1
0
mirror of https://github.com/Mbed-TLS/mbedtls.git synced 2025-07-29 11:41:15 +03:00

Merge pull request #278 from ARMmbed/dev/yanesca/iotcrypt-767-ecdsa-timing-side-channel

ECDSA timing side channel due to non-constant-time integer comparison
This commit is contained in:
Gilles Peskine
2019-11-12 11:44:13 +01:00
committed by GitHub
5 changed files with 240 additions and 3 deletions

View File

@ -1148,6 +1148,107 @@ int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
return( 0 );
}
/** Decide if an integer is less than the other, without branches.
*
* \param x First integer.
* \param y Second integer.
*
* \return 1 if \p x is less than \p y, 0 otherwise
*/
static unsigned ct_lt_mpi_uint( const mbedtls_mpi_uint x,
const mbedtls_mpi_uint y )
{
mbedtls_mpi_uint ret;
mbedtls_mpi_uint cond;
/*
* Check if the most significant bits (MSB) of the operands are different.
*/
cond = ( x ^ y );
/*
* If the MSB are the same then the difference x-y will be negative (and
* have its MSB set to 1 during conversion to unsigned) if and only if x<y.
*/
ret = ( x - y ) & ~cond;
/*
* If the MSB are different, then the operand with the MSB of 1 is the
* bigger. (That is if y has MSB of 1, then x<y is true and it is false if
* the MSB of y is 0.)
*/
ret |= y & cond;
ret = ret >> ( biL - 1 );
return (unsigned) ret;
}
/*
* Compare signed values in constant time
*/
int mbedtls_mpi_lt_mpi_ct( const mbedtls_mpi *X, const mbedtls_mpi *Y,
unsigned *ret )
{
size_t i;
/* The value of any of these variables is either 0 or 1 at all times. */
unsigned cond, done, X_is_negative, Y_is_negative;
MPI_VALIDATE_RET( X != NULL );
MPI_VALIDATE_RET( Y != NULL );
MPI_VALIDATE_RET( ret != NULL );
if( X->n != Y->n )
return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
/*
* Set sign_N to 1 if N >= 0, 0 if N < 0.
* We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0.
*/
X_is_negative = ( X->s & 2 ) >> 1;
Y_is_negative = ( Y->s & 2 ) >> 1;
/*
* If the signs are different, then the positive operand is the bigger.
* That is if X is negative (X_is_negative == 1), then X < Y is true and it
* is false if X is positive (X_is_negative == 0).
*/
cond = ( X_is_negative ^ Y_is_negative );
*ret = cond & X_is_negative;
/*
* This is a constant-time function. We might have the result, but we still
* need to go through the loop. Record if we have the result already.
*/
done = cond;
for( i = X->n; i > 0; i-- )
{
/*
* If Y->p[i - 1] < X->p[i - 1] then X < Y is true if and only if both
* X and Y are negative.
*
* Again even if we can make a decision, we just mark the result and
* the fact that we are done and continue looping.
*/
cond = ct_lt_mpi_uint( Y->p[i - 1], X->p[i - 1] );
*ret |= cond & ( 1 - done ) & X_is_negative;
done |= cond;
/*
* If X->p[i - 1] < Y->p[i - 1] then X < Y is true if and only if both
* X and Y are positive.
*
* Again even if we can make a decision, we just mark the result and
* the fact that we are done and continue looping.
*/
cond = ct_lt_mpi_uint( X->p[i - 1], Y->p[i - 1] );
*ret |= cond & ( 1 - done ) & ( 1 - X_is_negative );
done |= cond;
}
return( 0 );
}
/*
* Compare signed values
*/

View File

@ -2803,6 +2803,7 @@ int mbedtls_ecp_gen_privkey( const mbedtls_ecp_group *grp,
{
/* SEC1 3.2.1: Generate d such that 1 <= n < N */
int count = 0;
unsigned cmp = 0;
/*
* Match the procedure given in RFC 6979 (deterministic ECDSA):
@ -2827,9 +2828,14 @@ int mbedtls_ecp_gen_privkey( const mbedtls_ecp_group *grp,
*/
if( ++count > 30 )
return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
ret = mbedtls_mpi_lt_mpi_ct( d, &grp->N, &cmp );
if( ret != 0 )
{
goto cleanup;
}
}
while( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 );
while( mbedtls_mpi_cmp_int( d, 1 ) < 0 || cmp != 1 );
}
#endif /* ECP_SHORTWEIERSTRASS */