mirror of
https://github.com/Mbed-TLS/mbedtls.git
synced 2025-10-23 01:52:40 +03:00
Merge remote-tracking branch 'restricted/mbedtls-3.6-restricted' into mbedtls-3.6.5rc0-pr
Signed-off-by: Minos Galanakis <minos.galanakis@arm.com>
This commit is contained in:
407
library/bignum.c
407
library/bignum.c
@@ -430,13 +430,6 @@ cleanup:
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Return the number of less significant zero-bits
|
||||
*/
|
||||
size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
|
||||
{
|
||||
size_t i;
|
||||
|
||||
#if defined(__has_builtin)
|
||||
#if (MBEDTLS_MPI_UINT_MAX == UINT_MAX) && __has_builtin(__builtin_ctz)
|
||||
#define mbedtls_mpi_uint_ctz __builtin_ctz
|
||||
@@ -447,22 +440,34 @@ size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(mbedtls_mpi_uint_ctz)
|
||||
#if !defined(mbedtls_mpi_uint_ctz)
|
||||
static size_t mbedtls_mpi_uint_ctz(mbedtls_mpi_uint x)
|
||||
{
|
||||
size_t count = 0;
|
||||
mbedtls_ct_condition_t done = MBEDTLS_CT_FALSE;
|
||||
|
||||
for (size_t i = 0; i < biL; i++) {
|
||||
mbedtls_ct_condition_t non_zero = mbedtls_ct_bool((x >> i) & 1);
|
||||
done = mbedtls_ct_bool_or(done, non_zero);
|
||||
count = mbedtls_ct_size_if(done, count, i + 1);
|
||||
}
|
||||
|
||||
return count;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Return the number of less significant zero-bits
|
||||
*/
|
||||
size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
|
||||
{
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < X->n; i++) {
|
||||
if (X->p[i] != 0) {
|
||||
return i * biL + mbedtls_mpi_uint_ctz(X->p[i]);
|
||||
}
|
||||
}
|
||||
#else
|
||||
size_t count = 0;
|
||||
for (i = 0; i < X->n; i++) {
|
||||
for (size_t j = 0; j < biL; j++, count++) {
|
||||
if (((X->p[i] >> j) & 1) != 0) {
|
||||
return count;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -1743,104 +1748,122 @@ int mbedtls_mpi_exp_mod_unsafe(mbedtls_mpi *X, const mbedtls_mpi *A,
|
||||
return mbedtls_mpi_exp_mod_optionally_safe(X, A, E, MBEDTLS_MPI_IS_PUBLIC, N, prec_RR);
|
||||
}
|
||||
|
||||
/* Constant-time GCD and/or modinv with odd modulus and A <= N */
|
||||
int mbedtls_mpi_gcd_modinv_odd(mbedtls_mpi *G,
|
||||
mbedtls_mpi *I,
|
||||
const mbedtls_mpi *A,
|
||||
const mbedtls_mpi *N)
|
||||
{
|
||||
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
||||
mbedtls_mpi local_g;
|
||||
mbedtls_mpi_uint *T = NULL;
|
||||
const size_t T_factor = I != NULL ? 5 : 4;
|
||||
const mbedtls_mpi_uint zero = 0;
|
||||
|
||||
/* Check requirements on A and N */
|
||||
if (mbedtls_mpi_cmp_int(A, 0) < 0 ||
|
||||
mbedtls_mpi_cmp_mpi(A, N) > 0 ||
|
||||
mbedtls_mpi_get_bit(N, 0) != 1 ||
|
||||
(I != NULL && mbedtls_mpi_cmp_int(N, 1) == 0)) {
|
||||
return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
/* Check aliasing requirements */
|
||||
if (A == N || (I != NULL && (I == N || G == N))) {
|
||||
return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
mbedtls_mpi_init(&local_g);
|
||||
|
||||
if (G == NULL) {
|
||||
G = &local_g;
|
||||
}
|
||||
|
||||
/* We can't modify the values of G or I before use in the main function,
|
||||
* as they could be aliased to A or N. */
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_grow(G, N->n));
|
||||
if (I != NULL) {
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_grow(I, N->n));
|
||||
}
|
||||
|
||||
T = mbedtls_calloc(sizeof(mbedtls_mpi_uint) * N->n, T_factor);
|
||||
if (T == NULL) {
|
||||
ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
mbedtls_mpi_uint *Ip = I != NULL ? I->p : NULL;
|
||||
/* If A is 0 (null), then A->p would be null, and A->n would be 0,
|
||||
* which would be an issue if A->p and A->n were passed to
|
||||
* mbedtls_mpi_core_gcd_modinv_odd below. */
|
||||
const mbedtls_mpi_uint *Ap = A->p != NULL ? A->p : &zero;
|
||||
size_t An = A->n >= N->n ? N->n : A->p != NULL ? A->n : 1;
|
||||
mbedtls_mpi_core_gcd_modinv_odd(G->p, Ip, Ap, An, N->p, N->n, T);
|
||||
|
||||
G->s = 1;
|
||||
if (I != NULL) {
|
||||
I->s = 1;
|
||||
}
|
||||
|
||||
if (G->n > N->n) {
|
||||
memset(G->p + N->n, 0, ciL * (G->n - N->n));
|
||||
}
|
||||
if (I != NULL && I->n > N->n) {
|
||||
memset(I->p + N->n, 0, ciL * (I->n - N->n));
|
||||
}
|
||||
|
||||
cleanup:
|
||||
mbedtls_mpi_free(&local_g);
|
||||
mbedtls_free(T);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Greatest common divisor: G = gcd(A, B) (HAC 14.54)
|
||||
* Greatest common divisor: G = gcd(A, B)
|
||||
* Wrapper around mbedtls_mpi_gcd_modinv() that removes its restrictions.
|
||||
*/
|
||||
int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)
|
||||
{
|
||||
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
||||
size_t lz, lzt;
|
||||
mbedtls_mpi TA, TB;
|
||||
|
||||
mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
|
||||
|
||||
/* Make copies and take absolute values */
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
|
||||
TA.s = TB.s = 1;
|
||||
|
||||
lz = mbedtls_mpi_lsb(&TA);
|
||||
lzt = mbedtls_mpi_lsb(&TB);
|
||||
/* Make the two values the same (non-zero) number of limbs.
|
||||
* This is needed to use mbedtls_mpi_core functions below. */
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&TA, TB.n != 0 ? TB.n : 1));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&TB, TA.n)); // non-zero from above
|
||||
|
||||
/* The loop below gives the correct result when A==0 but not when B==0.
|
||||
* So have a special case for B==0. Leverage the fact that we just
|
||||
* calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
|
||||
* slightly more efficient than cmp_int(). */
|
||||
if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) {
|
||||
ret = mbedtls_mpi_copy(G, A);
|
||||
/* Handle special cases (that don't happen in crypto usage) */
|
||||
if (mbedtls_mpi_core_check_zero_ct(TA.p, TA.n) == MBEDTLS_CT_FALSE) {
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB)); // GCD(0, B) = abs(B)
|
||||
goto cleanup;
|
||||
}
|
||||
if (mbedtls_mpi_core_check_zero_ct(TB.p, TB.n) == MBEDTLS_CT_FALSE) {
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TA)); // GCD(A, 0) = abs(A)
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
if (lzt < lz) {
|
||||
lz = lzt;
|
||||
}
|
||||
/* Make boths inputs odd by putting powers of 2 on the side */
|
||||
const size_t za = mbedtls_mpi_lsb(&TA);
|
||||
const size_t zb = mbedtls_mpi_lsb(&TB);
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, za));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, zb));
|
||||
|
||||
TA.s = TB.s = 1;
|
||||
/* Ensure A <= B: if B < A, swap them */
|
||||
mbedtls_ct_condition_t swap = mbedtls_mpi_core_lt_ct(TB.p, TA.p, TA.n);
|
||||
mbedtls_mpi_core_cond_swap(TA.p, TB.p, TA.n, swap);
|
||||
|
||||
/* We mostly follow the procedure described in HAC 14.54, but with some
|
||||
* minor differences:
|
||||
* - Sequences of multiplications or divisions by 2 are grouped into a
|
||||
* single shift operation.
|
||||
* - The procedure in HAC assumes that 0 < TB <= TA.
|
||||
* - The condition TB <= TA is not actually necessary for correctness.
|
||||
* TA and TB have symmetric roles except for the loop termination
|
||||
* condition, and the shifts at the beginning of the loop body
|
||||
* remove any significance from the ordering of TA vs TB before
|
||||
* the shifts.
|
||||
* - If TA = 0, the loop goes through 0 iterations and the result is
|
||||
* correctly TB.
|
||||
* - The case TB = 0 was short-circuited above.
|
||||
*
|
||||
* For the correctness proof below, decompose the original values of
|
||||
* A and B as
|
||||
* A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
|
||||
* B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
|
||||
* Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
|
||||
* and gcd(A',B') is odd or 0.
|
||||
*
|
||||
* At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
|
||||
* The code maintains the following invariant:
|
||||
* gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
|
||||
*/
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_gcd_modinv_odd(G, NULL, &TA, &TB));
|
||||
|
||||
/* Proof that the loop terminates:
|
||||
* At each iteration, either the right-shift by 1 is made on a nonzero
|
||||
* value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
|
||||
* by at least 1, or the right-shift by 1 is made on zero and then
|
||||
* TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
|
||||
* since in that case TB is calculated from TB-TA with the condition TB>TA).
|
||||
*/
|
||||
while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
|
||||
/* Divisions by 2 preserve the invariant (I). */
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
|
||||
|
||||
/* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
|
||||
* TA-TB is even so the division by 2 has an integer result.
|
||||
* Invariant (I) is preserved since any odd divisor of both TA and TB
|
||||
* also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
|
||||
* also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
|
||||
* divides TA.
|
||||
*/
|
||||
if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
|
||||
} else {
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
|
||||
}
|
||||
/* Note that one of TA or TB is still odd. */
|
||||
}
|
||||
|
||||
/* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
|
||||
* At the loop exit, TA = 0, so gcd(TA,TB) = TB.
|
||||
* - If there was at least one loop iteration, then one of TA or TB is odd,
|
||||
* and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
|
||||
* lz = min(a,b) so gcd(A,B) = 2^lz * TB.
|
||||
* - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
|
||||
* In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
|
||||
*/
|
||||
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
|
||||
/* Re-inject the power of 2 we had previously put aside */
|
||||
size_t zg = za > zb ? zb : za; // zg = min(za, zb)
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(G, zg));
|
||||
|
||||
cleanup:
|
||||
|
||||
@@ -1899,93 +1922,141 @@ int mbedtls_mpi_random(mbedtls_mpi *X,
|
||||
}
|
||||
|
||||
/*
|
||||
* Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
|
||||
* Modular inverse: X = A^-1 mod N with N odd (and A any range)
|
||||
*/
|
||||
int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
|
||||
int mbedtls_mpi_inv_mod_odd(mbedtls_mpi *X,
|
||||
const mbedtls_mpi *A,
|
||||
const mbedtls_mpi *N)
|
||||
{
|
||||
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
||||
mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
|
||||
mbedtls_mpi T, G;
|
||||
|
||||
if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
|
||||
return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);
|
||||
mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);
|
||||
mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);
|
||||
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
|
||||
mbedtls_mpi_init(&T);
|
||||
mbedtls_mpi_init(&G);
|
||||
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T, A, N));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_gcd_modinv_odd(&G, &T, &T, N));
|
||||
if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
|
||||
ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
|
||||
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
|
||||
|
||||
do {
|
||||
while ((TU.p[0] & 1) == 0) {
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
|
||||
|
||||
if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
|
||||
}
|
||||
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
|
||||
}
|
||||
|
||||
while ((TV.p[0] & 1) == 0) {
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
|
||||
|
||||
if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
|
||||
}
|
||||
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
|
||||
}
|
||||
|
||||
if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
|
||||
} else {
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
|
||||
}
|
||||
} while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
|
||||
|
||||
while (mbedtls_mpi_cmp_int(&V1, 0) < 0) {
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
|
||||
}
|
||||
|
||||
while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) {
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
|
||||
}
|
||||
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &T));
|
||||
|
||||
cleanup:
|
||||
|
||||
mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);
|
||||
mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);
|
||||
mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);
|
||||
mbedtls_mpi_free(&T);
|
||||
mbedtls_mpi_free(&G);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Compute X = A^-1 mod N with N even, A odd and 1 < A < N.
|
||||
*
|
||||
* This is not obvious because our constant-time modinv function only works with
|
||||
* an odd modulus, and here the modulus is even. The idea is that computing a
|
||||
* a^-1 mod b is really just computing the u coefficient in the Bézout relation
|
||||
* a*u + b*v = 1 (assuming gcd(a,b) = 1, i.e. the inverse exists). But if we know
|
||||
* one of u, v in this relation then the other is easy to find. So we can
|
||||
* actually start by computing N^-1 mod A with gives us "the wrong half" of the
|
||||
* Bézout relation, from which we'll deduce the interesting half A^-1 mod N.
|
||||
*
|
||||
* Return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE if the inverse doesn't exist.
|
||||
*/
|
||||
int mbedtls_mpi_inv_mod_even_in_range(mbedtls_mpi *X,
|
||||
mbedtls_mpi const *A,
|
||||
mbedtls_mpi const *N)
|
||||
{
|
||||
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
||||
mbedtls_mpi I, G;
|
||||
|
||||
mbedtls_mpi_init(&I);
|
||||
mbedtls_mpi_init(&G);
|
||||
|
||||
/* Set I = N^-1 mod A */
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&I, N, A));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_gcd_modinv_odd(&G, &I, &I, A));
|
||||
if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
|
||||
ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
/* We know N * I = 1 + k * A for some k, which we can easily compute
|
||||
* as k = (N*I - 1) / A (we know there will be no remainder). */
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&I, &I, N));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&I, &I, 1));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&G, NULL, &I, A));
|
||||
|
||||
/* Now we have a Bézout relation N * (previous value of I) - G * A = 1,
|
||||
* so A^-1 mod N is -G mod N, which is N - G.
|
||||
* Note that 0 < k < N since 0 < I < A, so G (k) is already in range. */
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(X, N, &G));
|
||||
|
||||
cleanup:
|
||||
mbedtls_mpi_free(&I);
|
||||
mbedtls_mpi_free(&G);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Compute X = A^-1 mod N with N even and A odd (but in any range).
|
||||
*
|
||||
* Return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE if the inverse doesn't exist.
|
||||
*/
|
||||
static int mbedtls_mpi_inv_mod_even(mbedtls_mpi *X,
|
||||
mbedtls_mpi const *A,
|
||||
mbedtls_mpi const *N)
|
||||
{
|
||||
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
||||
mbedtls_mpi AA;
|
||||
|
||||
mbedtls_mpi_init(&AA);
|
||||
|
||||
/* Bring A in the range [0, N). */
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&AA, A, N));
|
||||
|
||||
/* We know A >= 0 but the next function wants A > 1 */
|
||||
int cmp = mbedtls_mpi_cmp_int(&AA, 1);
|
||||
if (cmp < 0) { // AA == 0
|
||||
ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
||||
goto cleanup;
|
||||
}
|
||||
if (cmp == 0) { // AA = 1
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 1));
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
/* Now we know 1 < A < N, N is even and AA is still odd */
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod_even_in_range(X, &AA, N));
|
||||
|
||||
cleanup:
|
||||
mbedtls_mpi_free(&AA);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Modular inverse: X = A^-1 mod N
|
||||
*
|
||||
* Wrapper around mbedtls_mpi_gcd_modinv_odd() that lifts its limitations.
|
||||
*/
|
||||
int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
|
||||
{
|
||||
if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
|
||||
return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (mbedtls_mpi_get_bit(N, 0) == 1) {
|
||||
return mbedtls_mpi_inv_mod_odd(X, A, N);
|
||||
}
|
||||
|
||||
if (mbedtls_mpi_get_bit(A, 0) == 1) {
|
||||
return mbedtls_mpi_inv_mod_even(X, A, N);
|
||||
}
|
||||
|
||||
/* If A and N are both even, 2 divides their GCD, so no inverse. */
|
||||
return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
||||
}
|
||||
|
||||
#if defined(MBEDTLS_GENPRIME)
|
||||
|
||||
/* Gaps between primes, starting at 3. https://oeis.org/A001223 */
|
||||
|
@@ -18,6 +18,7 @@
|
||||
#include "mbedtls/platform.h"
|
||||
|
||||
#include "bignum_core.h"
|
||||
#include "bignum_core_invasive.h"
|
||||
#include "bn_mul.h"
|
||||
#include "constant_time_internal.h"
|
||||
|
||||
@@ -1019,4 +1020,221 @@ void mbedtls_mpi_core_from_mont_rep(mbedtls_mpi_uint *X,
|
||||
mbedtls_mpi_core_montmul(X, A, &Rinv, 1, N, AN_limbs, mm, T);
|
||||
}
|
||||
|
||||
/*
|
||||
* Compute X = A - B mod N.
|
||||
* Both A and B must be in [0, N) and so will the output.
|
||||
*/
|
||||
static void mpi_core_sub_mod(mbedtls_mpi_uint *X,
|
||||
const mbedtls_mpi_uint *A,
|
||||
const mbedtls_mpi_uint *B,
|
||||
const mbedtls_mpi_uint *N,
|
||||
size_t limbs)
|
||||
{
|
||||
mbedtls_mpi_uint c = mbedtls_mpi_core_sub(X, A, B, limbs);
|
||||
(void) mbedtls_mpi_core_add_if(X, N, limbs, (unsigned) c);
|
||||
}
|
||||
|
||||
/*
|
||||
* Divide X by 2 mod N in place, assuming N is odd.
|
||||
* The input must be in [0, N) and so will the output.
|
||||
*/
|
||||
MBEDTLS_STATIC_TESTABLE
|
||||
void mbedtls_mpi_core_div2_mod_odd(mbedtls_mpi_uint *X,
|
||||
const mbedtls_mpi_uint *N,
|
||||
size_t limbs)
|
||||
{
|
||||
/* If X is odd, add N to make it even before shifting. */
|
||||
unsigned odd = (unsigned) X[0] & 1;
|
||||
mbedtls_mpi_uint c = mbedtls_mpi_core_add_if(X, N, limbs, odd);
|
||||
mbedtls_mpi_core_shift_r(X, limbs, 1);
|
||||
X[limbs - 1] |= c << (biL - 1);
|
||||
}
|
||||
|
||||
/*
|
||||
* Constant-time GCD and modular inversion - odd modulus.
|
||||
*
|
||||
* Pre-conditions: see public documentation.
|
||||
*
|
||||
* See https://www.jstage.jst.go.jp/article/transinf/E106.D/9/E106.D_2022ICP0009/_pdf
|
||||
*
|
||||
* The paper gives two computationally equivalent algorithms: Alg 7 (readable)
|
||||
* and Alg 8 (constant-time). We use a third version that's hopefully both:
|
||||
*
|
||||
* u, v = A, N # N is called p in the paper but doesn't have to be prime
|
||||
* q, r = 0, 1
|
||||
* repeat bits(A_limbs + N_limbs) times:
|
||||
* d = v - u # t1 in Alg 7
|
||||
* t1 = (u and v both odd) ? u : d # t1 in Alg 8
|
||||
* t2 = (u and v both odd) ? d : (u odd) ? v : u # t2 in Alg 8
|
||||
* t2 >>= 1
|
||||
* swap = t1 > t2 # similar to s, z in Alg 8
|
||||
* u, v = (swap) ? t2, t1 : t1, t2
|
||||
*
|
||||
* d = r - q mod N # t2 in Alg 7
|
||||
* t1 = (u and v both odd) ? q : d # t3 in Alg 8
|
||||
* t2 = (u and v both odd) ? d : (u odd) ? r : q # t4 Alg 8
|
||||
* t2 /= 2 mod N # see below (pre_com)
|
||||
* q, r = (swap) ? t2, t1 : t1, t2
|
||||
* return v, q # v: GCD, see Alg 6; q: no mult by pre_com, see below
|
||||
*
|
||||
* The ternary operators in the above pseudo-code need to be realised in a
|
||||
* constant-time fashion. We use conditional assign for t1, t2 and conditional
|
||||
* swap for the final update. (Note: the similarity between branches of Alg 7
|
||||
* are highlighted in tables 2 and 3 and the surrounding text.)
|
||||
*
|
||||
* Also, we re-order operations, grouping things related to the inverse, which
|
||||
* facilitates making its computation optional, and requires fewer temporaries.
|
||||
*
|
||||
* The only actual change from the paper is dropping the trick with pre_com,
|
||||
* which I think complicates things for no benefit.
|
||||
* See the comment on the big I != NULL block below for details.
|
||||
*/
|
||||
void mbedtls_mpi_core_gcd_modinv_odd(mbedtls_mpi_uint *G,
|
||||
mbedtls_mpi_uint *I,
|
||||
const mbedtls_mpi_uint *A,
|
||||
size_t A_limbs,
|
||||
const mbedtls_mpi_uint *N,
|
||||
size_t N_limbs,
|
||||
mbedtls_mpi_uint *T)
|
||||
{
|
||||
/* GCD and modinv, names common to Alg 7 and Alg 8 */
|
||||
mbedtls_mpi_uint *u = T + 0 * N_limbs;
|
||||
mbedtls_mpi_uint *v = G;
|
||||
|
||||
/* GCD and modinv, my name (t1, t2 from Alg 7) */
|
||||
mbedtls_mpi_uint *d = T + 1 * N_limbs;
|
||||
|
||||
/* GCD and modinv, names from Alg 8 (note: t1, t2 from Alg 7 are d above) */
|
||||
mbedtls_mpi_uint *t1 = T + 2 * N_limbs;
|
||||
mbedtls_mpi_uint *t2 = T + 3 * N_limbs;
|
||||
|
||||
/* modinv only, names common to Alg 7 and Alg 8 */
|
||||
mbedtls_mpi_uint *q = I;
|
||||
mbedtls_mpi_uint *r = I != NULL ? T + 4 * N_limbs : NULL;
|
||||
|
||||
/*
|
||||
* Initial values:
|
||||
* u, v = A, N
|
||||
* q, r = 0, 1
|
||||
*
|
||||
* We only write to G (aka v) after reading from inputs (A and N), which
|
||||
* allows aliasing, except with N when I != NULL, as then we'll be operating
|
||||
* mod N on q and r later - see the public documentation.
|
||||
*/
|
||||
if (A_limbs > N_limbs) {
|
||||
/* Violating this precondition should not result in memory errors. */
|
||||
A_limbs = N_limbs;
|
||||
}
|
||||
memcpy(u, A, A_limbs * ciL);
|
||||
memset((char *) u + A_limbs * ciL, 0, (N_limbs - A_limbs) * ciL);
|
||||
|
||||
/* Avoid possible UB with memcpy when src == dst. */
|
||||
if (v != N) {
|
||||
memcpy(v, N, N_limbs * ciL);
|
||||
}
|
||||
|
||||
if (I != NULL) {
|
||||
memset(q, 0, N_limbs * ciL);
|
||||
|
||||
memset(r, 0, N_limbs * ciL);
|
||||
r[0] = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* At each step, out of u, v, v - u we keep one, shift another, and discard
|
||||
* the third, then update (u, v) with the ordered result.
|
||||
* Then we mirror those actions with q, r, r - q mod N.
|
||||
*
|
||||
* Loop invariants:
|
||||
* u <= v (on entry: A <= N)
|
||||
* GCD(u, v) == GCD(A, N) (on entry: trivial)
|
||||
* v = A * q mod N (on entry: N = A * 0 mod N)
|
||||
* u = A * r mod N (on entry: A = A * 1 mod N)
|
||||
* q, r in [0, N) (on entry: 0, 1)
|
||||
*
|
||||
* On exit:
|
||||
* u = 0
|
||||
* v = GCD(A, N) = A * q mod N
|
||||
* if v == 1 then 1 = A * q mod N ie q is A's inverse mod N
|
||||
* r = 0
|
||||
*
|
||||
* The exit state is a fixed point of the loop's body.
|
||||
* Alg 7 and Alg 8 use 2 * bitlen(N) iterations but Theorem 2 (above in the
|
||||
* paper) says bitlen(A) + bitlen(N) is actually enough.
|
||||
*/
|
||||
for (size_t i = 0; i < (A_limbs + N_limbs) * biL; i++) {
|
||||
/* s, z in Alg 8 - use meaningful names instead */
|
||||
mbedtls_ct_condition_t u_odd = mbedtls_ct_bool(u[0] & 1);
|
||||
mbedtls_ct_condition_t v_odd = mbedtls_ct_bool(v[0] & 1);
|
||||
|
||||
/* Other conditions that will be useful below */
|
||||
mbedtls_ct_condition_t u_odd_v_odd = mbedtls_ct_bool_and(u_odd, v_odd);
|
||||
mbedtls_ct_condition_t v_even = mbedtls_ct_bool_not(v_odd);
|
||||
mbedtls_ct_condition_t u_odd_v_even = mbedtls_ct_bool_and(u_odd, v_even);
|
||||
|
||||
/* This is called t1 in Alg 7 (no name in Alg 8).
|
||||
* We know that u <= v so there is no carry */
|
||||
(void) mbedtls_mpi_core_sub(d, v, u, N_limbs);
|
||||
|
||||
/* t1 (the thing that's kept) can be d (default) or u (if t2 is d) */
|
||||
memcpy(t1, d, N_limbs * ciL);
|
||||
mbedtls_mpi_core_cond_assign(t1, u, N_limbs, u_odd_v_odd);
|
||||
|
||||
/* t2 (the thing that's shifted) can be u (if even), or v (if even),
|
||||
* or d (which is even if both u and v were odd) */
|
||||
memcpy(t2, u, N_limbs * ciL);
|
||||
mbedtls_mpi_core_cond_assign(t2, v, N_limbs, u_odd_v_even);
|
||||
mbedtls_mpi_core_cond_assign(t2, d, N_limbs, u_odd_v_odd);
|
||||
|
||||
mbedtls_mpi_core_shift_r(t2, N_limbs, 1); // t2 is even
|
||||
|
||||
/* Update u, v and re-order them if needed */
|
||||
memcpy(u, t1, N_limbs * ciL);
|
||||
memcpy(v, t2, N_limbs * ciL);
|
||||
mbedtls_ct_condition_t swap = mbedtls_mpi_core_lt_ct(v, u, N_limbs);
|
||||
mbedtls_mpi_core_cond_swap(u, v, N_limbs, swap);
|
||||
|
||||
/* Now, if modinv was requested, do the same with q, r, but:
|
||||
* - decisions still based on u and v (their initial values);
|
||||
* - operations are now mod N;
|
||||
* - we re-use t1, t2 for what the paper calls t3, t4 in Alg 8.
|
||||
*
|
||||
* Here we slightly diverge from the paper and instead do the obvious
|
||||
* thing that preserves the invariants involving q and r: mirror
|
||||
* operations on u and v, ie also divide by 2 here (mod N).
|
||||
*
|
||||
* The paper uses a trick where it replaces division by 2 with
|
||||
* multiplication by 2 here, and compensates in the end by multiplying
|
||||
* by pre_com, which is probably intended as an optimisation.
|
||||
*
|
||||
* However I believe it's not actually an optimisation, since
|
||||
* constant-time modular multiplication by 2 (left-shift + conditional
|
||||
* subtract) is just as costly as constant-time modular division by 2
|
||||
* (conditional add + right-shift). So, skip it and keep things simple.
|
||||
*/
|
||||
if (I != NULL) {
|
||||
/* This is called t2 in Alg 7 (no name in Alg 8). */
|
||||
mpi_core_sub_mod(d, q, r, N, N_limbs);
|
||||
|
||||
/* t3 (the thing that's kept) */
|
||||
memcpy(t1, d, N_limbs * ciL);
|
||||
mbedtls_mpi_core_cond_assign(t1, r, N_limbs, u_odd_v_odd);
|
||||
|
||||
/* t4 (the thing that's shifted) */
|
||||
memcpy(t2, r, N_limbs * ciL);
|
||||
mbedtls_mpi_core_cond_assign(t2, q, N_limbs, u_odd_v_even);
|
||||
mbedtls_mpi_core_cond_assign(t2, d, N_limbs, u_odd_v_odd);
|
||||
|
||||
mbedtls_mpi_core_div2_mod_odd(t2, N, N_limbs);
|
||||
|
||||
/* Update and possibly swap */
|
||||
memcpy(r, t1, N_limbs * ciL);
|
||||
memcpy(q, t2, N_limbs * ciL);
|
||||
mbedtls_mpi_core_cond_swap(r, q, N_limbs, swap);
|
||||
}
|
||||
}
|
||||
|
||||
/* G and I already hold the correct values by virtue of being aliased */
|
||||
}
|
||||
|
||||
#endif /* MBEDTLS_BIGNUM_C */
|
||||
|
@@ -822,4 +822,45 @@ void mbedtls_mpi_core_from_mont_rep(mbedtls_mpi_uint *X,
|
||||
mbedtls_mpi_uint mm,
|
||||
mbedtls_mpi_uint *T);
|
||||
|
||||
/** Compute GCD(A, N) and optionally the inverse of A mod N if it exists.
|
||||
*
|
||||
* Requires N to be odd, 0 <= A <= N and A_limbs <= N_limbs.
|
||||
* When I != NULL, N (the modulus) must be greater than 1.
|
||||
*
|
||||
* A and N may not alias each other.
|
||||
* When I == NULL (computing only the GCD), G may alias A or N.
|
||||
* When I != NULL (computing the modular inverse), G or I may alias A
|
||||
* but none of them may alias N (the modulus).
|
||||
*
|
||||
* If any of the above preconditions is not met, output values are unspecified.
|
||||
*
|
||||
* \param[out] G The GCD of \p A and \p N.
|
||||
* Must have the same number of limbs as \p N.
|
||||
* \param[out] I The inverse of \p A modulo \p N if it exists (that is,
|
||||
* if \p G above is 1 on exit); indeterminate otherwise.
|
||||
* This must either be NULL (to only compute the GCD),
|
||||
* or have the same number of limbs as \p N.
|
||||
* \param[in] A The 1st operand of GCD and number to invert.
|
||||
* This value must be less than or equal to \p N.
|
||||
* \param A_limbs The number of limbs of \p A.
|
||||
* Must be less than or equal to \p N_limbs.
|
||||
* \param[in] N The 2nd operand of GCD and modulus for inversion.
|
||||
* This value must be odd.
|
||||
* If I != NULL this value must be greater than 1.
|
||||
* \param N_limbs The number of limbs of \p N.
|
||||
* \param[in,out] T Temporary storage of size at least 5 * N_limbs limbs,
|
||||
* or 4 * N_limbs if \p I is NULL (GCD only).
|
||||
* Its initial content is unused and
|
||||
* its final content is indeterminate.
|
||||
* It must not alias or otherwise overlap any of the
|
||||
* other parameters.
|
||||
*/
|
||||
void mbedtls_mpi_core_gcd_modinv_odd(mbedtls_mpi_uint *G,
|
||||
mbedtls_mpi_uint *I,
|
||||
const mbedtls_mpi_uint *A,
|
||||
size_t A_limbs,
|
||||
const mbedtls_mpi_uint *N,
|
||||
size_t N_limbs,
|
||||
mbedtls_mpi_uint *T);
|
||||
|
||||
#endif /* MBEDTLS_BIGNUM_CORE_H */
|
||||
|
@@ -13,11 +13,26 @@
|
||||
|
||||
#include "bignum_core.h"
|
||||
|
||||
#if defined(MBEDTLS_TEST_HOOKS) && !defined(MBEDTLS_THREADING_C)
|
||||
#if defined(MBEDTLS_TEST_HOOKS)
|
||||
|
||||
#if !defined(MBEDTLS_THREADING_C)
|
||||
|
||||
extern void (*mbedtls_safe_codepath_hook)(void);
|
||||
extern void (*mbedtls_unsafe_codepath_hook)(void);
|
||||
|
||||
#endif /* MBEDTLS_TEST_HOOKS && !MBEDTLS_THREADING_C */
|
||||
#endif /* !MBEDTLS_THREADING_C */
|
||||
|
||||
/** Divide X by 2 mod N in place, assuming N is odd.
|
||||
*
|
||||
* \param[in,out] X The value to divide by 2 mod \p N.
|
||||
* \param[in] N The modulus. Must be odd.
|
||||
* \param[in] limbs The number of limbs in \p X and \p N.
|
||||
*/
|
||||
MBEDTLS_STATIC_TESTABLE
|
||||
void mbedtls_mpi_core_div2_mod_odd(mbedtls_mpi_uint *X,
|
||||
const mbedtls_mpi_uint *N,
|
||||
size_t limbs);
|
||||
|
||||
#endif /* MBEDTLS_TEST_HOOKS */
|
||||
|
||||
#endif /* MBEDTLS_BIGNUM_CORE_INVASIVE_H */
|
||||
|
@@ -47,4 +47,76 @@ int mbedtls_mpi_exp_mod_unsafe(mbedtls_mpi *X, const mbedtls_mpi *A,
|
||||
const mbedtls_mpi *E, const mbedtls_mpi *N,
|
||||
mbedtls_mpi *prec_RR);
|
||||
|
||||
/**
|
||||
* \brief A wrapper around a constant time function to compute
|
||||
* GCD(A, N) and/or A^-1 mod N if it exists.
|
||||
*
|
||||
* \warning Requires N to be odd, and 0 <= A <= N. Additionally, if
|
||||
* I != NULL, requires N > 1.
|
||||
* The wrapper part of this function is not constant time.
|
||||
*
|
||||
* \note A and N must not alias each other.
|
||||
* When I == NULL (computing only the GCD), G can alias A or N.
|
||||
* When I != NULL (computing the modular inverse), G or I can
|
||||
* alias A, but neither of them can alias N (the modulus).
|
||||
*
|
||||
* \param[out] G The GCD of \p A and \p N.
|
||||
* This may be NULL, to only compute I.
|
||||
* \param[out] I The inverse of \p A modulo \p N if it exists (that is,
|
||||
* if \p G above is 1 on exit), in the range [1, \p N);
|
||||
* indeterminate otherwise.
|
||||
* This may be NULL, to only compute G.
|
||||
* \param[in] A The 1st operand of GCD and number to invert.
|
||||
* This value must be less than or equal to \p N.
|
||||
* \param[in] N The 2nd operand of GCD and modulus for inversion.
|
||||
* Must be odd or the results are indeterminate.
|
||||
*
|
||||
* \return \c 0 if successful.
|
||||
* \return #MBEDTLS_ERR_MPI_ALLOC_FAILED if a memory allocation failed.
|
||||
* \return #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if preconditions were not
|
||||
* met.
|
||||
*/
|
||||
int mbedtls_mpi_gcd_modinv_odd(mbedtls_mpi *G,
|
||||
mbedtls_mpi *I,
|
||||
const mbedtls_mpi *A,
|
||||
const mbedtls_mpi *N);
|
||||
|
||||
/**
|
||||
* \brief Modular inverse: X = A^-1 mod N with N odd
|
||||
*
|
||||
* \param[out] X The inverse of \p A modulo \p N in the range [1, \p N)
|
||||
* on success; indeterminate otherwise.
|
||||
* \param[in] A The number to invert.
|
||||
* \param[in] N The modulus. Must be odd and greater than 1.
|
||||
*
|
||||
* \return \c 0 if successful.
|
||||
* \return #MBEDTLS_ERR_MPI_ALLOC_FAILED if a memory allocation failed.
|
||||
* \return #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if preconditions were not
|
||||
* met.
|
||||
* \return #MBEDTLS_ERR_MPI_NOT_ACCEPTABLE if A is not invertible mod N.
|
||||
*/
|
||||
int mbedtls_mpi_inv_mod_odd(mbedtls_mpi *X,
|
||||
const mbedtls_mpi *A,
|
||||
const mbedtls_mpi *N);
|
||||
|
||||
/**
|
||||
* \brief Modular inverse: X = A^-1 mod N with N even,
|
||||
* A odd and 1 < A < N.
|
||||
*
|
||||
* \param[out] X The inverse of \p A modulo \p N in the range [1, \p N)
|
||||
* on success; indeterminate otherwise.
|
||||
* \param[in] A The number to invert. Must be odd, greated than 1
|
||||
* and less than \p N.
|
||||
* \param[in] N The modulus. Must be even and greater than 1.
|
||||
*
|
||||
* \return \c 0 if successful.
|
||||
* \return #MBEDTLS_ERR_MPI_ALLOC_FAILED if a memory allocation failed.
|
||||
* \return #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if preconditions were not
|
||||
* met.
|
||||
* \return #MBEDTLS_ERR_MPI_NOT_ACCEPTABLE if A is not invertible mod N.
|
||||
*/
|
||||
int mbedtls_mpi_inv_mod_even_in_range(mbedtls_mpi *X,
|
||||
mbedtls_mpi const *A,
|
||||
mbedtls_mpi const *N);
|
||||
|
||||
#endif /* bignum_internal.h */
|
||||
|
@@ -846,7 +846,8 @@ static void add_pkcs_padding(unsigned char *output, size_t output_len,
|
||||
*/
|
||||
MBEDTLS_STATIC_TESTABLE int mbedtls_get_pkcs_padding(unsigned char *input,
|
||||
size_t input_len,
|
||||
size_t *data_len)
|
||||
size_t *data_len,
|
||||
size_t *invalid_padding)
|
||||
{
|
||||
size_t i, pad_idx;
|
||||
unsigned char padding_len;
|
||||
@@ -872,7 +873,8 @@ MBEDTLS_STATIC_TESTABLE int mbedtls_get_pkcs_padding(unsigned char *input,
|
||||
/* If the padding is invalid, set the output length to 0 */
|
||||
*data_len = mbedtls_ct_if(bad, 0, input_len - padding_len);
|
||||
|
||||
return mbedtls_ct_error_if_else_0(bad, MBEDTLS_ERR_CIPHER_INVALID_PADDING);
|
||||
*invalid_padding = mbedtls_ct_size_if_else_0(bad, SIZE_MAX);
|
||||
return 0;
|
||||
}
|
||||
#endif /* MBEDTLS_CIPHER_PADDING_PKCS7 */
|
||||
|
||||
@@ -893,7 +895,7 @@ static void add_one_and_zeros_padding(unsigned char *output,
|
||||
}
|
||||
|
||||
static int get_one_and_zeros_padding(unsigned char *input, size_t input_len,
|
||||
size_t *data_len)
|
||||
size_t *data_len, size_t *invalid_padding)
|
||||
{
|
||||
if (NULL == input || NULL == data_len) {
|
||||
return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
|
||||
@@ -916,7 +918,8 @@ static int get_one_and_zeros_padding(unsigned char *input, size_t input_len,
|
||||
in_padding = mbedtls_ct_bool_and(in_padding, mbedtls_ct_bool_not(is_nonzero));
|
||||
}
|
||||
|
||||
return mbedtls_ct_error_if_else_0(bad, MBEDTLS_ERR_CIPHER_INVALID_PADDING);
|
||||
*invalid_padding = mbedtls_ct_size_if_else_0(bad, SIZE_MAX);
|
||||
return 0;
|
||||
}
|
||||
#endif /* MBEDTLS_CIPHER_PADDING_ONE_AND_ZEROS */
|
||||
|
||||
@@ -937,7 +940,7 @@ static void add_zeros_and_len_padding(unsigned char *output,
|
||||
}
|
||||
|
||||
static int get_zeros_and_len_padding(unsigned char *input, size_t input_len,
|
||||
size_t *data_len)
|
||||
size_t *data_len, size_t *invalid_padding)
|
||||
{
|
||||
size_t i, pad_idx;
|
||||
unsigned char padding_len;
|
||||
@@ -963,7 +966,8 @@ static int get_zeros_and_len_padding(unsigned char *input, size_t input_len,
|
||||
bad = mbedtls_ct_bool_or(bad, nonzero_pad_byte);
|
||||
}
|
||||
|
||||
return mbedtls_ct_error_if_else_0(bad, MBEDTLS_ERR_CIPHER_INVALID_PADDING);
|
||||
*invalid_padding = mbedtls_ct_size_if_else_0(bad, SIZE_MAX);
|
||||
return 0;
|
||||
}
|
||||
#endif /* MBEDTLS_CIPHER_PADDING_ZEROS_AND_LEN */
|
||||
|
||||
@@ -978,7 +982,7 @@ static void add_zeros_padding(unsigned char *output,
|
||||
}
|
||||
|
||||
static int get_zeros_padding(unsigned char *input, size_t input_len,
|
||||
size_t *data_len)
|
||||
size_t *data_len, size_t *invalid_padding)
|
||||
{
|
||||
size_t i;
|
||||
mbedtls_ct_condition_t done = MBEDTLS_CT_FALSE, prev_done;
|
||||
@@ -994,6 +998,7 @@ static int get_zeros_padding(unsigned char *input, size_t input_len,
|
||||
*data_len = mbedtls_ct_size_if(mbedtls_ct_bool_ne(done, prev_done), i, *data_len);
|
||||
}
|
||||
|
||||
*invalid_padding = 0;
|
||||
return 0;
|
||||
}
|
||||
#endif /* MBEDTLS_CIPHER_PADDING_ZEROS */
|
||||
@@ -1005,20 +1010,21 @@ static int get_zeros_padding(unsigned char *input, size_t input_len,
|
||||
* but a trivial get_padding function
|
||||
*/
|
||||
static int get_no_padding(unsigned char *input, size_t input_len,
|
||||
size_t *data_len)
|
||||
size_t *data_len, size_t *invalid_padding)
|
||||
{
|
||||
if (NULL == input || NULL == data_len) {
|
||||
return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
*data_len = input_len;
|
||||
|
||||
*invalid_padding = 0;
|
||||
return 0;
|
||||
}
|
||||
#endif /* MBEDTLS_CIPHER_MODE_WITH_PADDING */
|
||||
|
||||
int mbedtls_cipher_finish(mbedtls_cipher_context_t *ctx,
|
||||
unsigned char *output, size_t *olen)
|
||||
int mbedtls_cipher_finish_padded(mbedtls_cipher_context_t *ctx,
|
||||
unsigned char *output, size_t *olen,
|
||||
size_t *invalid_padding)
|
||||
{
|
||||
if (ctx->cipher_info == NULL) {
|
||||
return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
|
||||
@@ -1034,6 +1040,7 @@ int mbedtls_cipher_finish(mbedtls_cipher_context_t *ctx,
|
||||
#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
|
||||
|
||||
*olen = 0;
|
||||
*invalid_padding = 0;
|
||||
|
||||
#if defined(MBEDTLS_CIPHER_MODE_WITH_PADDING)
|
||||
/* CBC mode requires padding so we make sure a call to
|
||||
@@ -1110,7 +1117,7 @@ int mbedtls_cipher_finish(mbedtls_cipher_context_t *ctx,
|
||||
/* Set output size for decryption */
|
||||
if (MBEDTLS_DECRYPT == ctx->operation) {
|
||||
return ctx->get_padding(output, mbedtls_cipher_get_block_size(ctx),
|
||||
olen);
|
||||
olen, invalid_padding);
|
||||
}
|
||||
|
||||
/* Set output size for encryption */
|
||||
@@ -1124,6 +1131,19 @@ int mbedtls_cipher_finish(mbedtls_cipher_context_t *ctx,
|
||||
return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
|
||||
}
|
||||
|
||||
int mbedtls_cipher_finish(mbedtls_cipher_context_t *ctx,
|
||||
unsigned char *output, size_t *olen)
|
||||
{
|
||||
size_t invalid_padding = 0;
|
||||
int ret = mbedtls_cipher_finish_padded(ctx, output, olen,
|
||||
&invalid_padding);
|
||||
if (ret == 0) {
|
||||
ret = mbedtls_ct_error_if_else_0(invalid_padding,
|
||||
MBEDTLS_ERR_CIPHER_INVALID_PADDING);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
#if defined(MBEDTLS_CIPHER_MODE_WITH_PADDING)
|
||||
int mbedtls_cipher_set_padding_mode(mbedtls_cipher_context_t *ctx,
|
||||
mbedtls_cipher_padding_t mode)
|
||||
@@ -1393,14 +1413,17 @@ int mbedtls_cipher_crypt(mbedtls_cipher_context_t *ctx,
|
||||
return ret;
|
||||
}
|
||||
|
||||
if ((ret = mbedtls_cipher_finish(ctx, output + *olen,
|
||||
&finish_olen)) != 0) {
|
||||
size_t invalid_padding = 0;
|
||||
if ((ret = mbedtls_cipher_finish_padded(ctx, output + *olen,
|
||||
&finish_olen,
|
||||
&invalid_padding)) != 0) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
*olen += finish_olen;
|
||||
|
||||
return 0;
|
||||
ret = mbedtls_ct_error_if_else_0(invalid_padding,
|
||||
MBEDTLS_ERR_CIPHER_INVALID_PADDING);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#if defined(MBEDTLS_CIPHER_MODE_AEAD)
|
||||
|
@@ -20,7 +20,8 @@
|
||||
|
||||
MBEDTLS_STATIC_TESTABLE int mbedtls_get_pkcs_padding(unsigned char *input,
|
||||
size_t input_len,
|
||||
size_t *data_len);
|
||||
size_t *data_len,
|
||||
size_t *invalid_padding);
|
||||
|
||||
#endif
|
||||
|
||||
|
@@ -18,6 +18,7 @@
|
||||
#if defined(MBEDTLS_DHM_C)
|
||||
|
||||
#include "mbedtls/dhm.h"
|
||||
#include "bignum_internal.h"
|
||||
#include "mbedtls/platform_util.h"
|
||||
#include "mbedtls/error.h"
|
||||
|
||||
@@ -344,9 +345,6 @@ static int dhm_update_blinding(mbedtls_dhm_context *ctx,
|
||||
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
|
||||
{
|
||||
int ret;
|
||||
mbedtls_mpi R;
|
||||
|
||||
mbedtls_mpi_init(&R);
|
||||
|
||||
/*
|
||||
* Don't use any blinding the first time a particular X is used,
|
||||
@@ -381,21 +379,11 @@ static int dhm_update_blinding(mbedtls_dhm_context *ctx,
|
||||
/* Vi = random( 2, P-2 ) */
|
||||
MBEDTLS_MPI_CHK(dhm_random_below(&ctx->Vi, &ctx->P, f_rng, p_rng));
|
||||
|
||||
/* Vf = Vi^-X mod P
|
||||
* First compute Vi^-1 = R * (R Vi)^-1, (avoiding leaks from inv_mod),
|
||||
* then elevate to the Xth power. */
|
||||
MBEDTLS_MPI_CHK(dhm_random_below(&R, &ctx->P, f_rng, p_rng));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vf, &ctx->Vi, &R));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vf, &ctx->Vf, &ctx->P));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&ctx->Vf, &ctx->Vf, &ctx->P));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vf, &ctx->Vf, &R));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vf, &ctx->Vf, &ctx->P));
|
||||
|
||||
/* Vf = Vi^-X = (Vi^-1)^X mod P */
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_gcd_modinv_odd(NULL, &ctx->Vf, &ctx->Vi, &ctx->P));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&ctx->Vf, &ctx->Vf, &ctx->X, &ctx->P, &ctx->RP));
|
||||
|
||||
cleanup:
|
||||
mbedtls_mpi_free(&R);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
@@ -17,6 +17,7 @@
|
||||
|
||||
#include "mbedtls/ecdsa.h"
|
||||
#include "mbedtls/asn1write.h"
|
||||
#include "bignum_internal.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
@@ -251,7 +252,7 @@ int mbedtls_ecdsa_sign_restartable(mbedtls_ecp_group *grp,
|
||||
int ret, key_tries, sign_tries;
|
||||
int *p_sign_tries = &sign_tries, *p_key_tries = &key_tries;
|
||||
mbedtls_ecp_point R;
|
||||
mbedtls_mpi k, e, t;
|
||||
mbedtls_mpi k, e;
|
||||
mbedtls_mpi *pk = &k, *pr = r;
|
||||
|
||||
/* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */
|
||||
@@ -265,7 +266,7 @@ int mbedtls_ecdsa_sign_restartable(mbedtls_ecp_group *grp,
|
||||
}
|
||||
|
||||
mbedtls_ecp_point_init(&R);
|
||||
mbedtls_mpi_init(&k); mbedtls_mpi_init(&e); mbedtls_mpi_init(&t);
|
||||
mbedtls_mpi_init(&k); mbedtls_mpi_init(&e);
|
||||
|
||||
ECDSA_RS_ENTER(sig);
|
||||
|
||||
@@ -340,21 +341,11 @@ modn:
|
||||
MBEDTLS_MPI_CHK(derive_mpi(grp, &e, buf, blen));
|
||||
|
||||
/*
|
||||
* Generate a random value to blind inv_mod in next step,
|
||||
* avoiding a potential timing leak.
|
||||
*/
|
||||
MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, &t, f_rng_blind,
|
||||
p_rng_blind));
|
||||
|
||||
/*
|
||||
* Step 6: compute s = (e + r * d) / k = t (e + rd) / (kt) mod n
|
||||
* Step 6: compute s = (e + r * d) / k
|
||||
*/
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(s, pr, d));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&e, &e, s));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&e, &e, &t));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(pk, pk, &t));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(pk, pk, &grp->N));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(s, pk, &grp->N));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_gcd_modinv_odd(NULL, s, pk, &grp->N));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(s, s, &e));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(s, s, &grp->N));
|
||||
} while (mbedtls_mpi_cmp_int(s, 0) == 0);
|
||||
@@ -367,7 +358,7 @@ modn:
|
||||
|
||||
cleanup:
|
||||
mbedtls_ecp_point_free(&R);
|
||||
mbedtls_mpi_free(&k); mbedtls_mpi_free(&e); mbedtls_mpi_free(&t);
|
||||
mbedtls_mpi_free(&k); mbedtls_mpi_free(&e);
|
||||
|
||||
ECDSA_RS_LEAVE(sig);
|
||||
|
||||
@@ -540,7 +531,7 @@ int mbedtls_ecdsa_verify_restartable(mbedtls_ecp_group *grp,
|
||||
*/
|
||||
ECDSA_BUDGET(MBEDTLS_ECP_OPS_CHK + MBEDTLS_ECP_OPS_INV + 2);
|
||||
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&s_inv, s, &grp->N));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_gcd_modinv_odd(NULL, &s_inv, s, &grp->N));
|
||||
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(pu1, &e, &s_inv));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(pu1, pu1, &grp->N));
|
||||
|
@@ -68,6 +68,7 @@
|
||||
#include "mbedtls/error.h"
|
||||
|
||||
#include "bn_mul.h"
|
||||
#include "bignum_internal.h"
|
||||
#include "ecp_invasive.h"
|
||||
|
||||
#include <string.h>
|
||||
@@ -1173,7 +1174,7 @@ cleanup:
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int_mod(grp, X, A, c))
|
||||
|
||||
#define MPI_ECP_INV(dst, src) \
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod((dst), (src), &grp->P))
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_gcd_modinv_odd(NULL, (dst), (src), &grp->P))
|
||||
|
||||
#define MPI_ECP_MOV(X, A) \
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A))
|
||||
@@ -2201,21 +2202,6 @@ static int ecp_mul_comb_after_precomp(const mbedtls_ecp_group *grp,
|
||||
final_norm:
|
||||
MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
|
||||
#endif
|
||||
/*
|
||||
* Knowledge of the jacobian coordinates may leak the last few bits of the
|
||||
* scalar [1], and since our MPI implementation isn't constant-flow,
|
||||
* inversion (used for coordinate normalization) may leak the full value
|
||||
* of its input via side-channels [2].
|
||||
*
|
||||
* [1] https://eprint.iacr.org/2003/191
|
||||
* [2] https://eprint.iacr.org/2020/055
|
||||
*
|
||||
* Avoid the leak by randomizing coordinates before we normalize them.
|
||||
*/
|
||||
if (f_rng != 0) {
|
||||
MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, RR, f_rng, p_rng));
|
||||
}
|
||||
|
||||
MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, RR));
|
||||
|
||||
#if defined(MBEDTLS_ECP_RESTARTABLE)
|
||||
@@ -2594,18 +2580,6 @@ static int ecp_mul_mxz(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
|
||||
MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
|
||||
}
|
||||
|
||||
/*
|
||||
* Knowledge of the projective coordinates may leak the last few bits of the
|
||||
* scalar [1], and since our MPI implementation isn't constant-flow,
|
||||
* inversion (used for coordinate normalization) may leak the full value
|
||||
* of its input via side-channels [2].
|
||||
*
|
||||
* [1] https://eprint.iacr.org/2003/191
|
||||
* [2] https://eprint.iacr.org/2020/055
|
||||
*
|
||||
* Avoid the leak by randomizing coordinates before we normalize them.
|
||||
*/
|
||||
MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, R, f_rng, p_rng));
|
||||
MBEDTLS_MPI_CHK(ecp_normalize_mxz(grp, R));
|
||||
|
||||
cleanup:
|
||||
|
@@ -73,6 +73,8 @@
|
||||
#include "mbedtls/psa_util.h"
|
||||
#include "mbedtls/threading.h"
|
||||
|
||||
#include "constant_time_internal.h"
|
||||
|
||||
#if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF) || \
|
||||
defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT) || \
|
||||
defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXPAND)
|
||||
@@ -4692,13 +4694,27 @@ psa_status_t psa_cipher_finish(psa_cipher_operation_t *operation,
|
||||
output_length);
|
||||
|
||||
exit:
|
||||
if (status == PSA_SUCCESS) {
|
||||
status = psa_cipher_abort(operation);
|
||||
} else {
|
||||
*output_length = 0;
|
||||
(void) psa_cipher_abort(operation);
|
||||
/* C99 doesn't allow a declaration to follow a label */;
|
||||
psa_status_t abort_status = psa_cipher_abort(operation);
|
||||
/* Normally abort shouldn't fail unless the operation is in a bad
|
||||
* state, in which case we'd expect finish to fail with the same error.
|
||||
* So it doesn't matter much which call's error code we pick when both
|
||||
* fail. However, in unauthenticated decryption specifically, the
|
||||
* distinction between PSA_SUCCESS and PSA_ERROR_INVALID_PADDING is
|
||||
* security-sensitive (risk of a padding oracle attack), so here we
|
||||
* must not have a code path that depends on the value of status. */
|
||||
if (abort_status != PSA_SUCCESS) {
|
||||
status = abort_status;
|
||||
}
|
||||
|
||||
/* Set *output_length to 0 if status != PSA_SUCCESS, without
|
||||
* leaking the value of status through a timing side channel
|
||||
* (status == PSA_ERROR_INVALID_PADDING is sensitive when doing
|
||||
* unpadded decryption, due to the risk of padding oracle attack). */
|
||||
mbedtls_ct_condition_t success =
|
||||
mbedtls_ct_bool_not(mbedtls_ct_bool(status));
|
||||
*output_length = mbedtls_ct_size_if_else_0(success, *output_length);
|
||||
|
||||
LOCAL_OUTPUT_FREE(output_external, output);
|
||||
|
||||
return status;
|
||||
@@ -4841,13 +4857,17 @@ psa_status_t psa_cipher_decrypt(mbedtls_svc_key_id_t key,
|
||||
|
||||
exit:
|
||||
unlock_status = psa_unregister_read_under_mutex(slot);
|
||||
if (status == PSA_SUCCESS) {
|
||||
if (unlock_status != PSA_SUCCESS) {
|
||||
status = unlock_status;
|
||||
}
|
||||
|
||||
if (status != PSA_SUCCESS) {
|
||||
*output_length = 0;
|
||||
}
|
||||
/* Set *output_length to 0 if status != PSA_SUCCESS, without
|
||||
* leaking the value of status through a timing side channel
|
||||
* (status == PSA_ERROR_INVALID_PADDING is sensitive when doing
|
||||
* unpadded decryption, due to the risk of padding oracle attack). */
|
||||
mbedtls_ct_condition_t success =
|
||||
mbedtls_ct_bool_not(mbedtls_ct_bool(status));
|
||||
*output_length = mbedtls_ct_size_if_else_0(success, *output_length);
|
||||
|
||||
LOCAL_INPUT_FREE(input_external, input);
|
||||
LOCAL_OUTPUT_FREE(output_external, output);
|
||||
|
@@ -13,6 +13,7 @@
|
||||
#include "psa_crypto_cipher.h"
|
||||
#include "psa_crypto_core.h"
|
||||
#include "psa_crypto_random_impl.h"
|
||||
#include "constant_time_internal.h"
|
||||
|
||||
#include "mbedtls/cipher.h"
|
||||
#include "mbedtls/error.h"
|
||||
@@ -551,7 +552,19 @@ psa_status_t mbedtls_psa_cipher_finish(
|
||||
uint8_t *output, size_t output_size, size_t *output_length)
|
||||
{
|
||||
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
|
||||
uint8_t temp_output_buffer[MBEDTLS_MAX_BLOCK_LENGTH];
|
||||
size_t invalid_padding = 0;
|
||||
|
||||
/* We will copy output_size bytes from temp_output_buffer to the
|
||||
* output buffer. We can't use *output_length to determine how
|
||||
* much to copy because we must not leak that value through timing
|
||||
* when doing decryption with unpadding. But the underlying function
|
||||
* is not guaranteed to write beyond *output_length. To ensure we don't
|
||||
* leak the former content of the stack to the caller, wipe that
|
||||
* former content. */
|
||||
uint8_t temp_output_buffer[MBEDTLS_MAX_BLOCK_LENGTH] = { 0 };
|
||||
if (output_size > sizeof(temp_output_buffer)) {
|
||||
output_size = sizeof(temp_output_buffer);
|
||||
}
|
||||
|
||||
if (operation->ctx.cipher.unprocessed_len != 0) {
|
||||
if (operation->alg == PSA_ALG_ECB_NO_PADDING ||
|
||||
@@ -562,25 +575,34 @@ psa_status_t mbedtls_psa_cipher_finish(
|
||||
}
|
||||
|
||||
status = mbedtls_to_psa_error(
|
||||
mbedtls_cipher_finish(&operation->ctx.cipher,
|
||||
temp_output_buffer,
|
||||
output_length));
|
||||
mbedtls_cipher_finish_padded(&operation->ctx.cipher,
|
||||
temp_output_buffer,
|
||||
output_length,
|
||||
&invalid_padding));
|
||||
if (status != PSA_SUCCESS) {
|
||||
goto exit;
|
||||
}
|
||||
|
||||
if (*output_length == 0) {
|
||||
if (output_size == 0) {
|
||||
; /* Nothing to copy. Note that output may be NULL in this case. */
|
||||
} else if (output_size >= *output_length) {
|
||||
memcpy(output, temp_output_buffer, *output_length);
|
||||
} else {
|
||||
status = PSA_ERROR_BUFFER_TOO_SMALL;
|
||||
/* Do not use the value of *output_length to determine how much
|
||||
* to copy. When decrypting a padded cipher, the output length is
|
||||
* sensitive, and leaking it could allow a padding oracle attack. */
|
||||
memcpy(output, temp_output_buffer, output_size);
|
||||
}
|
||||
|
||||
status = mbedtls_ct_error_if_else_0(invalid_padding,
|
||||
PSA_ERROR_INVALID_PADDING);
|
||||
mbedtls_ct_condition_t buffer_too_small =
|
||||
mbedtls_ct_uint_lt(output_size, *output_length);
|
||||
status = mbedtls_ct_error_if(buffer_too_small,
|
||||
PSA_ERROR_BUFFER_TOO_SMALL,
|
||||
status);
|
||||
|
||||
exit:
|
||||
mbedtls_platform_zeroize(temp_output_buffer,
|
||||
sizeof(temp_output_buffer));
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
@@ -701,17 +723,21 @@ psa_status_t mbedtls_psa_cipher_decrypt(
|
||||
&operation,
|
||||
mbedtls_buffer_offset(output, accumulated_length),
|
||||
output_size - accumulated_length, &olength);
|
||||
if (status != PSA_SUCCESS) {
|
||||
goto exit;
|
||||
}
|
||||
|
||||
*output_length = accumulated_length + olength;
|
||||
|
||||
exit:
|
||||
if (status == PSA_SUCCESS) {
|
||||
status = mbedtls_psa_cipher_abort(&operation);
|
||||
} else {
|
||||
mbedtls_psa_cipher_abort(&operation);
|
||||
/* C99 doesn't allow a declaration to follow a label */;
|
||||
psa_status_t abort_status = mbedtls_psa_cipher_abort(&operation);
|
||||
/* Normally abort shouldn't fail unless the operation is in a bad
|
||||
* state, in which case we'd expect finish to fail with the same error.
|
||||
* So it doesn't matter much which call's error code we pick when both
|
||||
* fail. However, in unauthenticated decryption specifically, the
|
||||
* distinction between PSA_SUCCESS and PSA_ERROR_INVALID_PADDING is
|
||||
* security-sensitive (risk of a padding oracle attack), so here we
|
||||
* must not have a code path that depends on the value of status. */
|
||||
if (abort_status != PSA_SUCCESS) {
|
||||
status = abort_status;
|
||||
}
|
||||
|
||||
return status;
|
||||
|
@@ -1047,7 +1047,7 @@ int mbedtls_rsa_gen_key(mbedtls_rsa_context *ctx,
|
||||
unsigned int nbits, int exponent)
|
||||
{
|
||||
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
||||
mbedtls_mpi H, G, L;
|
||||
mbedtls_mpi H;
|
||||
int prime_quality = 0;
|
||||
|
||||
/*
|
||||
@@ -1060,8 +1060,6 @@ int mbedtls_rsa_gen_key(mbedtls_rsa_context *ctx,
|
||||
}
|
||||
|
||||
mbedtls_mpi_init(&H);
|
||||
mbedtls_mpi_init(&G);
|
||||
mbedtls_mpi_init(&L);
|
||||
|
||||
if (exponent < 3 || nbits % 2 != 0) {
|
||||
ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
|
||||
@@ -1099,35 +1097,28 @@ int mbedtls_rsa_gen_key(mbedtls_rsa_context *ctx,
|
||||
mbedtls_mpi_swap(&ctx->P, &ctx->Q);
|
||||
}
|
||||
|
||||
/* Temporarily replace P,Q by P-1, Q-1 */
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&ctx->P, &ctx->P, 1));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&ctx->Q, &ctx->Q, 1));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&H, &ctx->P, &ctx->Q));
|
||||
|
||||
/* check GCD( E, (P-1)*(Q-1) ) == 1 (FIPS 186-4 §B.3.1 criterion 2(a)) */
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, &ctx->E, &H));
|
||||
if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
|
||||
/* Compute D = E^-1 mod LCM(P-1, Q-1) (FIPS 186-4 §B.3.1 criterion 3(b))
|
||||
* if it exists (FIPS 186-4 §B.3.1 criterion 2(a)) */
|
||||
ret = mbedtls_rsa_deduce_private_exponent(&ctx->P, &ctx->Q, &ctx->E, &ctx->D);
|
||||
if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
|
||||
mbedtls_mpi_lset(&ctx->D, 0); /* needed for the next call */
|
||||
continue;
|
||||
}
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
/* compute smallest possible D = E^-1 mod LCM(P-1, Q-1) (FIPS 186-4 §B.3.1 criterion 3(b)) */
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, &ctx->P, &ctx->Q));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&L, NULL, &H, &G));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&ctx->D, &ctx->E, &L));
|
||||
|
||||
if (mbedtls_mpi_bitlen(&ctx->D) <= ((nbits + 1) / 2)) { // (FIPS 186-4 §B.3.1 criterion 3(a))
|
||||
/* (FIPS 186-4 §B.3.1 criterion 3(a)) */
|
||||
if (mbedtls_mpi_bitlen(&ctx->D) <= ((nbits + 1) / 2)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
break;
|
||||
} while (1);
|
||||
|
||||
/* Restore P,Q */
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&ctx->P, &ctx->P, 1));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&ctx->Q, &ctx->Q, 1));
|
||||
|
||||
/* N = P * Q */
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->N, &ctx->P, &ctx->Q));
|
||||
|
||||
ctx->len = mbedtls_mpi_size(&ctx->N);
|
||||
|
||||
#if !defined(MBEDTLS_RSA_NO_CRT)
|
||||
@@ -1146,8 +1137,6 @@ int mbedtls_rsa_gen_key(mbedtls_rsa_context *ctx,
|
||||
cleanup:
|
||||
|
||||
mbedtls_mpi_free(&H);
|
||||
mbedtls_mpi_free(&G);
|
||||
mbedtls_mpi_free(&L);
|
||||
|
||||
if (ret != 0) {
|
||||
mbedtls_rsa_free(ctx);
|
||||
@@ -1304,33 +1293,16 @@ static int rsa_prepare_blinding(mbedtls_rsa_context *ctx,
|
||||
}
|
||||
|
||||
/* Unblinding value: Vf = random number, invertible mod N */
|
||||
mbedtls_mpi_lset(&R, 0);
|
||||
do {
|
||||
if (count++ > 10) {
|
||||
ret = MBEDTLS_ERR_RSA_RNG_FAILED;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&ctx->Vf, ctx->len - 1, f_rng, p_rng));
|
||||
|
||||
/* Compute Vf^-1 as R * (R Vf)^-1 to avoid leaks from inv_mod. */
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, ctx->len - 1, f_rng, p_rng));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vf, &R));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N));
|
||||
|
||||
/* At this point, Vi is invertible mod N if and only if both Vf and R
|
||||
* are invertible mod N. If one of them isn't, we don't need to know
|
||||
* which one, we just loop and choose new values for both of them.
|
||||
* (Each iteration succeeds with overwhelming probability.) */
|
||||
ret = mbedtls_mpi_inv_mod(&ctx->Vi, &ctx->Vi, &ctx->N);
|
||||
if (ret != 0 && ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
} while (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE);
|
||||
|
||||
/* Finish the computation of Vf^-1 = R * (R Vf)^-1 */
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vi, &R));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_random(&ctx->Vf, 1, &ctx->N, f_rng, p_rng));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_gcd_modinv_odd(&R, &ctx->Vi, &ctx->Vf, &ctx->N));
|
||||
} while (mbedtls_mpi_cmp_int(&R, 1) != 0);
|
||||
|
||||
/* Blinding value: Vi = Vf^(-e) mod N
|
||||
* (Vi already contains Vf^-1 at this point) */
|
||||
|
@@ -12,6 +12,7 @@
|
||||
|
||||
#include "mbedtls/rsa.h"
|
||||
#include "mbedtls/bignum.h"
|
||||
#include "bignum_internal.h"
|
||||
#include "rsa_alt_helpers.h"
|
||||
|
||||
/*
|
||||
@@ -117,7 +118,7 @@ int mbedtls_rsa_deduce_primes(mbedtls_mpi const *N,
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&K, primes[attempt]));
|
||||
|
||||
/* Check if gcd(K,N) = 1 */
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_gcd_modinv_odd(P, NULL, &K, N));
|
||||
if (mbedtls_mpi_cmp_int(P, 1) != 0) {
|
||||
continue;
|
||||
}
|
||||
@@ -136,7 +137,7 @@ int mbedtls_rsa_deduce_primes(mbedtls_mpi const *N,
|
||||
}
|
||||
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&K, &K, 1));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_gcd_modinv_odd(P, NULL, &K, N));
|
||||
|
||||
if (mbedtls_mpi_cmp_int(P, 1) == 1 &&
|
||||
mbedtls_mpi_cmp_mpi(P, N) == -1) {
|
||||
@@ -197,6 +198,10 @@ int mbedtls_rsa_deduce_private_exponent(mbedtls_mpi const *P,
|
||||
return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (mbedtls_mpi_get_bit(E, 0) != 1) {
|
||||
return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
||||
}
|
||||
|
||||
mbedtls_mpi_init(&K);
|
||||
mbedtls_mpi_init(&L);
|
||||
|
||||
@@ -211,8 +216,11 @@ int mbedtls_rsa_deduce_private_exponent(mbedtls_mpi const *P,
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &L));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&K, NULL, &K, D));
|
||||
|
||||
/* Compute modular inverse of E in LCM(P-1, Q-1) */
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(D, E, &K));
|
||||
/* Compute modular inverse of E mod LCM(P-1, Q-1)
|
||||
* This is FIPS 186-4 §B.3.1 criterion 3(b).
|
||||
* This will return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE if E is not coprime to
|
||||
* (P-1)(Q-1), also validating FIPS 186-4 §B.3.1 criterion 2(a). */
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod_even_in_range(D, E, &K));
|
||||
|
||||
cleanup:
|
||||
|
||||
@@ -244,7 +252,7 @@ int mbedtls_rsa_deduce_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q,
|
||||
|
||||
/* QP = Q^{-1} mod P */
|
||||
if (QP != NULL) {
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(QP, Q, P));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod_odd(QP, Q, P));
|
||||
}
|
||||
|
||||
cleanup:
|
||||
|
@@ -89,12 +89,15 @@ int mbedtls_rsa_deduce_primes(mbedtls_mpi const *N, mbedtls_mpi const *E,
|
||||
* \param P First prime factor of RSA modulus
|
||||
* \param Q Second prime factor of RSA modulus
|
||||
* \param E RSA public exponent
|
||||
* \param D Pointer to MPI holding the private exponent on success.
|
||||
* \param D Pointer to MPI holding the private exponent on success,
|
||||
* i.e. the modular inverse of E modulo LCM(P-1,Q-1).
|
||||
*
|
||||
* \return
|
||||
* - 0 if successful. In this case, D is set to a simultaneous
|
||||
* modular inverse of E modulo both P-1 and Q-1.
|
||||
* - A non-zero error code otherwise.
|
||||
* \return \c 0 if successful.
|
||||
* \return #MBEDTLS_ERR_MPI_ALLOC_FAILED if a memory allocation failed.
|
||||
* \return #MBEDTLS_ERR_MPI_NOT_ACCEPTABLE if E is not coprime to P-1
|
||||
* and Q-1, that is, if GCD( E, (P-1)*(Q-1) ) != 1.
|
||||
* \return #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if inputs are otherwise
|
||||
* invalid.
|
||||
*
|
||||
* \note This function does not check whether P and Q are primes.
|
||||
*
|
||||
|
Reference in New Issue
Block a user