mirror of
https://github.com/Mbed-TLS/mbedtls.git
synced 2025-07-30 22:43:08 +03:00
Introduce new files rsa_internal.[ch] for RSA helper functions
This commit splits off the RSA helper functions into separate headers and compilation units to have a clearer separation of the public RSA interface, intended to be used by end-users, and the helper functions which are publicly provided only for the benefit of designers of alternative RSA implementations.
This commit is contained in:
475
library/rsa.c
475
library/rsa.c
@ -46,6 +46,7 @@
|
||||
#if defined(MBEDTLS_RSA_C)
|
||||
|
||||
#include "mbedtls/rsa.h"
|
||||
#include "mbedtls/rsa_internal.h"
|
||||
#include "mbedtls/oid.h"
|
||||
|
||||
#include <string.h>
|
||||
@ -67,483 +68,13 @@
|
||||
#define mbedtls_free free
|
||||
#endif
|
||||
|
||||
#if !defined(MBEDTLS_RSA_ALT)
|
||||
|
||||
/* Implementation that should never be optimized out by the compiler */
|
||||
static void mbedtls_zeroize( void *v, size_t n ) {
|
||||
volatile unsigned char *p = (unsigned char*)v; while( n-- ) *p++ = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Context-independent RSA helper functions.
|
||||
*
|
||||
* There are two classes of helper functions:
|
||||
* (1) Parameter-generating helpers. These are:
|
||||
* - mbedtls_rsa_deduce_primes
|
||||
* - mbedtls_rsa_deduce_private_exponent
|
||||
* - mbedtls_rsa_deduce_crt
|
||||
* Each of these functions takes a set of core RSA parameters
|
||||
* and generates some other, or CRT related parameters.
|
||||
* (2) Parameter-checking helpers. These are:
|
||||
* - mbedtls_rsa_validate_params
|
||||
* - mbedtls_rsa_validate_crt
|
||||
* They take a set of core or CRT related RSA parameters
|
||||
* and check their validity.
|
||||
*
|
||||
* The helper functions do not use the RSA context structure
|
||||
* and therefore do not need to be replaced when providing
|
||||
* an alternative RSA implementation.
|
||||
*
|
||||
* Their main purpose is to provide common MPI operations in the context
|
||||
* of RSA that can be easily shared across multiple implementations.
|
||||
*/
|
||||
|
||||
/*
|
||||
*
|
||||
* Given the modulus N=PQ and a pair of public and private
|
||||
* exponents E and D, respectively, factor N.
|
||||
*
|
||||
* Setting F := lcm(P-1,Q-1), the idea is as follows:
|
||||
*
|
||||
* (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2)
|
||||
* is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the
|
||||
* square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four
|
||||
* possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1)
|
||||
* or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime
|
||||
* factors of N.
|
||||
*
|
||||
* (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same
|
||||
* construction still applies since (-)^K is the identity on the set of
|
||||
* roots of 1 in Z/NZ.
|
||||
*
|
||||
* The public and private key primitives (-)^E and (-)^D are mutually inverse
|
||||
* bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e.
|
||||
* if and only if DE - 1 is a multiple of F, say DE - 1 = F * L.
|
||||
* Splitting L = 2^t * K with K odd, we have
|
||||
*
|
||||
* DE - 1 = FL = (F/2) * (2^(t+1)) * K,
|
||||
*
|
||||
* so (F / 2) * K is among the numbers
|
||||
*
|
||||
* (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord
|
||||
*
|
||||
* where ord is the order of 2 in (DE - 1).
|
||||
* We can therefore iterate through these numbers apply the construction
|
||||
* of (a) and (b) above to attempt to factor N.
|
||||
*
|
||||
*/
|
||||
int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N,
|
||||
mbedtls_mpi const *D, mbedtls_mpi const *E,
|
||||
mbedtls_mpi *P, mbedtls_mpi *Q )
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
uint16_t attempt; /* Number of current attempt */
|
||||
uint16_t iter; /* Number of squares computed in the current attempt */
|
||||
|
||||
uint16_t order; /* Order of 2 in DE - 1 */
|
||||
|
||||
mbedtls_mpi T; /* Holds largest odd divisor of DE - 1 */
|
||||
mbedtls_mpi K; /* During factorization attempts, stores a random integer
|
||||
* in the range of [0,..,N] */
|
||||
|
||||
const unsigned int primes[] = { 2,
|
||||
3, 5, 7, 11, 13, 17, 19, 23,
|
||||
29, 31, 37, 41, 43, 47, 53, 59,
|
||||
61, 67, 71, 73, 79, 83, 89, 97,
|
||||
101, 103, 107, 109, 113, 127, 131, 137,
|
||||
139, 149, 151, 157, 163, 167, 173, 179,
|
||||
181, 191, 193, 197, 199, 211, 223, 227,
|
||||
229, 233, 239, 241, 251, 257, 263, 269,
|
||||
271, 277, 281, 283, 293, 307, 311, 313
|
||||
};
|
||||
|
||||
const size_t num_primes = sizeof( primes ) / sizeof( *primes );
|
||||
|
||||
if( P == NULL || Q == NULL || P->p != NULL || Q->p != NULL )
|
||||
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
|
||||
|
||||
if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 ||
|
||||
mbedtls_mpi_cmp_int( D, 1 ) <= 0 ||
|
||||
mbedtls_mpi_cmp_mpi( D, N ) >= 0 ||
|
||||
mbedtls_mpi_cmp_int( E, 1 ) <= 0 ||
|
||||
mbedtls_mpi_cmp_mpi( E, N ) >= 0 )
|
||||
{
|
||||
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
|
||||
}
|
||||
|
||||
/*
|
||||
* Initializations and temporary changes
|
||||
*/
|
||||
|
||||
mbedtls_mpi_init( &K );
|
||||
mbedtls_mpi_init( &T );
|
||||
|
||||
/* T := DE - 1 */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, D, E ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &T, &T, 1 ) );
|
||||
|
||||
if( ( order = mbedtls_mpi_lsb( &T ) ) == 0 )
|
||||
{
|
||||
ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
/* After this operation, T holds the largest odd divisor of DE - 1. */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &T, order ) );
|
||||
|
||||
/*
|
||||
* Actual work
|
||||
*/
|
||||
|
||||
/* Skip trying 2 if N == 1 mod 8 */
|
||||
attempt = 0;
|
||||
if( N->p[0] % 8 == 1 )
|
||||
attempt = 1;
|
||||
|
||||
for( ; attempt < num_primes; ++attempt )
|
||||
{
|
||||
mbedtls_mpi_lset( &K, primes[attempt] );
|
||||
|
||||
/* Check if gcd(K,N) = 1 */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) );
|
||||
if( mbedtls_mpi_cmp_int( P, 1 ) != 0 )
|
||||
continue;
|
||||
|
||||
/* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ...
|
||||
* and check whether they have nontrivial GCD with N. */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &K, &K, &T, N,
|
||||
Q /* temporarily use Q for storing Montgomery
|
||||
* multiplication helper values */ ) );
|
||||
|
||||
for( iter = 1; iter < order; ++iter )
|
||||
{
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &K, &K, 1 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) );
|
||||
|
||||
if( mbedtls_mpi_cmp_int( P, 1 ) == 1 &&
|
||||
mbedtls_mpi_cmp_mpi( P, N ) == -1 )
|
||||
{
|
||||
/*
|
||||
* Have found a nontrivial divisor P of N.
|
||||
* Set Q := N / P.
|
||||
*/
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( Q, NULL, N, P ) );
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &K ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, N ) );
|
||||
}
|
||||
}
|
||||
|
||||
ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
|
||||
|
||||
cleanup:
|
||||
|
||||
mbedtls_mpi_free( &K );
|
||||
mbedtls_mpi_free( &T );
|
||||
return( ret );
|
||||
}
|
||||
|
||||
/*
|
||||
* Given P, Q and the public exponent E, deduce D.
|
||||
* This is essentially a modular inversion.
|
||||
*/
|
||||
|
||||
int mbedtls_rsa_deduce_private_exponent( mbedtls_mpi const *P,
|
||||
mbedtls_mpi const *Q,
|
||||
mbedtls_mpi const *E,
|
||||
mbedtls_mpi *D )
|
||||
{
|
||||
int ret = 0;
|
||||
mbedtls_mpi K, L;
|
||||
|
||||
if( D == NULL || mbedtls_mpi_cmp_int( D, 0 ) != 0 )
|
||||
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
|
||||
|
||||
if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 ||
|
||||
mbedtls_mpi_cmp_int( Q, 1 ) <= 0 ||
|
||||
mbedtls_mpi_cmp_int( E, 0 ) == 0 )
|
||||
{
|
||||
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
|
||||
}
|
||||
|
||||
mbedtls_mpi_init( &K );
|
||||
mbedtls_mpi_init( &L );
|
||||
|
||||
/* Temporarily put K := P-1 and L := Q-1 */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) );
|
||||
|
||||
/* Temporarily put D := gcd(P-1, Q-1) */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( D, &K, &L ) );
|
||||
|
||||
/* K := LCM(P-1, Q-1) */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &L ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &K, NULL, &K, D ) );
|
||||
|
||||
/* Compute modular inverse of E in LCM(P-1, Q-1) */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( D, E, &K ) );
|
||||
|
||||
cleanup:
|
||||
|
||||
mbedtls_mpi_free( &K );
|
||||
mbedtls_mpi_free( &L );
|
||||
|
||||
return( ret );
|
||||
}
|
||||
|
||||
/*
|
||||
* Check that RSA CRT parameters are in accordance with core parameters.
|
||||
*/
|
||||
|
||||
int mbedtls_rsa_validate_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q,
|
||||
const mbedtls_mpi *D, const mbedtls_mpi *DP,
|
||||
const mbedtls_mpi *DQ, const mbedtls_mpi *QP )
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
mbedtls_mpi K, L;
|
||||
mbedtls_mpi_init( &K );
|
||||
mbedtls_mpi_init( &L );
|
||||
|
||||
/* Check that DP - D == 0 mod P - 1 */
|
||||
if( DP != NULL )
|
||||
{
|
||||
if( P == NULL )
|
||||
{
|
||||
ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DP, D ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) );
|
||||
|
||||
if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 )
|
||||
{
|
||||
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
|
||||
/* Check that DQ - D == 0 mod Q - 1 */
|
||||
if( DQ != NULL )
|
||||
{
|
||||
if( Q == NULL )
|
||||
{
|
||||
ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DQ, D ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) );
|
||||
|
||||
if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 )
|
||||
{
|
||||
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
|
||||
/* Check that QP * Q - 1 == 0 mod P */
|
||||
if( QP != NULL )
|
||||
{
|
||||
if( P == NULL || Q == NULL )
|
||||
{
|
||||
ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, QP, Q ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, P ) );
|
||||
if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
|
||||
{
|
||||
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
|
||||
cleanup:
|
||||
|
||||
/* Wrap MPI error codes by RSA check failure error code */
|
||||
if( ret != 0 &&
|
||||
ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED &&
|
||||
ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA )
|
||||
{
|
||||
ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
|
||||
}
|
||||
|
||||
mbedtls_mpi_free( &K );
|
||||
mbedtls_mpi_free( &L );
|
||||
|
||||
return( ret );
|
||||
}
|
||||
|
||||
/*
|
||||
* Check that core RSA parameters are sane.
|
||||
*/
|
||||
|
||||
int mbedtls_rsa_validate_params( const mbedtls_mpi *N, const mbedtls_mpi *P,
|
||||
const mbedtls_mpi *Q, const mbedtls_mpi *D,
|
||||
const mbedtls_mpi *E,
|
||||
int (*f_rng)(void *, unsigned char *, size_t),
|
||||
void *p_rng )
|
||||
{
|
||||
int ret = 0;
|
||||
mbedtls_mpi K, L;
|
||||
|
||||
mbedtls_mpi_init( &K );
|
||||
mbedtls_mpi_init( &L );
|
||||
|
||||
/*
|
||||
* Step 1: If PRNG provided, check that P and Q are prime
|
||||
*/
|
||||
|
||||
#if defined(MBEDTLS_GENPRIME)
|
||||
if( f_rng != NULL && P != NULL &&
|
||||
( ret = mbedtls_mpi_is_prime( P, f_rng, p_rng ) ) != 0 )
|
||||
{
|
||||
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
if( f_rng != NULL && Q != NULL &&
|
||||
( ret = mbedtls_mpi_is_prime( Q, f_rng, p_rng ) ) != 0 )
|
||||
{
|
||||
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
|
||||
goto cleanup;
|
||||
}
|
||||
#else
|
||||
((void) f_rng);
|
||||
((void) p_rng);
|
||||
#endif /* MBEDTLS_GENPRIME */
|
||||
|
||||
/*
|
||||
* Step 2: Check that 1 < N = PQ
|
||||
*/
|
||||
|
||||
if( P != NULL && Q != NULL && N != NULL )
|
||||
{
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, P, Q ) );
|
||||
if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 ||
|
||||
mbedtls_mpi_cmp_mpi( &K, N ) != 0 )
|
||||
{
|
||||
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Step 3: Check and 1 < D, E < N if present.
|
||||
*/
|
||||
|
||||
if( N != NULL && D != NULL && E != NULL )
|
||||
{
|
||||
if ( mbedtls_mpi_cmp_int( D, 1 ) <= 0 ||
|
||||
mbedtls_mpi_cmp_int( E, 1 ) <= 0 ||
|
||||
mbedtls_mpi_cmp_mpi( D, N ) >= 0 ||
|
||||
mbedtls_mpi_cmp_mpi( E, N ) >= 0 )
|
||||
{
|
||||
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Step 4: Check that D, E are inverse modulo P-1 and Q-1
|
||||
*/
|
||||
|
||||
if( P != NULL && Q != NULL && D != NULL && E != NULL )
|
||||
{
|
||||
if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 ||
|
||||
mbedtls_mpi_cmp_int( Q, 1 ) <= 0 )
|
||||
{
|
||||
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
/* Compute DE-1 mod P-1 */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, P, 1 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) );
|
||||
if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
|
||||
{
|
||||
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
/* Compute DE-1 mod Q-1 */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) );
|
||||
if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
|
||||
{
|
||||
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
|
||||
cleanup:
|
||||
|
||||
mbedtls_mpi_free( &K );
|
||||
mbedtls_mpi_free( &L );
|
||||
|
||||
/* Wrap MPI error codes by RSA check failure error code */
|
||||
if( ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED )
|
||||
{
|
||||
ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
|
||||
}
|
||||
|
||||
return( ret );
|
||||
}
|
||||
|
||||
int mbedtls_rsa_deduce_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q,
|
||||
const mbedtls_mpi *D, mbedtls_mpi *DP,
|
||||
mbedtls_mpi *DQ, mbedtls_mpi *QP )
|
||||
{
|
||||
int ret = 0;
|
||||
mbedtls_mpi K;
|
||||
mbedtls_mpi_init( &K );
|
||||
|
||||
/* DP = D mod P-1 */
|
||||
if( DP != NULL )
|
||||
{
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DP, D, &K ) );
|
||||
}
|
||||
|
||||
/* DQ = D mod Q-1 */
|
||||
if( DQ != NULL )
|
||||
{
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DQ, D, &K ) );
|
||||
}
|
||||
|
||||
/* QP = Q^{-1} mod P */
|
||||
if( QP != NULL )
|
||||
{
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( QP, Q, P ) );
|
||||
}
|
||||
|
||||
cleanup:
|
||||
mbedtls_mpi_free( &K );
|
||||
|
||||
return( ret );
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Default RSA interface implementation
|
||||
*/
|
||||
|
||||
#if !defined(MBEDTLS_RSA_ALT)
|
||||
|
||||
int mbedtls_rsa_import( mbedtls_rsa_context *ctx,
|
||||
const mbedtls_mpi *N,
|
||||
const mbedtls_mpi *P, const mbedtls_mpi *Q,
|
||||
|
Reference in New Issue
Block a user