1
0
mirror of https://github.com/Mbed-TLS/mbedtls.git synced 2025-07-29 11:41:15 +03:00

Switch to the new code style

Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
This commit is contained in:
Gilles Peskine
2023-01-11 14:50:10 +01:00
parent fd13a0f851
commit 449bd8303e
442 changed files with 86735 additions and 89438 deletions

View File

@ -36,22 +36,22 @@
#if defined(__aarch64__)
# if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) || \
defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY)
defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY)
# include <arm_neon.h>
# endif
# if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT)
# if defined(__unix__)
# if defined(__linux__)
/* Our preferred method of detection is getauxval() */
/* Our preferred method of detection is getauxval() */
# include <sys/auxv.h>
# endif
/* Use SIGILL on Unix, and fall back to it on Linux */
/* Use SIGILL on Unix, and fall back to it on Linux */
# include <signal.h>
# endif
# endif
#elif defined(_M_ARM64)
# if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) || \
defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY)
defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY)
# include <arm64_neon.h>
# endif
#else
@ -65,24 +65,24 @@
* MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT if no detection mechanism found
*/
#if defined(HWCAP_SHA2)
static int mbedtls_a64_crypto_sha256_determine_support( void )
static int mbedtls_a64_crypto_sha256_determine_support(void)
{
return( ( getauxval( AT_HWCAP ) & HWCAP_SHA2 ) ? 1 : 0 );
return (getauxval(AT_HWCAP) & HWCAP_SHA2) ? 1 : 0;
}
#elif defined(__APPLE__)
static int mbedtls_a64_crypto_sha256_determine_support( void )
static int mbedtls_a64_crypto_sha256_determine_support(void)
{
return( 1 );
return 1;
}
#elif defined(_M_ARM64)
#define WIN32_LEAN_AND_MEAN
#include <Windows.h>
#include <processthreadsapi.h>
static int mbedtls_a64_crypto_sha256_determine_support( void )
static int mbedtls_a64_crypto_sha256_determine_support(void)
{
return( IsProcessorFeaturePresent( PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE ) ?
1 : 0 );
return IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE) ?
1 : 0;
}
#elif defined(__unix__) && defined(SIG_SETMASK)
/* Detection with SIGILL, setjmp() and longjmp() */
@ -100,39 +100,39 @@ static jmp_buf return_from_sigill;
/*
* A64 SHA256 support detection via SIGILL
*/
static void sigill_handler( int signal )
static void sigill_handler(int signal)
{
(void) signal;
longjmp( return_from_sigill, 1 );
longjmp(return_from_sigill, 1);
}
static int mbedtls_a64_crypto_sha256_determine_support( void )
static int mbedtls_a64_crypto_sha256_determine_support(void)
{
struct sigaction old_action, new_action;
sigset_t old_mask;
if( sigprocmask( 0, NULL, &old_mask ) )
return( 0 );
if (sigprocmask(0, NULL, &old_mask)) {
return 0;
}
sigemptyset( &new_action.sa_mask );
sigemptyset(&new_action.sa_mask);
new_action.sa_flags = 0;
new_action.sa_handler = sigill_handler;
sigaction( SIGILL, &new_action, &old_action );
sigaction(SIGILL, &new_action, &old_action);
static int ret = 0;
if( setjmp( return_from_sigill ) == 0 ) /* First return only */
{
if (setjmp(return_from_sigill) == 0) { /* First return only */
/* If this traps, we will return a second time from setjmp() with 1 */
asm( "sha256h q0, q0, v0.4s" : : : "v0" );
asm ("sha256h q0, q0, v0.4s" : : : "v0");
ret = 1;
}
sigaction( SIGILL, &old_action, NULL );
sigprocmask( SIG_SETMASK, &old_mask, NULL );
sigaction(SIGILL, &old_action, NULL);
sigprocmask(SIG_SETMASK, &old_mask, NULL);
return( ret );
return ret;
}
#else
#warning "No mechanism to detect A64_CRYPTO found, using C code only"
@ -145,21 +145,22 @@ static int mbedtls_a64_crypto_sha256_determine_support( void )
#define SHA256_BLOCK_SIZE 64
void mbedtls_sha256_init( mbedtls_sha256_context *ctx )
void mbedtls_sha256_init(mbedtls_sha256_context *ctx)
{
memset( ctx, 0, sizeof( mbedtls_sha256_context ) );
memset(ctx, 0, sizeof(mbedtls_sha256_context));
}
void mbedtls_sha256_free( mbedtls_sha256_context *ctx )
void mbedtls_sha256_free(mbedtls_sha256_context *ctx)
{
if( ctx == NULL )
if (ctx == NULL) {
return;
}
mbedtls_platform_zeroize( ctx, sizeof( mbedtls_sha256_context ) );
mbedtls_platform_zeroize(ctx, sizeof(mbedtls_sha256_context));
}
void mbedtls_sha256_clone( mbedtls_sha256_context *dst,
const mbedtls_sha256_context *src )
void mbedtls_sha256_clone(mbedtls_sha256_context *dst,
const mbedtls_sha256_context *src)
{
*dst = *src;
}
@ -167,24 +168,26 @@ void mbedtls_sha256_clone( mbedtls_sha256_context *dst,
/*
* SHA-256 context setup
*/
int mbedtls_sha256_starts( mbedtls_sha256_context *ctx, int is224 )
int mbedtls_sha256_starts(mbedtls_sha256_context *ctx, int is224)
{
#if defined(MBEDTLS_SHA224_C) && defined(MBEDTLS_SHA256_C)
if( is224 != 0 && is224 != 1 )
if (is224 != 0 && is224 != 1) {
return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
}
#elif defined(MBEDTLS_SHA256_C)
if( is224 != 0 )
if (is224 != 0) {
return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
}
#else /* defined MBEDTLS_SHA224_C only */
if( is224 == 0 )
if (is224 == 0) {
return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
}
#endif
ctx->total[0] = 0;
ctx->total[1] = 0;
if( is224 == 0 )
{
if (is224 == 0) {
#if defined(MBEDTLS_SHA256_C)
ctx->state[0] = 0x6A09E667;
ctx->state[1] = 0xBB67AE85;
@ -195,9 +198,7 @@ int mbedtls_sha256_starts( mbedtls_sha256_context *ctx, int is224 )
ctx->state[6] = 0x1F83D9AB;
ctx->state[7] = 0x5BE0CD19;
#endif
}
else
{
} else {
#if defined(MBEDTLS_SHA224_C)
ctx->state[0] = 0xC1059ED8;
ctx->state[1] = 0x367CD507;
@ -214,7 +215,7 @@ int mbedtls_sha256_starts( mbedtls_sha256_context *ctx, int is224 )
ctx->is224 = is224;
#endif
return( 0 );
return 0;
}
#if !defined(MBEDTLS_SHA256_PROCESS_ALT)
@ -249,100 +250,98 @@ static const uint32_t K[] =
#endif
static size_t mbedtls_internal_sha256_process_many_a64_crypto(
mbedtls_sha256_context *ctx, const uint8_t *msg, size_t len )
mbedtls_sha256_context *ctx, const uint8_t *msg, size_t len)
{
uint32x4_t abcd = vld1q_u32( &ctx->state[0] );
uint32x4_t efgh = vld1q_u32( &ctx->state[4] );
uint32x4_t abcd = vld1q_u32(&ctx->state[0]);
uint32x4_t efgh = vld1q_u32(&ctx->state[4]);
size_t processed = 0;
for( ;
for (;
len >= SHA256_BLOCK_SIZE;
processed += SHA256_BLOCK_SIZE,
msg += SHA256_BLOCK_SIZE,
len -= SHA256_BLOCK_SIZE )
{
msg += SHA256_BLOCK_SIZE,
len -= SHA256_BLOCK_SIZE) {
uint32x4_t tmp, abcd_prev;
uint32x4_t abcd_orig = abcd;
uint32x4_t efgh_orig = efgh;
uint32x4_t sched0 = (uint32x4_t) vld1q_u8( msg + 16 * 0 );
uint32x4_t sched1 = (uint32x4_t) vld1q_u8( msg + 16 * 1 );
uint32x4_t sched2 = (uint32x4_t) vld1q_u8( msg + 16 * 2 );
uint32x4_t sched3 = (uint32x4_t) vld1q_u8( msg + 16 * 3 );
uint32x4_t sched0 = (uint32x4_t) vld1q_u8(msg + 16 * 0);
uint32x4_t sched1 = (uint32x4_t) vld1q_u8(msg + 16 * 1);
uint32x4_t sched2 = (uint32x4_t) vld1q_u8(msg + 16 * 2);
uint32x4_t sched3 = (uint32x4_t) vld1q_u8(msg + 16 * 3);
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ /* Will be true if not defined */
/* Untested on BE */
sched0 = vreinterpretq_u32_u8( vrev32q_u8( vreinterpretq_u8_u32( sched0 ) ) );
sched1 = vreinterpretq_u32_u8( vrev32q_u8( vreinterpretq_u8_u32( sched1 ) ) );
sched2 = vreinterpretq_u32_u8( vrev32q_u8( vreinterpretq_u8_u32( sched2 ) ) );
sched3 = vreinterpretq_u32_u8( vrev32q_u8( vreinterpretq_u8_u32( sched3 ) ) );
sched0 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(sched0)));
sched1 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(sched1)));
sched2 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(sched2)));
sched3 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(sched3)));
#endif
/* Rounds 0 to 3 */
tmp = vaddq_u32( sched0, vld1q_u32( &K[0] ) );
tmp = vaddq_u32(sched0, vld1q_u32(&K[0]));
abcd_prev = abcd;
abcd = vsha256hq_u32( abcd_prev, efgh, tmp );
efgh = vsha256h2q_u32( efgh, abcd_prev, tmp );
abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
/* Rounds 4 to 7 */
tmp = vaddq_u32( sched1, vld1q_u32( &K[4] ) );
tmp = vaddq_u32(sched1, vld1q_u32(&K[4]));
abcd_prev = abcd;
abcd = vsha256hq_u32( abcd_prev, efgh, tmp );
efgh = vsha256h2q_u32( efgh, abcd_prev, tmp );
abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
/* Rounds 8 to 11 */
tmp = vaddq_u32( sched2, vld1q_u32( &K[8] ) );
tmp = vaddq_u32(sched2, vld1q_u32(&K[8]));
abcd_prev = abcd;
abcd = vsha256hq_u32( abcd_prev, efgh, tmp );
efgh = vsha256h2q_u32( efgh, abcd_prev, tmp );
abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
/* Rounds 12 to 15 */
tmp = vaddq_u32( sched3, vld1q_u32( &K[12] ) );
tmp = vaddq_u32(sched3, vld1q_u32(&K[12]));
abcd_prev = abcd;
abcd = vsha256hq_u32( abcd_prev, efgh, tmp );
efgh = vsha256h2q_u32( efgh, abcd_prev, tmp );
abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
for( int t = 16; t < 64; t += 16 )
{
for (int t = 16; t < 64; t += 16) {
/* Rounds t to t + 3 */
sched0 = vsha256su1q_u32( vsha256su0q_u32( sched0, sched1 ), sched2, sched3 );
tmp = vaddq_u32( sched0, vld1q_u32( &K[t] ) );
sched0 = vsha256su1q_u32(vsha256su0q_u32(sched0, sched1), sched2, sched3);
tmp = vaddq_u32(sched0, vld1q_u32(&K[t]));
abcd_prev = abcd;
abcd = vsha256hq_u32( abcd_prev, efgh, tmp );
efgh = vsha256h2q_u32( efgh, abcd_prev, tmp );
abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
/* Rounds t + 4 to t + 7 */
sched1 = vsha256su1q_u32( vsha256su0q_u32( sched1, sched2 ), sched3, sched0 );
tmp = vaddq_u32( sched1, vld1q_u32( &K[t + 4] ) );
sched1 = vsha256su1q_u32(vsha256su0q_u32(sched1, sched2), sched3, sched0);
tmp = vaddq_u32(sched1, vld1q_u32(&K[t + 4]));
abcd_prev = abcd;
abcd = vsha256hq_u32( abcd_prev, efgh, tmp );
efgh = vsha256h2q_u32( efgh, abcd_prev, tmp );
abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
/* Rounds t + 8 to t + 11 */
sched2 = vsha256su1q_u32( vsha256su0q_u32( sched2, sched3 ), sched0, sched1 );
tmp = vaddq_u32( sched2, vld1q_u32( &K[t + 8] ) );
sched2 = vsha256su1q_u32(vsha256su0q_u32(sched2, sched3), sched0, sched1);
tmp = vaddq_u32(sched2, vld1q_u32(&K[t + 8]));
abcd_prev = abcd;
abcd = vsha256hq_u32( abcd_prev, efgh, tmp );
efgh = vsha256h2q_u32( efgh, abcd_prev, tmp );
abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
/* Rounds t + 12 to t + 15 */
sched3 = vsha256su1q_u32( vsha256su0q_u32( sched3, sched0 ), sched1, sched2 );
tmp = vaddq_u32( sched3, vld1q_u32( &K[t + 12] ) );
sched3 = vsha256su1q_u32(vsha256su0q_u32(sched3, sched0), sched1, sched2);
tmp = vaddq_u32(sched3, vld1q_u32(&K[t + 12]));
abcd_prev = abcd;
abcd = vsha256hq_u32( abcd_prev, efgh, tmp );
efgh = vsha256h2q_u32( efgh, abcd_prev, tmp );
abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
}
abcd = vaddq_u32( abcd, abcd_orig );
efgh = vaddq_u32( efgh, efgh_orig );
abcd = vaddq_u32(abcd, abcd_orig);
efgh = vaddq_u32(efgh, efgh_orig);
}
vst1q_u32( &ctx->state[0], abcd );
vst1q_u32( &ctx->state[4], efgh );
vst1q_u32(&ctx->state[0], abcd);
vst1q_u32(&ctx->state[4], efgh);
return( processed );
return processed;
}
#if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT)
@ -352,11 +351,12 @@ static size_t mbedtls_internal_sha256_process_many_a64_crypto(
*/
static
#endif
int mbedtls_internal_sha256_process_a64_crypto( mbedtls_sha256_context *ctx,
const unsigned char data[SHA256_BLOCK_SIZE] )
int mbedtls_internal_sha256_process_a64_crypto(mbedtls_sha256_context *ctx,
const unsigned char data[SHA256_BLOCK_SIZE])
{
return( ( mbedtls_internal_sha256_process_many_a64_crypto( ctx, data,
SHA256_BLOCK_SIZE ) == SHA256_BLOCK_SIZE ) ? 0 : -1 );
return (mbedtls_internal_sha256_process_many_a64_crypto(ctx, data,
SHA256_BLOCK_SIZE) ==
SHA256_BLOCK_SIZE) ? 0 : -1;
}
#endif /* MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT || MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY */
@ -371,17 +371,17 @@ int mbedtls_internal_sha256_process_a64_crypto( mbedtls_sha256_context *ctx,
#if !defined(MBEDTLS_SHA256_PROCESS_ALT) && \
!defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY)
#define SHR(x,n) (((x) & 0xFFFFFFFF) >> (n))
#define ROTR(x,n) (SHR(x,n) | ((x) << (32 - (n))))
#define SHR(x, n) (((x) & 0xFFFFFFFF) >> (n))
#define ROTR(x, n) (SHR(x, n) | ((x) << (32 - (n))))
#define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3))
#define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10))
#define S0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define S1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
#define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22))
#define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25))
#define S2(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S3(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define F0(x,y,z) (((x) & (y)) | ((z) & ((x) | (y))))
#define F1(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
#define F0(x, y, z) (((x) & (y)) | ((z) & ((x) | (y))))
#define F1(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define R(t) \
( \
@ -389,13 +389,13 @@ int mbedtls_internal_sha256_process_a64_crypto( mbedtls_sha256_context *ctx,
S0(local.W[(t) - 15]) + local.W[(t) - 16] \
)
#define P(a,b,c,d,e,f,g,h,x,K) \
#define P(a, b, c, d, e, f, g, h, x, K) \
do \
{ \
local.temp1 = (h) + S3(e) + F1((e),(f),(g)) + (K) + (x); \
local.temp2 = S2(a) + F0((a),(b),(c)); \
local.temp1 = (h) + S3(e) + F1((e), (f), (g)) + (K) + (x); \
local.temp2 = S2(a) + F0((a), (b), (c)); \
(d) += local.temp1; (h) = local.temp1 + local.temp2; \
} while( 0 )
} while (0)
#if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT)
/*
@ -404,30 +404,30 @@ int mbedtls_internal_sha256_process_a64_crypto( mbedtls_sha256_context *ctx,
*/
static
#endif
int mbedtls_internal_sha256_process_c( mbedtls_sha256_context *ctx,
const unsigned char data[SHA256_BLOCK_SIZE] )
int mbedtls_internal_sha256_process_c(mbedtls_sha256_context *ctx,
const unsigned char data[SHA256_BLOCK_SIZE])
{
struct
{
struct {
uint32_t temp1, temp2, W[64];
uint32_t A[8];
} local;
unsigned int i;
for( i = 0; i < 8; i++ )
for (i = 0; i < 8; i++) {
local.A[i] = ctx->state[i];
}
#if defined(MBEDTLS_SHA256_SMALLER)
for( i = 0; i < 64; i++ )
{
if( i < 16 )
local.W[i] = MBEDTLS_GET_UINT32_BE( data, 4 * i );
else
R( i );
for (i = 0; i < 64; i++) {
if (i < 16) {
local.W[i] = MBEDTLS_GET_UINT32_BE(data, 4 * i);
} else {
R(i);
}
P( local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
local.A[5], local.A[6], local.A[7], local.W[i], K[i] );
P(local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
local.A[5], local.A[6], local.A[7], local.W[i], K[i]);
local.temp1 = local.A[7]; local.A[7] = local.A[6];
local.A[6] = local.A[5]; local.A[5] = local.A[4];
@ -436,57 +436,57 @@ int mbedtls_internal_sha256_process_c( mbedtls_sha256_context *ctx,
local.A[0] = local.temp1;
}
#else /* MBEDTLS_SHA256_SMALLER */
for( i = 0; i < 16; i++ )
local.W[i] = MBEDTLS_GET_UINT32_BE( data, 4 * i );
for( i = 0; i < 16; i += 8 )
{
P( local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
local.A[5], local.A[6], local.A[7], local.W[i+0], K[i+0] );
P( local.A[7], local.A[0], local.A[1], local.A[2], local.A[3],
local.A[4], local.A[5], local.A[6], local.W[i+1], K[i+1] );
P( local.A[6], local.A[7], local.A[0], local.A[1], local.A[2],
local.A[3], local.A[4], local.A[5], local.W[i+2], K[i+2] );
P( local.A[5], local.A[6], local.A[7], local.A[0], local.A[1],
local.A[2], local.A[3], local.A[4], local.W[i+3], K[i+3] );
P( local.A[4], local.A[5], local.A[6], local.A[7], local.A[0],
local.A[1], local.A[2], local.A[3], local.W[i+4], K[i+4] );
P( local.A[3], local.A[4], local.A[5], local.A[6], local.A[7],
local.A[0], local.A[1], local.A[2], local.W[i+5], K[i+5] );
P( local.A[2], local.A[3], local.A[4], local.A[5], local.A[6],
local.A[7], local.A[0], local.A[1], local.W[i+6], K[i+6] );
P( local.A[1], local.A[2], local.A[3], local.A[4], local.A[5],
local.A[6], local.A[7], local.A[0], local.W[i+7], K[i+7] );
for (i = 0; i < 16; i++) {
local.W[i] = MBEDTLS_GET_UINT32_BE(data, 4 * i);
}
for( i = 16; i < 64; i += 8 )
{
P( local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
local.A[5], local.A[6], local.A[7], R(i+0), K[i+0] );
P( local.A[7], local.A[0], local.A[1], local.A[2], local.A[3],
local.A[4], local.A[5], local.A[6], R(i+1), K[i+1] );
P( local.A[6], local.A[7], local.A[0], local.A[1], local.A[2],
local.A[3], local.A[4], local.A[5], R(i+2), K[i+2] );
P( local.A[5], local.A[6], local.A[7], local.A[0], local.A[1],
local.A[2], local.A[3], local.A[4], R(i+3), K[i+3] );
P( local.A[4], local.A[5], local.A[6], local.A[7], local.A[0],
local.A[1], local.A[2], local.A[3], R(i+4), K[i+4] );
P( local.A[3], local.A[4], local.A[5], local.A[6], local.A[7],
local.A[0], local.A[1], local.A[2], R(i+5), K[i+5] );
P( local.A[2], local.A[3], local.A[4], local.A[5], local.A[6],
local.A[7], local.A[0], local.A[1], R(i+6), K[i+6] );
P( local.A[1], local.A[2], local.A[3], local.A[4], local.A[5],
local.A[6], local.A[7], local.A[0], R(i+7), K[i+7] );
for (i = 0; i < 16; i += 8) {
P(local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
local.A[5], local.A[6], local.A[7], local.W[i+0], K[i+0]);
P(local.A[7], local.A[0], local.A[1], local.A[2], local.A[3],
local.A[4], local.A[5], local.A[6], local.W[i+1], K[i+1]);
P(local.A[6], local.A[7], local.A[0], local.A[1], local.A[2],
local.A[3], local.A[4], local.A[5], local.W[i+2], K[i+2]);
P(local.A[5], local.A[6], local.A[7], local.A[0], local.A[1],
local.A[2], local.A[3], local.A[4], local.W[i+3], K[i+3]);
P(local.A[4], local.A[5], local.A[6], local.A[7], local.A[0],
local.A[1], local.A[2], local.A[3], local.W[i+4], K[i+4]);
P(local.A[3], local.A[4], local.A[5], local.A[6], local.A[7],
local.A[0], local.A[1], local.A[2], local.W[i+5], K[i+5]);
P(local.A[2], local.A[3], local.A[4], local.A[5], local.A[6],
local.A[7], local.A[0], local.A[1], local.W[i+6], K[i+6]);
P(local.A[1], local.A[2], local.A[3], local.A[4], local.A[5],
local.A[6], local.A[7], local.A[0], local.W[i+7], K[i+7]);
}
for (i = 16; i < 64; i += 8) {
P(local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
local.A[5], local.A[6], local.A[7], R(i+0), K[i+0]);
P(local.A[7], local.A[0], local.A[1], local.A[2], local.A[3],
local.A[4], local.A[5], local.A[6], R(i+1), K[i+1]);
P(local.A[6], local.A[7], local.A[0], local.A[1], local.A[2],
local.A[3], local.A[4], local.A[5], R(i+2), K[i+2]);
P(local.A[5], local.A[6], local.A[7], local.A[0], local.A[1],
local.A[2], local.A[3], local.A[4], R(i+3), K[i+3]);
P(local.A[4], local.A[5], local.A[6], local.A[7], local.A[0],
local.A[1], local.A[2], local.A[3], R(i+4), K[i+4]);
P(local.A[3], local.A[4], local.A[5], local.A[6], local.A[7],
local.A[0], local.A[1], local.A[2], R(i+5), K[i+5]);
P(local.A[2], local.A[3], local.A[4], local.A[5], local.A[6],
local.A[7], local.A[0], local.A[1], R(i+6), K[i+6]);
P(local.A[1], local.A[2], local.A[3], local.A[4], local.A[5],
local.A[6], local.A[7], local.A[0], R(i+7), K[i+7]);
}
#endif /* MBEDTLS_SHA256_SMALLER */
for( i = 0; i < 8; i++ )
for (i = 0; i < 8; i++) {
ctx->state[i] += local.A[i];
}
/* Zeroise buffers and variables to clear sensitive data from memory. */
mbedtls_platform_zeroize( &local, sizeof( local ) );
mbedtls_platform_zeroize(&local, sizeof(local));
return( 0 );
return 0;
}
#endif /* !MBEDTLS_SHA256_PROCESS_ALT && !MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY */
@ -495,14 +495,14 @@ int mbedtls_internal_sha256_process_c( mbedtls_sha256_context *ctx,
#if !defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY)
static size_t mbedtls_internal_sha256_process_many_c(
mbedtls_sha256_context *ctx, const uint8_t *data, size_t len )
mbedtls_sha256_context *ctx, const uint8_t *data, size_t len)
{
size_t processed = 0;
while( len >= SHA256_BLOCK_SIZE )
{
if( mbedtls_internal_sha256_process_c( ctx, data ) != 0 )
return( 0 );
while (len >= SHA256_BLOCK_SIZE) {
if (mbedtls_internal_sha256_process_c(ctx, data) != 0) {
return 0;
}
data += SHA256_BLOCK_SIZE;
len -= SHA256_BLOCK_SIZE;
@ -510,7 +510,7 @@ static size_t mbedtls_internal_sha256_process_many_c(
processed += SHA256_BLOCK_SIZE;
}
return( processed );
return processed;
}
#endif /* !MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY */
@ -518,36 +518,37 @@ static size_t mbedtls_internal_sha256_process_many_c(
#if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT)
static int mbedtls_a64_crypto_sha256_has_support( void )
static int mbedtls_a64_crypto_sha256_has_support(void)
{
static int done = 0;
static int supported = 0;
if( !done )
{
if (!done) {
supported = mbedtls_a64_crypto_sha256_determine_support();
done = 1;
}
return( supported );
return supported;
}
static size_t mbedtls_internal_sha256_process_many( mbedtls_sha256_context *ctx,
const uint8_t *msg, size_t len )
static size_t mbedtls_internal_sha256_process_many(mbedtls_sha256_context *ctx,
const uint8_t *msg, size_t len)
{
if( mbedtls_a64_crypto_sha256_has_support() )
return( mbedtls_internal_sha256_process_many_a64_crypto( ctx, msg, len ) );
else
return( mbedtls_internal_sha256_process_many_c( ctx, msg, len ) );
if (mbedtls_a64_crypto_sha256_has_support()) {
return mbedtls_internal_sha256_process_many_a64_crypto(ctx, msg, len);
} else {
return mbedtls_internal_sha256_process_many_c(ctx, msg, len);
}
}
int mbedtls_internal_sha256_process( mbedtls_sha256_context *ctx,
const unsigned char data[SHA256_BLOCK_SIZE] )
int mbedtls_internal_sha256_process(mbedtls_sha256_context *ctx,
const unsigned char data[SHA256_BLOCK_SIZE])
{
if( mbedtls_a64_crypto_sha256_has_support() )
return( mbedtls_internal_sha256_process_a64_crypto( ctx, data ) );
else
return( mbedtls_internal_sha256_process_c( ctx, data ) );
if (mbedtls_a64_crypto_sha256_has_support()) {
return mbedtls_internal_sha256_process_a64_crypto(ctx, data);
} else {
return mbedtls_internal_sha256_process_c(ctx, data);
}
}
#endif /* MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT */
@ -556,16 +557,17 @@ int mbedtls_internal_sha256_process( mbedtls_sha256_context *ctx,
/*
* SHA-256 process buffer
*/
int mbedtls_sha256_update( mbedtls_sha256_context *ctx,
const unsigned char *input,
size_t ilen )
int mbedtls_sha256_update(mbedtls_sha256_context *ctx,
const unsigned char *input,
size_t ilen)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t fill;
uint32_t left;
if( ilen == 0 )
return( 0 );
if (ilen == 0) {
return 0;
}
left = ctx->total[0] & 0x3F;
fill = SHA256_BLOCK_SIZE - left;
@ -573,43 +575,45 @@ int mbedtls_sha256_update( mbedtls_sha256_context *ctx,
ctx->total[0] += (uint32_t) ilen;
ctx->total[0] &= 0xFFFFFFFF;
if( ctx->total[0] < (uint32_t) ilen )
if (ctx->total[0] < (uint32_t) ilen) {
ctx->total[1]++;
}
if( left && ilen >= fill )
{
memcpy( (void *) (ctx->buffer + left), input, fill );
if (left && ilen >= fill) {
memcpy((void *) (ctx->buffer + left), input, fill);
if( ( ret = mbedtls_internal_sha256_process( ctx, ctx->buffer ) ) != 0 )
return( ret );
if ((ret = mbedtls_internal_sha256_process(ctx, ctx->buffer)) != 0) {
return ret;
}
input += fill;
ilen -= fill;
left = 0;
}
while( ilen >= SHA256_BLOCK_SIZE )
{
while (ilen >= SHA256_BLOCK_SIZE) {
size_t processed =
mbedtls_internal_sha256_process_many( ctx, input, ilen );
if( processed < SHA256_BLOCK_SIZE )
return( MBEDTLS_ERR_ERROR_GENERIC_ERROR );
mbedtls_internal_sha256_process_many(ctx, input, ilen);
if (processed < SHA256_BLOCK_SIZE) {
return MBEDTLS_ERR_ERROR_GENERIC_ERROR;
}
input += processed;
ilen -= processed;
}
if( ilen > 0 )
memcpy( (void *) (ctx->buffer + left), input, ilen );
if (ilen > 0) {
memcpy((void *) (ctx->buffer + left), input, ilen);
}
return( 0 );
return 0;
}
/*
* SHA-256 final digest
*/
int mbedtls_sha256_finish( mbedtls_sha256_context *ctx,
unsigned char *output )
int mbedtls_sha256_finish(mbedtls_sha256_context *ctx,
unsigned char *output)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
uint32_t used;
@ -622,54 +626,54 @@ int mbedtls_sha256_finish( mbedtls_sha256_context *ctx,
ctx->buffer[used++] = 0x80;
if( used <= 56 )
{
if (used <= 56) {
/* Enough room for padding + length in current block */
memset( ctx->buffer + used, 0, 56 - used );
}
else
{
memset(ctx->buffer + used, 0, 56 - used);
} else {
/* We'll need an extra block */
memset( ctx->buffer + used, 0, SHA256_BLOCK_SIZE - used );
memset(ctx->buffer + used, 0, SHA256_BLOCK_SIZE - used);
if( ( ret = mbedtls_internal_sha256_process( ctx, ctx->buffer ) ) != 0 )
return( ret );
if ((ret = mbedtls_internal_sha256_process(ctx, ctx->buffer)) != 0) {
return ret;
}
memset( ctx->buffer, 0, 56 );
memset(ctx->buffer, 0, 56);
}
/*
* Add message length
*/
high = ( ctx->total[0] >> 29 )
| ( ctx->total[1] << 3 );
low = ( ctx->total[0] << 3 );
high = (ctx->total[0] >> 29)
| (ctx->total[1] << 3);
low = (ctx->total[0] << 3);
MBEDTLS_PUT_UINT32_BE( high, ctx->buffer, 56 );
MBEDTLS_PUT_UINT32_BE( low, ctx->buffer, 60 );
MBEDTLS_PUT_UINT32_BE(high, ctx->buffer, 56);
MBEDTLS_PUT_UINT32_BE(low, ctx->buffer, 60);
if( ( ret = mbedtls_internal_sha256_process( ctx, ctx->buffer ) ) != 0 )
return( ret );
if ((ret = mbedtls_internal_sha256_process(ctx, ctx->buffer)) != 0) {
return ret;
}
/*
* Output final state
*/
MBEDTLS_PUT_UINT32_BE( ctx->state[0], output, 0 );
MBEDTLS_PUT_UINT32_BE( ctx->state[1], output, 4 );
MBEDTLS_PUT_UINT32_BE( ctx->state[2], output, 8 );
MBEDTLS_PUT_UINT32_BE( ctx->state[3], output, 12 );
MBEDTLS_PUT_UINT32_BE( ctx->state[4], output, 16 );
MBEDTLS_PUT_UINT32_BE( ctx->state[5], output, 20 );
MBEDTLS_PUT_UINT32_BE( ctx->state[6], output, 24 );
MBEDTLS_PUT_UINT32_BE(ctx->state[0], output, 0);
MBEDTLS_PUT_UINT32_BE(ctx->state[1], output, 4);
MBEDTLS_PUT_UINT32_BE(ctx->state[2], output, 8);
MBEDTLS_PUT_UINT32_BE(ctx->state[3], output, 12);
MBEDTLS_PUT_UINT32_BE(ctx->state[4], output, 16);
MBEDTLS_PUT_UINT32_BE(ctx->state[5], output, 20);
MBEDTLS_PUT_UINT32_BE(ctx->state[6], output, 24);
int truncated = 0;
#if defined(MBEDTLS_SHA224_C)
truncated = ctx->is224;
#endif
if( !truncated )
MBEDTLS_PUT_UINT32_BE( ctx->state[7], output, 28 );
if (!truncated) {
MBEDTLS_PUT_UINT32_BE(ctx->state[7], output, 28);
}
return( 0 );
return 0;
}
#endif /* !MBEDTLS_SHA256_ALT */
@ -677,40 +681,46 @@ int mbedtls_sha256_finish( mbedtls_sha256_context *ctx,
/*
* output = SHA-256( input buffer )
*/
int mbedtls_sha256( const unsigned char *input,
size_t ilen,
unsigned char *output,
int is224 )
int mbedtls_sha256(const unsigned char *input,
size_t ilen,
unsigned char *output,
int is224)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
mbedtls_sha256_context ctx;
#if defined(MBEDTLS_SHA224_C) && defined(MBEDTLS_SHA256_C)
if( is224 != 0 && is224 != 1 )
if (is224 != 0 && is224 != 1) {
return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
}
#elif defined(MBEDTLS_SHA256_C)
if( is224 != 0 )
if (is224 != 0) {
return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
}
#else /* defined MBEDTLS_SHA224_C only */
if( is224 == 0 )
if (is224 == 0) {
return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
}
#endif
mbedtls_sha256_init( &ctx );
mbedtls_sha256_init(&ctx);
if( ( ret = mbedtls_sha256_starts( &ctx, is224 ) ) != 0 )
if ((ret = mbedtls_sha256_starts(&ctx, is224)) != 0) {
goto exit;
}
if( ( ret = mbedtls_sha256_update( &ctx, input, ilen ) ) != 0 )
if ((ret = mbedtls_sha256_update(&ctx, input, ilen)) != 0) {
goto exit;
}
if( ( ret = mbedtls_sha256_finish( &ctx, output ) ) != 0 )
if ((ret = mbedtls_sha256_finish(&ctx, output)) != 0) {
goto exit;
}
exit:
mbedtls_sha256_free( &ctx );
mbedtls_sha256_free(&ctx);
return( ret );
return ret;
}
#if defined(MBEDTLS_SELF_TEST)
@ -776,7 +786,7 @@ static sha_test_sum_t sha256_test_sum[] =
/*
* Checkup routine
*/
static int mbedtls_sha256_common_self_test( int verbose, int is224 )
static int mbedtls_sha256_common_self_test(int verbose, int is224)
{
int i, buflen, ret = 0;
unsigned char *buf;
@ -784,93 +794,95 @@ static int mbedtls_sha256_common_self_test( int verbose, int is224 )
mbedtls_sha256_context ctx;
#if defined(MBEDTLS_SHA224_C) && defined(MBEDTLS_SHA256_C)
sha_test_sum_t* sha_test_sum = ( is224 ) ? sha224_test_sum : sha256_test_sum;
sha_test_sum_t *sha_test_sum = (is224) ? sha224_test_sum : sha256_test_sum;
#elif defined(MBEDTLS_SHA256_C)
sha_test_sum_t* sha_test_sum = sha256_test_sum;
sha_test_sum_t *sha_test_sum = sha256_test_sum;
#else
sha_test_sum_t* sha_test_sum = sha224_test_sum;
sha_test_sum_t *sha_test_sum = sha224_test_sum;
#endif
buf = mbedtls_calloc( 1024, sizeof(unsigned char) );
if( NULL == buf )
{
if( verbose != 0 )
mbedtls_printf( "Buffer allocation failed\n" );
buf = mbedtls_calloc(1024, sizeof(unsigned char));
if (NULL == buf) {
if (verbose != 0) {
mbedtls_printf("Buffer allocation failed\n");
}
return( 1 );
return 1;
}
mbedtls_sha256_init( &ctx );
mbedtls_sha256_init(&ctx);
for( i = 0; i < 3; i++ )
{
if( verbose != 0 )
mbedtls_printf( " SHA-%d test #%d: ", 256 - is224 * 32, i + 1 );
for (i = 0; i < 3; i++) {
if (verbose != 0) {
mbedtls_printf(" SHA-%d test #%d: ", 256 - is224 * 32, i + 1);
}
if( ( ret = mbedtls_sha256_starts( &ctx, is224 ) ) != 0 )
if ((ret = mbedtls_sha256_starts(&ctx, is224)) != 0) {
goto fail;
}
if( i == 2 )
{
memset( buf, 'a', buflen = 1000 );
if (i == 2) {
memset(buf, 'a', buflen = 1000);
for( int j = 0; j < 1000; j++ )
{
ret = mbedtls_sha256_update( &ctx, buf, buflen );
if( ret != 0 )
for (int j = 0; j < 1000; j++) {
ret = mbedtls_sha256_update(&ctx, buf, buflen);
if (ret != 0) {
goto fail;
}
}
}
else
{
ret = mbedtls_sha256_update( &ctx, sha_test_buf[i],
sha_test_buflen[i] );
if( ret != 0 )
goto fail;
} else {
ret = mbedtls_sha256_update(&ctx, sha_test_buf[i],
sha_test_buflen[i]);
if (ret != 0) {
goto fail;
}
}
if( ( ret = mbedtls_sha256_finish( &ctx, sha256sum ) ) != 0 )
if ((ret = mbedtls_sha256_finish(&ctx, sha256sum)) != 0) {
goto fail;
}
if( memcmp( sha256sum, sha_test_sum[i], 32 - is224 * 4 ) != 0 )
{
if (memcmp(sha256sum, sha_test_sum[i], 32 - is224 * 4) != 0) {
ret = 1;
goto fail;
}
if( verbose != 0 )
mbedtls_printf( "passed\n" );
if (verbose != 0) {
mbedtls_printf("passed\n");
}
}
if( verbose != 0 )
mbedtls_printf( "\n" );
if (verbose != 0) {
mbedtls_printf("\n");
}
goto exit;
fail:
if( verbose != 0 )
mbedtls_printf( "failed\n" );
if (verbose != 0) {
mbedtls_printf("failed\n");
}
exit:
mbedtls_sha256_free( &ctx );
mbedtls_free( buf );
mbedtls_sha256_free(&ctx);
mbedtls_free(buf);
return( ret );
return ret;
}
#if defined(MBEDTLS_SHA256_C)
int mbedtls_sha256_self_test( int verbose )
int mbedtls_sha256_self_test(int verbose)
{
return mbedtls_sha256_common_self_test( verbose, 0 );
return mbedtls_sha256_common_self_test(verbose, 0);
}
#endif /* MBEDTLS_SHA256_C */
#if defined(MBEDTLS_SHA224_C)
int mbedtls_sha224_self_test( int verbose )
int mbedtls_sha224_self_test(int verbose)
{
return mbedtls_sha256_common_self_test( verbose, 1 );
return mbedtls_sha256_common_self_test(verbose, 1);
}
#endif /* MBEDTLS_SHA224_C */