diff --git a/library/rsa.c b/library/rsa.c index bdd2538c3a..7a7f2f1480 100644 --- a/library/rsa.c +++ b/library/rsa.c @@ -71,6 +71,407 @@ static void mbedtls_zeroize( void *v, size_t n ) { volatile unsigned char *p = (unsigned char*)v; while( n-- ) *p++ = 0; } +/* + * Context-independent RSA helper functions. + * + * The following three functions + * - mbedtls_rsa_deduce_moduli + * - mbedtls_rsa_deduce_private + * - mbedtls_rsa_check_params + * are helper functions operating on the core RSA parameters + * (represented as MPI's). They do not use the RSA context structure + * and therefore need not be replaced when providing an alternative + * RSA implementation. + * + * Their purpose is to provide common MPI operations in the context + * of RSA that can be easily shared across multiple implementations. + */ + +/* + * mbedtls_rsa_deduce_moduli + * + * Given the modulus N=PQ and a pair of public and private + * exponents E and D, respectively, factor N. + * + * Setting F := lcm(P-1,Q-1), the idea is as follows: + * + * (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2) + * is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the + * square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four + * possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1) + * or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime + * factors of N. + * + * (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same + * construction still applies since (-)^K is the identity on the set of + * roots of 1 in Z/NZ. + * + * The public and private key primitives (-)^E and (-)^D are mutually inverse + * bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e. + * if and only if DE - 1 is a multiple of F, say DE - 1 = F * L. + * Splitting L = 2^t * K with K odd, we have + * + * DE - 1 = FL = (F/2) * (2^(t+1)) * K, + * + * so (F / 2) * K is among the numbers + * + * (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord + * + * where ord is the order of 2 in (DE - 1). + * We can therefore iterate through these numbers apply the construction + * of (a) and (b) above to attempt to factor N. + * + */ +int mbedtls_rsa_deduce_moduli( mbedtls_mpi *N, mbedtls_mpi *D, mbedtls_mpi *E, + int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, + mbedtls_mpi *P, mbedtls_mpi *Q ) +{ + /* Implementation note: + * + * Space-efficiency is given preference over time-efficiency here: + * several calculations are done in place and temporarily change + * the values of D and E. + * + * Specifically, D is replaced the largest odd divisor of DE - 1 + * throughout the calculations. + */ + + int ret = 0; + + uint16_t attempt; /* Number of current attempt */ + uint16_t iter; /* Number of squares computed in the current attempt */ + + uint16_t bitlen_half; /* Half the bitsize of the modulus N */ + uint16_t order; /* Order of 2 in DE - 1 */ + + mbedtls_mpi K; /* Temporary used for two purposes: + * - During factorization attempts, stores a andom integer + * in the range of [0,..,N] + * - During verification, holding intermediate results. + */ + + if( P == NULL || Q == NULL || P->p != NULL || Q->p != NULL ) + return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); + + if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || + mbedtls_mpi_cmp_int( D, 1 ) <= 0 || + mbedtls_mpi_cmp_mpi( D, N ) >= 0 || + mbedtls_mpi_cmp_int( E, 1 ) <= 0 || + mbedtls_mpi_cmp_mpi( E, N ) >= 0 ) + { + return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); + } + + /* + * Initializations and temporary changes + */ + + mbedtls_mpi_init( &K ); + mbedtls_mpi_init( P ); + mbedtls_mpi_init( Q ); + + /* Replace D by DE - 1 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( D, D, E ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( D, D, 1 ) ); + + if( ( order = mbedtls_mpi_lsb( D ) ) == 0 ) + { + ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; + goto cleanup; + } + + /* After this operation, D holds the largest odd divisor + * of DE - 1 for the original values of D and E. */ + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( D, order ) ); + + /* This is used to generate a few numbers around N / 2 + * if no PRNG is provided. */ + if( f_rng == NULL ) + bitlen_half = mbedtls_mpi_bitlen( N ) / 2; + + /* + * Actual work + */ + + for( attempt = 0; attempt < 30; ++attempt ) + { + /* Generate some number in [0,N], either randomly + * if a PRNG is given, or try numbers around N/2 */ + if( f_rng != NULL ) + { + MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &K, + mbedtls_mpi_size( N ), + f_rng, p_rng ) ); + } + else + { + MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &K, 1 ) ) ; + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &K, bitlen_half ) ) ; + MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &K, &K, attempt + 1 ) ); + } + + /* Check if gcd(K,N) = 1 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) ); + if( mbedtls_mpi_cmp_int( P, 1 ) != 0 ) + continue; + + /* Go through K^X + 1, K^(2X) + 1, K^(4X) + 1, ... + * and check whether they have nontrivial GCD with N. */ + MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &K, &K, D, N, + Q /* temporarily use Q for storing Montgomery + * multiplication helper values */ ) ); + + for( iter = 1; iter < order; ++iter ) + { + MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &K, &K, 1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) ); + + if( mbedtls_mpi_cmp_int( P, 1 ) == 1 && + mbedtls_mpi_cmp_mpi( P, N ) == -1 ) + { + /* + * Have found a nontrivial divisor P of N. + * Set Q := N / P and verify D, E. + */ + + MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( Q, &K, N, P ) ); + + /* + * Verify that DE - 1 is indeed a multiple of + * lcm(P-1, Q-1), i.e. that it's a multiple of both + * P-1 and Q-1. + */ + + /* Restore DE - 1 and temporarily replace P, Q by P-1, Q-1. */ + MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( D, order ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( P, P, 1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( Q, Q, 1 ) ); + + /* Compute DE-1 mod P-1 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, D, P ) ); + if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) + { + ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; + goto cleanup; + } + + /* Compute DE-1 mod Q-1 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, D, Q ) ); + if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) + { + ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; + goto cleanup; + } + + /* + * All good, restore P, Q and D and return. + */ + + MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( P, P, 1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( Q, Q, 1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( D, D, 1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( D, NULL, D, E ) ); + + goto cleanup; + } + + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &K ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, N ) ); + } + } + + ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; + +cleanup: + + mbedtls_mpi_free( &K ); + return( ret ); +} + +/* + * Given P, Q and the public exponent E, deduce D. + * This is essentially a modular inversion. + */ + +int mbedtls_rsa_deduce_private( mbedtls_mpi *P, mbedtls_mpi *Q, + mbedtls_mpi *D, mbedtls_mpi *E ) +{ + int ret = 0; + mbedtls_mpi K; + + if( D == NULL || mbedtls_mpi_cmp_int( D, 0 ) != 0 ) + return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); + + if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 || + mbedtls_mpi_cmp_int( Q, 1 ) <= 0 || + mbedtls_mpi_cmp_int( E, 0 ) == 0 ) + { + return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); + } + + mbedtls_mpi_init( &K ); + + /* Temporarily replace P and Q by P-1 and Q-1, respectively. */ + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( P, P, 1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( Q, Q, 1 ) ); + + /* Temporarily compute the gcd(P-1, Q-1) in D. */ + MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( D, P, Q ) ); + + /* Compute LCM(P-1, Q-1) in K */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, P, Q ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &K, NULL, &K, D ) ); + + /* Compute modular inverse of E in LCM(P-1, Q-1) */ + MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( D, E, &K ) ); + + /* Restore P and Q. */ + MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( P, P, 1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( Q, Q, 1 ) ); + + /* Double-check result */ + MBEDTLS_MPI_CHK( mbedtls_rsa_check_params( NULL, P, Q, D, E, NULL, NULL ) ); + +cleanup: + + mbedtls_mpi_free( &K ); + + return( ret ); +} + +/* + * Check that core RSA parameters are sane. + * + * Note that the inputs are not declared const and may be + * altered on an unsuccessful run. + */ + +int mbedtls_rsa_check_params( mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q, + mbedtls_mpi *D, mbedtls_mpi *E, + int (*f_rng)(void *, unsigned char *, size_t), + void *p_rng ) +{ + int ret = 0; + mbedtls_mpi K; + + mbedtls_mpi_init( &K ); + + /* + * Step 1: If PRNG provided, check that P and Q are prime + */ + + if( f_rng != NULL && P != NULL && + ( ret = mbedtls_mpi_is_prime( P, f_rng, p_rng ) ) != 0 ) + { + goto cleanup; + } + + if( f_rng != NULL && Q != NULL && + ( ret = mbedtls_mpi_is_prime( Q, f_rng, p_rng ) ) != 0 ) + { + goto cleanup; + } + + /* + * Step 2: Check that N = PQ + */ + + if( P != NULL && Q != NULL && N != NULL ) + { + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, P, Q ) ); + if( mbedtls_mpi_cmp_mpi( &K, N ) != 0 ) + { + ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; + goto cleanup; + } + } + + /* + * Step 3: Check that D, E are inverse modulo P-1 and Q-1 + */ + + if( P != NULL && Q != NULL && D != NULL && E != NULL ) + { + /* Temporarily replace P, Q by P-1, Q-1. */ + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( P, P, 1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( Q, Q, 1 ) ); + + MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); + + /* Compute DE-1 mod P-1 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, P ) ); + if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) + { + ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; + goto cleanup; + } + + /* Compute DE-1 mod Q-1 */ + MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, Q ) ); + if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) + { + ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; + goto cleanup; + } + + /* Restore P, Q. */ + MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( P, P, 1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( Q, Q, 1 ) ); + } + +cleanup: + + mbedtls_mpi_free( &K ); + + return( ret ); +} + +int mbedtls_rsa_deduce_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q, + const mbedtls_mpi *D, mbedtls_mpi *DP, + mbedtls_mpi *DQ, mbedtls_mpi *QP ) +{ + int ret = 0; + mbedtls_mpi K; + mbedtls_mpi_init( &K ); + + if( DP != NULL ) + { + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DP, D, &K ) ); + } + + if( DQ != NULL ) + { + MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) ); + MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DQ, D, &K ) ); + } + + if( QP != NULL ) + { + MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( QP, Q, P ) ); + } + +cleanup: + mbedtls_mpi_free( &K ); + + return( ret ); +} + +{ + int ret = 0; + + + + + +cleanup: + + return( ret ); +} + + /* * Initialize an RSA context */