mirror of
https://github.com/Mbed-TLS/mbedtls.git
synced 2025-08-01 10:06:53 +03:00
Merge remote-tracking branch 'origin/development' into development_new
Signed-off-by: Dave Rodgman <dave.rodgman@arm.com> Conflicts: include/mbedtls/check_config.h: nearby edits library/entropy.c: nearby edits programs/random/gen_random_havege.c: modification vs. removal programs/ssl/ssl_test_lib.h: nearby edits programs/test/cpp_dummy_build.cpp: nearby edits visualc/VS2010/mbedTLS.vcxproj: automatically generated file, regenerated with scripts/generate_visualc_files.pl
This commit is contained in:
137
library/bignum.c
137
library/bignum.c
@ -1339,29 +1339,32 @@ cleanup:
|
||||
/**
|
||||
* Helper for mbedtls_mpi subtraction.
|
||||
*
|
||||
* Calculate d - s where d and s have the same size.
|
||||
* Calculate l - r where l and r have the same size.
|
||||
* This function operates modulo (2^ciL)^n and returns the carry
|
||||
* (1 if there was a wraparound, i.e. if `d < s`, and 0 otherwise).
|
||||
* (1 if there was a wraparound, i.e. if `l < r`, and 0 otherwise).
|
||||
*
|
||||
* \param n Number of limbs of \p d and \p s.
|
||||
* \param[in,out] d On input, the left operand.
|
||||
* On output, the result of the subtraction:
|
||||
* \param[in] s The right operand.
|
||||
* d may be aliased to l or r.
|
||||
*
|
||||
* \return 1 if `d < s`.
|
||||
* 0 if `d >= s`.
|
||||
* \param n Number of limbs of \p d, \p l and \p r.
|
||||
* \param[out] d The result of the subtraction.
|
||||
* \param[in] l The left operand.
|
||||
* \param[in] r The right operand.
|
||||
*
|
||||
* \return 1 if `l < r`.
|
||||
* 0 if `l >= r`.
|
||||
*/
|
||||
static mbedtls_mpi_uint mpi_sub_hlp( size_t n,
|
||||
mbedtls_mpi_uint *d,
|
||||
const mbedtls_mpi_uint *s )
|
||||
const mbedtls_mpi_uint *l,
|
||||
const mbedtls_mpi_uint *r )
|
||||
{
|
||||
size_t i;
|
||||
mbedtls_mpi_uint c, z;
|
||||
mbedtls_mpi_uint c = 0, t, z;
|
||||
|
||||
for( i = c = 0; i < n; i++, s++, d++ )
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
z = ( *d < c ); *d -= c;
|
||||
c = ( *d < *s ) + z; *d -= *s;
|
||||
z = ( l[i] < c ); t = l[i] - c;
|
||||
c = ( t < r[i] ) + z; d[i] = t - r[i];
|
||||
}
|
||||
|
||||
return( c );
|
||||
@ -1372,7 +1375,6 @@ static mbedtls_mpi_uint mpi_sub_hlp( size_t n,
|
||||
*/
|
||||
int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
|
||||
{
|
||||
mbedtls_mpi TB;
|
||||
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
||||
size_t n;
|
||||
mbedtls_mpi_uint carry;
|
||||
@ -1380,29 +1382,27 @@ int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi
|
||||
MPI_VALIDATE_RET( A != NULL );
|
||||
MPI_VALIDATE_RET( B != NULL );
|
||||
|
||||
mbedtls_mpi_init( &TB );
|
||||
|
||||
if( X == B )
|
||||
{
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
|
||||
B = &TB;
|
||||
}
|
||||
|
||||
if( X != A )
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
|
||||
|
||||
/*
|
||||
* X should always be positive as a result of unsigned subtractions.
|
||||
*/
|
||||
X->s = 1;
|
||||
|
||||
ret = 0;
|
||||
|
||||
for( n = B->n; n > 0; n-- )
|
||||
if( B->p[n - 1] != 0 )
|
||||
break;
|
||||
if( n > A->n )
|
||||
{
|
||||
/* B >= (2^ciL)^n > A */
|
||||
ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
carry = mpi_sub_hlp( n, X->p, B->p );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, A->n ) );
|
||||
|
||||
/* Set the high limbs of X to match A. Don't touch the lower limbs
|
||||
* because X might be aliased to B, and we must not overwrite the
|
||||
* significant digits of B. */
|
||||
if( A->n > n )
|
||||
memcpy( X->p + n, A->p + n, ( A->n - n ) * ciL );
|
||||
if( X->n > A->n )
|
||||
memset( X->p + A->n, 0, ( X->n - A->n ) * ciL );
|
||||
|
||||
carry = mpi_sub_hlp( n, X->p, A->p, B->p );
|
||||
if( carry != 0 )
|
||||
{
|
||||
/* Propagate the carry to the first nonzero limb of X. */
|
||||
@ -1418,10 +1418,10 @@ int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi
|
||||
--X->p[n];
|
||||
}
|
||||
|
||||
/* X should always be positive as a result of unsigned subtractions. */
|
||||
X->s = 1;
|
||||
|
||||
cleanup:
|
||||
|
||||
mbedtls_mpi_free( &TB );
|
||||
|
||||
return( ret );
|
||||
}
|
||||
|
||||
@ -1531,8 +1531,21 @@ int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint
|
||||
return( mbedtls_mpi_sub_mpi( X, A, &_B ) );
|
||||
}
|
||||
|
||||
/*
|
||||
* Helper for mbedtls_mpi multiplication
|
||||
/** Helper for mbedtls_mpi multiplication.
|
||||
*
|
||||
* Add \p b * \p s to \p d.
|
||||
*
|
||||
* \param i The number of limbs of \p s.
|
||||
* \param[in] s A bignum to multiply, of size \p i.
|
||||
* It may overlap with \p d, but only if
|
||||
* \p d <= \p s.
|
||||
* Its leading limb must not be \c 0.
|
||||
* \param[in,out] d The bignum to add to.
|
||||
* It must be sufficiently large to store the
|
||||
* result of the multiplication. This means
|
||||
* \p i + 1 limbs if \p d[\p i - 1] started as 0 and \p b
|
||||
* is not known a priori.
|
||||
* \param b A scalar to multiply.
|
||||
*/
|
||||
static
|
||||
#if defined(__APPLE__) && defined(__arm__)
|
||||
@ -1542,7 +1555,10 @@ static
|
||||
*/
|
||||
__attribute__ ((noinline))
|
||||
#endif
|
||||
void mpi_mul_hlp( size_t i, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d, mbedtls_mpi_uint b )
|
||||
void mpi_mul_hlp( size_t i,
|
||||
const mbedtls_mpi_uint *s,
|
||||
mbedtls_mpi_uint *d,
|
||||
mbedtls_mpi_uint b )
|
||||
{
|
||||
mbedtls_mpi_uint c = 0, t = 0;
|
||||
|
||||
@ -1597,10 +1613,10 @@ void mpi_mul_hlp( size_t i, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d, mbedtls_mp
|
||||
|
||||
t++;
|
||||
|
||||
do {
|
||||
while( c != 0 )
|
||||
{
|
||||
*d += c; c = ( *d < c ); d++;
|
||||
}
|
||||
while( c != 0 );
|
||||
}
|
||||
|
||||
/*
|
||||
@ -1648,17 +1664,38 @@ cleanup:
|
||||
*/
|
||||
int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
|
||||
{
|
||||
mbedtls_mpi _B;
|
||||
mbedtls_mpi_uint p[1];
|
||||
MPI_VALIDATE_RET( X != NULL );
|
||||
MPI_VALIDATE_RET( A != NULL );
|
||||
|
||||
_B.s = 1;
|
||||
_B.n = 1;
|
||||
_B.p = p;
|
||||
p[0] = b;
|
||||
/* mpi_mul_hlp can't deal with a leading 0. */
|
||||
size_t n = A->n;
|
||||
while( n > 0 && A->p[n - 1] == 0 )
|
||||
--n;
|
||||
|
||||
return( mbedtls_mpi_mul_mpi( X, A, &_B ) );
|
||||
/* The general method below doesn't work if n==0 or b==0. By chance
|
||||
* calculating the result is trivial in those cases. */
|
||||
if( b == 0 || n == 0 )
|
||||
{
|
||||
mbedtls_mpi_lset( X, 0 );
|
||||
return( 0 );
|
||||
}
|
||||
|
||||
/* Calculate A*b as A + A*(b-1) to take advantage of mpi_mul_hlp */
|
||||
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
||||
/* In general, A * b requires 1 limb more than b. If
|
||||
* A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
|
||||
* number of limbs as A and the call to grow() is not required since
|
||||
* copy() will take care of the growth if needed. However, experimentally,
|
||||
* making the call to grow() unconditional causes slightly fewer
|
||||
* calls to calloc() in ECP code, presumably because it reuses the
|
||||
* same mpi for a while and this way the mpi is more likely to directly
|
||||
* grow to its final size. */
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n + 1 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
|
||||
mpi_mul_hlp( n, A->p, X->p, b - 1 );
|
||||
|
||||
cleanup:
|
||||
return( ret );
|
||||
}
|
||||
|
||||
/*
|
||||
@ -1799,7 +1836,7 @@ int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
|
||||
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z, 0 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, 2 ) );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, A->n + 2 ) );
|
||||
|
||||
k = mbedtls_mpi_bitlen( &Y ) % biL;
|
||||
if( k < biL - 1 )
|
||||
@ -2065,7 +2102,7 @@ static void mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi
|
||||
* do the calculation without using conditional tests. */
|
||||
/* Set d to d0 + (2^biL)^n - N where d0 is the current value of d. */
|
||||
d[n] += 1;
|
||||
d[n] -= mpi_sub_hlp( n, d, N->p );
|
||||
d[n] -= mpi_sub_hlp( n, d, d, N->p );
|
||||
/* If d0 < N then d < (2^biL)^n
|
||||
* so d[n] == 0 and we want to keep A as it is.
|
||||
* If d0 >= N then d >= (2^biL)^n, and d <= (2^biL)^n + N < 2 * (2^biL)^n
|
||||
|
Reference in New Issue
Block a user