\"{}\"".format(val)
 | |
| 
 | |
| def bound_mpi(val: int, bits_in_limb: int) -> int:
 | |
|     """First number exceeding number of limbs needed for given input value."""
 | |
|     return bound_mpi_limbs(limbs_mpi(val, bits_in_limb), bits_in_limb)
 | |
| 
 | |
| def bound_mpi_limbs(limbs: int, bits_in_limb: int) -> int:
 | |
|     """First number exceeding maximum of given number of limbs."""
 | |
|     bits = bits_in_limb * limbs
 | |
|     return 1 << bits
 | |
| 
 | |
| def limbs_mpi(val: int, bits_in_limb: int) -> int:
 | |
|     """Return the number of limbs required to store value."""
 | |
|     bit_length = max(val.bit_length(), 1)
 | |
|     return (bit_length + bits_in_limb - 1) // bits_in_limb
 | |
| 
 | |
| def combination_pairs(values: List[T]) -> List[Tuple[T, T]]:
 | |
|     """Return all pair combinations from input values."""
 | |
|     return [(x, y) for x in values for y in values]
 | |
| 
 | |
| def hex_digits_for_limb(limbs: int, bits_in_limb: int) -> int:
 | |
|     """ Retrun the hex digits need for a number of limbs. """
 | |
|     return 2 * (limbs * bits_in_limb // 8)
 | |
| 
 | |
| def hex_digits_max_int(val: str, bits_in_limb: int) -> int:
 | |
|     """ Return the first number exceeding maximum  the limb space
 | |
|     required to store the input hex-string value. This method
 | |
|     weights on the input str_len rather than numerical value
 | |
|     and works with zero-padded inputs"""
 | |
|     n = ((1 << (len(val) * 4)) - 1)
 | |
|     l = limbs_mpi(n, bits_in_limb)
 | |
|     return bound_mpi_limbs(l, bits_in_limb)
 | |
| 
 | |
| def zfill_match(reference: str, target: str) -> str:
 | |
|     """ Zero pad target hex-string to match the limb size of
 | |
|     the reference input """
 | |
|     lt = len(target)
 | |
|     lr = len(reference)
 | |
|     target_len = lr if lt < lr else lt
 | |
|     return "{:x}".format(int(target, 16)).zfill(target_len)
 | |
| 
 | |
| class OperationCommon(test_data_generation.BaseTest):
 | |
|     """Common features for bignum binary operations.
 | |
| 
 | |
|     This adds functionality common in binary operation tests.
 | |
| 
 | |
|     Attributes:
 | |
|         symbol: Symbol to use for the operation in case description.
 | |
|         input_values: List of values to use as test case inputs. These are
 | |
|             combined to produce pairs of values.
 | |
|         input_cases: List of tuples containing pairs of test case inputs. This
 | |
|             can be used to implement specific pairs of inputs.
 | |
|         unique_combinations_only: Boolean to select if test case combinations
 | |
|             must be unique. If True, only A,B or B,A would be included as a test
 | |
|             case. If False, both A,B and B,A would be included.
 | |
|         input_style: Controls the way how test data is passed to the functions
 | |
|             in the generated test cases. "variable" passes them as they are
 | |
|             defined in the python source. "arch_split" pads the values with
 | |
|             zeroes depending on the architecture/limb size. If this is set,
 | |
|             test cases are generated for all architectures.
 | |
|         arity: the number of operands for the operation. Currently supported
 | |
|             values are 1 and 2.
 | |
|     """
 | |
|     symbol = ""
 | |
|     input_values = INPUTS_DEFAULT # type: List[str]
 | |
|     input_cases = [] # type: List[Any]
 | |
|     dependencies = [] # type: List[Any]
 | |
|     unique_combinations_only = False
 | |
|     input_styles = ["variable", "fixed", "arch_split"] # type: List[str]
 | |
|     input_style = "variable" # type: str
 | |
|     limb_sizes = [32, 64] # type: List[int]
 | |
|     arities = [1, 2]
 | |
|     arity = 2
 | |
|     suffix = False   # for arity = 1, symbol can be prefix (default) or suffix
 | |
| 
 | |
|     def __init__(self, val_a: str, val_b: str = "0", bits_in_limb: int = 32) -> None:
 | |
|         self.val_a = val_a
 | |
|         self.val_b = val_b
 | |
|         # Setting the int versions here as opposed to making them @properties
 | |
|         # provides earlier/more robust input validation.
 | |
|         self.int_a = hex_to_int(val_a)
 | |
|         self.int_b = hex_to_int(val_b)
 | |
|         self.dependencies = deepcopy(self.dependencies)
 | |
|         if bits_in_limb not in self.limb_sizes:
 | |
|             raise ValueError("Invalid number of bits in limb!")
 | |
|         if self.input_style == "arch_split":
 | |
|             self.dependencies.append("MBEDTLS_HAVE_INT{:d}".format(bits_in_limb))
 | |
|         self.bits_in_limb = bits_in_limb
 | |
| 
 | |
|     @property
 | |
|     def boundary(self) -> int:
 | |
|         if self.arity == 1:
 | |
|             return self.int_a
 | |
|         elif self.arity == 2:
 | |
|             return max(self.int_a, self.int_b)
 | |
|         raise ValueError("Unsupported number of operands!")
 | |
| 
 | |
|     @property
 | |
|     def limb_boundary(self) -> int:
 | |
|         return bound_mpi(self.boundary, self.bits_in_limb)
 | |
| 
 | |
|     @property
 | |
|     def limbs(self) -> int:
 | |
|         return limbs_mpi(self.boundary, self.bits_in_limb)
 | |
| 
 | |
|     @property
 | |
|     def hex_digits(self) -> int:
 | |
|         return hex_digits_for_limb(self.limbs, self.bits_in_limb)
 | |
| 
 | |
|     def format_arg(self, val: str) -> str:
 | |
|         if self.input_style not in self.input_styles:
 | |
|             raise ValueError("Unknown input style!")
 | |
|         if self.input_style == "variable":
 | |
|             return val
 | |
|         else:
 | |
|             return val.zfill(self.hex_digits)
 | |
| 
 | |
|     def format_result(self, res: int) -> str:
 | |
|         res_str = '{:x}'.format(res)
 | |
|         return quote_str(self.format_arg(res_str))
 | |
| 
 | |
|     @property
 | |
|     def arg_a(self) -> str:
 | |
|         return self.format_arg(self.val_a)
 | |
| 
 | |
|     @property
 | |
|     def arg_b(self) -> str:
 | |
|         if self.arity == 1:
 | |
|             raise AttributeError("Operation is unary and doesn't have arg_b!")
 | |
|         return self.format_arg(self.val_b)
 | |
| 
 | |
|     def arguments(self) -> List[str]:
 | |
|         args = [quote_str(self.arg_a)]
 | |
|         if self.arity == 2:
 | |
|             args.append(quote_str(self.arg_b))
 | |
|         return args + self.result()
 | |
| 
 | |
|     def description(self) -> str:
 | |
|         """Generate a description for the test case.
 | |
| 
 | |
|         If not set, case_description uses the form A `symbol` B, where symbol
 | |
|         is used to represent the operation. Descriptions of each value are
 | |
|         generated to provide some context to the test case.
 | |
|         """
 | |
|         if not self.case_description:
 | |
|             if self.arity == 1:
 | |
|                 format_string = "{1:x} {0}" if self.suffix else "{0} {1:x}"
 | |
|                 self.case_description = format_string.format(
 | |
|                     self.symbol, self.int_a
 | |
|                 )
 | |
|             elif self.arity == 2:
 | |
|                 self.case_description = "{:x} {} {:x}".format(
 | |
|                     self.int_a, self.symbol, self.int_b
 | |
|                 )
 | |
|         return super().description()
 | |
| 
 | |
|     @property
 | |
|     def is_valid(self) -> bool:
 | |
|         return True
 | |
| 
 | |
|     @abstractmethod
 | |
|     def result(self) -> List[str]:
 | |
|         """Get the result of the operation.
 | |
| 
 | |
|         This could be calculated during initialization and stored as `_result`
 | |
|         and then returned, or calculated when the method is called.
 | |
|         """
 | |
|         raise NotImplementedError
 | |
| 
 | |
|     @classmethod
 | |
|     def get_value_pairs(cls) -> Iterator[Tuple[str, str]]:
 | |
|         """Generator to yield pairs of inputs.
 | |
| 
 | |
|         Combinations are first generated from all input values, and then
 | |
|         specific cases provided.
 | |
|         """
 | |
|         if cls.arity == 1:
 | |
|             yield from ((a, "0") for a in cls.input_values)
 | |
|         elif cls.arity == 2:
 | |
|             if cls.unique_combinations_only:
 | |
|                 yield from combination_pairs(cls.input_values)
 | |
|             else:
 | |
|                 yield from (
 | |
|                     (a, b)
 | |
|                     for a in cls.input_values
 | |
|                     for b in cls.input_values
 | |
|                 )
 | |
|         else:
 | |
|             raise ValueError("Unsupported number of operands!")
 | |
| 
 | |
|     @classmethod
 | |
|     def generate_function_tests(cls) -> Iterator[test_case.TestCase]:
 | |
|         if cls.input_style not in cls.input_styles:
 | |
|             raise ValueError("Unknown input style!")
 | |
|         if cls.arity not in cls.arities:
 | |
|             raise ValueError("Unsupported number of operands!")
 | |
|         if cls.input_style == "arch_split":
 | |
|             test_objects = (cls(a, b, bits_in_limb=bil)
 | |
|                             for a, b in cls.get_value_pairs()
 | |
|                             for bil in cls.limb_sizes)
 | |
|             special_cases = (cls(*args, bits_in_limb=bil) # type: ignore
 | |
|                              for args in cls.input_cases
 | |
|                              for bil in cls.limb_sizes)
 | |
|         else:
 | |
|             test_objects = (cls(a, b)
 | |
|                             for a, b in cls.get_value_pairs())
 | |
|             special_cases = (cls(*args) for args in cls.input_cases)
 | |
|         yield from (valid_test_object.create_test_case()
 | |
|                     for valid_test_object in filter(
 | |
|                         lambda test_object: test_object.is_valid,
 | |
|                         chain(test_objects, special_cases)
 | |
|                         )
 | |
|                     )
 | |
| 
 | |
| 
 | |
| class ModulusRepresentation(enum.Enum):
 | |
|     """Representation selector of a modulus."""
 | |
|     # Numerical values aligned with the type mbedtls_mpi_mod_rep_selector
 | |
|     INVALID = 0
 | |
|     MONTGOMERY = 2
 | |
|     OPT_RED = 3
 | |
| 
 | |
|     def symbol(self) -> str:
 | |
|         """The C symbol for this representation selector."""
 | |
|         return 'MBEDTLS_MPI_MOD_REP_' + self.name
 | |
| 
 | |
|     @classmethod
 | |
|     def supported_representations(cls) -> List['ModulusRepresentation']:
 | |
|         """Return all representations that are supported in positive test cases."""
 | |
|         return [cls.MONTGOMERY, cls.OPT_RED]
 | |
| 
 | |
| 
 | |
| class ModOperationCommon(OperationCommon):
 | |
|     #pylint: disable=abstract-method
 | |
|     """Target for bignum mod_raw test case generation."""
 | |
|     moduli = MODULI_DEFAULT # type: List[str]
 | |
|     montgomery_form_a = False
 | |
|     disallow_zero_a = False
 | |
| 
 | |
|     def __init__(self, val_n: str, val_a: str, val_b: str = "0",
 | |
|                  bits_in_limb: int = 64) -> None:
 | |
|         super().__init__(val_a=val_a, val_b=val_b, bits_in_limb=bits_in_limb)
 | |
|         self.val_n = val_n
 | |
|         # Setting the int versions here as opposed to making them @properties
 | |
|         # provides earlier/more robust input validation.
 | |
|         self.int_n = hex_to_int(val_n)
 | |
| 
 | |
|     def to_montgomery(self, val: int) -> int:
 | |
|         return (val * self.r) % self.int_n
 | |
| 
 | |
|     def from_montgomery(self, val: int) -> int:
 | |
|         return (val * self.r_inv) % self.int_n
 | |
| 
 | |
|     def convert_from_canonical(self, canonical: int,
 | |
|                                rep: ModulusRepresentation) -> int:
 | |
|         """Convert values from canonical representation to the given representation."""
 | |
|         if rep is ModulusRepresentation.MONTGOMERY:
 | |
|             return self.to_montgomery(canonical)
 | |
|         elif rep is ModulusRepresentation.OPT_RED:
 | |
|             return canonical
 | |
|         else:
 | |
|             raise ValueError('Modulus representation not supported: {}'
 | |
|                              .format(rep.name))
 | |
| 
 | |
|     @property
 | |
|     def boundary(self) -> int:
 | |
|         return self.int_n
 | |
| 
 | |
|     @property
 | |
|     def arg_a(self) -> str:
 | |
|         if self.montgomery_form_a:
 | |
|             value_a = self.to_montgomery(self.int_a)
 | |
|         else:
 | |
|             value_a = self.int_a
 | |
|         return self.format_arg('{:x}'.format(value_a))
 | |
| 
 | |
|     @property
 | |
|     def arg_n(self) -> str:
 | |
|         return self.format_arg(self.val_n)
 | |
| 
 | |
|     def format_arg(self, val: str) -> str:
 | |
|         return super().format_arg(val).zfill(self.hex_digits)
 | |
| 
 | |
|     def arguments(self) -> List[str]:
 | |
|         return [quote_str(self.arg_n)] + super().arguments()
 | |
| 
 | |
|     @property
 | |
|     def r(self) -> int: # pylint: disable=invalid-name
 | |
|         l = limbs_mpi(self.int_n, self.bits_in_limb)
 | |
|         return bound_mpi_limbs(l, self.bits_in_limb)
 | |
| 
 | |
|     @property
 | |
|     def r_inv(self) -> int:
 | |
|         return invmod(self.r, self.int_n)
 | |
| 
 | |
|     @property
 | |
|     def r2(self) -> int: # pylint: disable=invalid-name
 | |
|         return pow(self.r, 2)
 | |
| 
 | |
|     @property
 | |
|     def is_valid(self) -> bool:
 | |
|         if self.int_a >= self.int_n:
 | |
|             return False
 | |
|         if self.disallow_zero_a and self.int_a == 0:
 | |
|             return False
 | |
|         if self.arity == 2 and self.int_b >= self.int_n:
 | |
|             return False
 | |
|         return True
 | |
| 
 | |
|     def description(self) -> str:
 | |
|         """Generate a description for the test case.
 | |
| 
 | |
|         It uses the form A `symbol` B mod N, where symbol is used to represent
 | |
|         the operation.
 | |
|         """
 | |
| 
 | |
|         if not self.case_description:
 | |
|             return super().description() + " mod {:x}".format(self.int_n)
 | |
|         return super().description()
 | |
| 
 | |
|     @classmethod
 | |
|     def input_cases_args(cls) -> Iterator[Tuple[Any, Any, Any]]:
 | |
|         if cls.arity == 1:
 | |
|             yield from ((n, a, "0") for a, n in cls.input_cases)
 | |
|         elif cls.arity == 2:
 | |
|             yield from ((n, a, b) for a, b, n in cls.input_cases)
 | |
|         else:
 | |
|             raise ValueError("Unsupported number of operands!")
 | |
| 
 | |
|     @classmethod
 | |
|     def generate_function_tests(cls) -> Iterator[test_case.TestCase]:
 | |
|         if cls.input_style not in cls.input_styles:
 | |
|             raise ValueError("Unknown input style!")
 | |
|         if cls.arity not in cls.arities:
 | |
|             raise ValueError("Unsupported number of operands!")
 | |
|         if cls.input_style == "arch_split":
 | |
|             test_objects = (cls(n, a, b, bits_in_limb=bil)
 | |
|                             for n in cls.moduli
 | |
|                             for a, b in cls.get_value_pairs()
 | |
|                             for bil in cls.limb_sizes)
 | |
|             special_cases = (cls(*args, bits_in_limb=bil)
 | |
|                              for args in cls.input_cases_args()
 | |
|                              for bil in cls.limb_sizes)
 | |
|         else:
 | |
|             test_objects = (cls(n, a, b)
 | |
|                             for n in cls.moduli
 | |
|                             for a, b in cls.get_value_pairs())
 | |
|             special_cases = (cls(*args) for args in cls.input_cases_args())
 | |
|         yield from (valid_test_object.create_test_case()
 | |
|                     for valid_test_object in filter(
 | |
|                         lambda test_object: test_object.is_valid,
 | |
|                         chain(test_objects, special_cases)
 | |
|                         ))
 |