mirror of
				https://github.com/Mbed-TLS/mbedtls.git
				synced 2025-10-24 13:32:59 +03:00 
			
		
		
		
	Rename both `rsa_internal.h` and `rsa_internal.c` to more descriptive names: `rsa_alt_helpers.h` and `rsa_alt_helpers.c`. Also re-orders `rsa_internal.c` to match the order in `rsa_internal.h` Signed-off-by: Chris Jones <christopher.jones@arm.com>
		
			
				
	
	
		
			487 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			487 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Helper functions for the RSA module
 | |
|  *
 | |
|  *  Copyright The Mbed TLS Contributors
 | |
|  *  SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 | |
|  *  not use this file except in compliance with the License.
 | |
|  *  You may obtain a copy of the License at
 | |
|  *
 | |
|  *  http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  *  Unless required by applicable law or agreed to in writing, software
 | |
|  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | |
|  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  *  See the License for the specific language governing permissions and
 | |
|  *  limitations under the License.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "common.h"
 | |
| 
 | |
| #if defined(MBEDTLS_RSA_C)
 | |
| 
 | |
| #include "mbedtls/rsa.h"
 | |
| #include "mbedtls/bignum.h"
 | |
| #include "rsa_alt_helpers.h"
 | |
| 
 | |
| /*
 | |
|  * Compute RSA prime factors from public and private exponents
 | |
|  *
 | |
|  * Summary of algorithm:
 | |
|  * Setting F := lcm(P-1,Q-1), the idea is as follows:
 | |
|  *
 | |
|  * (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2)
 | |
|  *     is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the
 | |
|  *     square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four
 | |
|  *     possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1)
 | |
|  *     or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime
 | |
|  *     factors of N.
 | |
|  *
 | |
|  * (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same
 | |
|  *     construction still applies since (-)^K is the identity on the set of
 | |
|  *     roots of 1 in Z/NZ.
 | |
|  *
 | |
|  * The public and private key primitives (-)^E and (-)^D are mutually inverse
 | |
|  * bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e.
 | |
|  * if and only if DE - 1 is a multiple of F, say DE - 1 = F * L.
 | |
|  * Splitting L = 2^t * K with K odd, we have
 | |
|  *
 | |
|  *   DE - 1 = FL = (F/2) * (2^(t+1)) * K,
 | |
|  *
 | |
|  * so (F / 2) * K is among the numbers
 | |
|  *
 | |
|  *   (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord
 | |
|  *
 | |
|  * where ord is the order of 2 in (DE - 1).
 | |
|  * We can therefore iterate through these numbers apply the construction
 | |
|  * of (a) and (b) above to attempt to factor N.
 | |
|  *
 | |
|  */
 | |
| int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N,
 | |
|                      mbedtls_mpi const *E, mbedtls_mpi const *D,
 | |
|                      mbedtls_mpi *P, mbedtls_mpi *Q )
 | |
| {
 | |
|     int ret = 0;
 | |
| 
 | |
|     uint16_t attempt;  /* Number of current attempt  */
 | |
|     uint16_t iter;     /* Number of squares computed in the current attempt */
 | |
| 
 | |
|     uint16_t order;    /* Order of 2 in DE - 1 */
 | |
| 
 | |
|     mbedtls_mpi T;  /* Holds largest odd divisor of DE - 1     */
 | |
|     mbedtls_mpi K;  /* Temporary holding the current candidate */
 | |
| 
 | |
|     const unsigned char primes[] = { 2,
 | |
|            3,    5,    7,   11,   13,   17,   19,   23,
 | |
|           29,   31,   37,   41,   43,   47,   53,   59,
 | |
|           61,   67,   71,   73,   79,   83,   89,   97,
 | |
|          101,  103,  107,  109,  113,  127,  131,  137,
 | |
|          139,  149,  151,  157,  163,  167,  173,  179,
 | |
|          181,  191,  193,  197,  199,  211,  223,  227,
 | |
|          229,  233,  239,  241,  251
 | |
|     };
 | |
| 
 | |
|     const size_t num_primes = sizeof( primes ) / sizeof( *primes );
 | |
| 
 | |
|     if( P == NULL || Q == NULL || P->p != NULL || Q->p != NULL )
 | |
|         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
 | |
| 
 | |
|     if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 ||
 | |
|         mbedtls_mpi_cmp_int( D, 1 ) <= 0 ||
 | |
|         mbedtls_mpi_cmp_mpi( D, N ) >= 0 ||
 | |
|         mbedtls_mpi_cmp_int( E, 1 ) <= 0 ||
 | |
|         mbedtls_mpi_cmp_mpi( E, N ) >= 0 )
 | |
|     {
 | |
|         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Initializations and temporary changes
 | |
|      */
 | |
| 
 | |
|     mbedtls_mpi_init( &K );
 | |
|     mbedtls_mpi_init( &T );
 | |
| 
 | |
|     /* T := DE - 1 */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, D,  E ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &T, &T, 1 ) );
 | |
| 
 | |
|     if( ( order = (uint16_t) mbedtls_mpi_lsb( &T ) ) == 0 )
 | |
|     {
 | |
|         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     /* After this operation, T holds the largest odd divisor of DE - 1. */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &T, order ) );
 | |
| 
 | |
|     /*
 | |
|      * Actual work
 | |
|      */
 | |
| 
 | |
|     /* Skip trying 2 if N == 1 mod 8 */
 | |
|     attempt = 0;
 | |
|     if( N->p[0] % 8 == 1 )
 | |
|         attempt = 1;
 | |
| 
 | |
|     for( ; attempt < num_primes; ++attempt )
 | |
|     {
 | |
|         mbedtls_mpi_lset( &K, primes[attempt] );
 | |
| 
 | |
|         /* Check if gcd(K,N) = 1 */
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) );
 | |
|         if( mbedtls_mpi_cmp_int( P, 1 ) != 0 )
 | |
|             continue;
 | |
| 
 | |
|         /* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ...
 | |
|          * and check whether they have nontrivial GCD with N. */
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &K, &K, &T, N,
 | |
|                              Q /* temporarily use Q for storing Montgomery
 | |
|                                 * multiplication helper values */ ) );
 | |
| 
 | |
|         for( iter = 1; iter <= order; ++iter )
 | |
|         {
 | |
|             /* If we reach 1 prematurely, there's no point
 | |
|              * in continuing to square K */
 | |
|             if( mbedtls_mpi_cmp_int( &K, 1 ) == 0 )
 | |
|                 break;
 | |
| 
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &K, &K, 1 ) );
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) );
 | |
| 
 | |
|             if( mbedtls_mpi_cmp_int( P, 1 ) ==  1 &&
 | |
|                 mbedtls_mpi_cmp_mpi( P, N ) == -1 )
 | |
|             {
 | |
|                 /*
 | |
|                  * Have found a nontrivial divisor P of N.
 | |
|                  * Set Q := N / P.
 | |
|                  */
 | |
| 
 | |
|                 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( Q, NULL, N, P ) );
 | |
|                 goto cleanup;
 | |
|             }
 | |
| 
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &K ) );
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, N ) );
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * If we get here, then either we prematurely aborted the loop because
 | |
|          * we reached 1, or K holds primes[attempt]^(DE - 1) mod N, which must
 | |
|          * be 1 if D,E,N were consistent.
 | |
|          * Check if that's the case and abort if not, to avoid very long,
 | |
|          * yet eventually failing, computations if N,D,E were not sane.
 | |
|          */
 | |
|         if( mbedtls_mpi_cmp_int( &K, 1 ) != 0 )
 | |
|         {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free( &K );
 | |
|     mbedtls_mpi_free( &T );
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given P, Q and the public exponent E, deduce D.
 | |
|  * This is essentially a modular inversion.
 | |
|  */
 | |
| int mbedtls_rsa_deduce_private_exponent( mbedtls_mpi const *P,
 | |
|                                          mbedtls_mpi const *Q,
 | |
|                                          mbedtls_mpi const *E,
 | |
|                                          mbedtls_mpi *D )
 | |
| {
 | |
|     int ret = 0;
 | |
|     mbedtls_mpi K, L;
 | |
| 
 | |
|     if( D == NULL || mbedtls_mpi_cmp_int( D, 0 ) != 0 )
 | |
|         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
 | |
| 
 | |
|     if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 ||
 | |
|         mbedtls_mpi_cmp_int( Q, 1 ) <= 0 ||
 | |
|         mbedtls_mpi_cmp_int( E, 0 ) == 0 )
 | |
|     {
 | |
|         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
 | |
|     }
 | |
| 
 | |
|     mbedtls_mpi_init( &K );
 | |
|     mbedtls_mpi_init( &L );
 | |
| 
 | |
|     /* Temporarily put K := P-1 and L := Q-1 */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) );
 | |
| 
 | |
|     /* Temporarily put D := gcd(P-1, Q-1) */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( D, &K, &L ) );
 | |
| 
 | |
|     /* K := LCM(P-1, Q-1) */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &L ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &K, NULL, &K, D ) );
 | |
| 
 | |
|     /* Compute modular inverse of E in LCM(P-1, Q-1) */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( D, E, &K ) );
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free( &K );
 | |
|     mbedtls_mpi_free( &L );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| int mbedtls_rsa_deduce_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q,
 | |
|                             const mbedtls_mpi *D, mbedtls_mpi *DP,
 | |
|                             mbedtls_mpi *DQ, mbedtls_mpi *QP )
 | |
| {
 | |
|     int ret = 0;
 | |
|     mbedtls_mpi K;
 | |
|     mbedtls_mpi_init( &K );
 | |
| 
 | |
|     /* DP = D mod P-1 */
 | |
|     if( DP != NULL )
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1  ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DP, D, &K ) );
 | |
|     }
 | |
| 
 | |
|     /* DQ = D mod Q-1 */
 | |
|     if( DQ != NULL )
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1  ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DQ, D, &K ) );
 | |
|     }
 | |
| 
 | |
|     /* QP = Q^{-1} mod P */
 | |
|     if( QP != NULL )
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( QP, Q, P ) );
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free( &K );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that core RSA parameters are sane.
 | |
|  */
 | |
| int mbedtls_rsa_validate_params( const mbedtls_mpi *N, const mbedtls_mpi *P,
 | |
|                                  const mbedtls_mpi *Q, const mbedtls_mpi *D,
 | |
|                                  const mbedtls_mpi *E,
 | |
|                                  int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                                  void *p_rng )
 | |
| {
 | |
|     int ret = 0;
 | |
|     mbedtls_mpi K, L;
 | |
| 
 | |
|     mbedtls_mpi_init( &K );
 | |
|     mbedtls_mpi_init( &L );
 | |
| 
 | |
|     /*
 | |
|      * Step 1: If PRNG provided, check that P and Q are prime
 | |
|      */
 | |
| 
 | |
| #if defined(MBEDTLS_GENPRIME)
 | |
|     /*
 | |
|      * When generating keys, the strongest security we support aims for an error
 | |
|      * rate of at most 2^-100 and we are aiming for the same certainty here as
 | |
|      * well.
 | |
|      */
 | |
|     if( f_rng != NULL && P != NULL &&
 | |
|         ( ret = mbedtls_mpi_is_prime_ext( P, 50, f_rng, p_rng ) ) != 0 )
 | |
|     {
 | |
|         ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if( f_rng != NULL && Q != NULL &&
 | |
|         ( ret = mbedtls_mpi_is_prime_ext( Q, 50, f_rng, p_rng ) ) != 0 )
 | |
|     {
 | |
|         ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|         goto cleanup;
 | |
|     }
 | |
| #else
 | |
|     ((void) f_rng);
 | |
|     ((void) p_rng);
 | |
| #endif /* MBEDTLS_GENPRIME */
 | |
| 
 | |
|     /*
 | |
|      * Step 2: Check that 1 < N = P * Q
 | |
|      */
 | |
| 
 | |
|     if( P != NULL && Q != NULL && N != NULL )
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, P, Q ) );
 | |
|         if( mbedtls_mpi_cmp_int( N, 1 )  <= 0 ||
 | |
|             mbedtls_mpi_cmp_mpi( &K, N ) != 0 )
 | |
|         {
 | |
|             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Step 3: Check and 1 < D, E < N if present.
 | |
|      */
 | |
| 
 | |
|     if( N != NULL && D != NULL && E != NULL )
 | |
|     {
 | |
|         if ( mbedtls_mpi_cmp_int( D, 1 ) <= 0 ||
 | |
|              mbedtls_mpi_cmp_int( E, 1 ) <= 0 ||
 | |
|              mbedtls_mpi_cmp_mpi( D, N ) >= 0 ||
 | |
|              mbedtls_mpi_cmp_mpi( E, N ) >= 0 )
 | |
|         {
 | |
|             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Step 4: Check that D, E are inverse modulo P-1 and Q-1
 | |
|      */
 | |
| 
 | |
|     if( P != NULL && Q != NULL && D != NULL && E != NULL )
 | |
|     {
 | |
|         if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 ||
 | |
|             mbedtls_mpi_cmp_int( Q, 1 ) <= 0 )
 | |
|         {
 | |
|             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         /* Compute DE-1 mod P-1 */
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, P, 1 ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) );
 | |
|         if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
 | |
|         {
 | |
|             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         /* Compute DE-1 mod Q-1 */
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) );
 | |
|         if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
 | |
|         {
 | |
|             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free( &K );
 | |
|     mbedtls_mpi_free( &L );
 | |
| 
 | |
|     /* Wrap MPI error codes by RSA check failure error code */
 | |
|     if( ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED )
 | |
|     {
 | |
|         ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|     }
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that RSA CRT parameters are in accordance with core parameters.
 | |
|  */
 | |
| int mbedtls_rsa_validate_crt( const mbedtls_mpi *P,  const mbedtls_mpi *Q,
 | |
|                               const mbedtls_mpi *D,  const mbedtls_mpi *DP,
 | |
|                               const mbedtls_mpi *DQ, const mbedtls_mpi *QP )
 | |
| {
 | |
|     int ret = 0;
 | |
| 
 | |
|     mbedtls_mpi K, L;
 | |
|     mbedtls_mpi_init( &K );
 | |
|     mbedtls_mpi_init( &L );
 | |
| 
 | |
|     /* Check that DP - D == 0 mod P - 1 */
 | |
|     if( DP != NULL )
 | |
|     {
 | |
|         if( P == NULL )
 | |
|         {
 | |
|             ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DP, D ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) );
 | |
| 
 | |
|         if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 )
 | |
|         {
 | |
|             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Check that DQ - D == 0 mod Q - 1 */
 | |
|     if( DQ != NULL )
 | |
|     {
 | |
|         if( Q == NULL )
 | |
|         {
 | |
|             ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DQ, D ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) );
 | |
| 
 | |
|         if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 )
 | |
|         {
 | |
|             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Check that QP * Q - 1 == 0 mod P */
 | |
|     if( QP != NULL )
 | |
|     {
 | |
|         if( P == NULL || Q == NULL )
 | |
|         {
 | |
|             ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, QP, Q ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, P ) );
 | |
|         if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
 | |
|         {
 | |
|             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     /* Wrap MPI error codes by RSA check failure error code */
 | |
|     if( ret != 0 &&
 | |
|         ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED &&
 | |
|         ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA )
 | |
|     {
 | |
|         ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|     }
 | |
| 
 | |
|     mbedtls_mpi_free( &K );
 | |
|     mbedtls_mpi_free( &L );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| #endif /* MBEDTLS_RSA_C */
 |