1
0
mirror of https://github.com/Mbed-TLS/mbedtls.git synced 2025-07-28 00:21:48 +03:00

Merge pull request #6282 from gstrauss/sw_derive_y

mbedtls_ecp_point_read_binary from compressed fmt
This commit is contained in:
Manuel Pégourié-Gonnard
2022-12-22 10:20:31 +01:00
committed by GitHub
5 changed files with 182 additions and 34 deletions

View File

@ -754,6 +754,13 @@ cleanup:
return( ret );
}
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
static int mbedtls_ecp_sw_derive_y( const mbedtls_ecp_group *grp,
const mbedtls_mpi *X,
mbedtls_mpi *Y,
int parity_bit );
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
/*
* Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
*/
@ -795,16 +802,29 @@ int mbedtls_ecp_point_read_binary( const mbedtls_ecp_group *grp,
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
}
if( buf[0] != 0x04 )
return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
if( ilen != 2 * plen + 1 )
if( ilen < 1 + plen )
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->X, buf + 1, plen ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->Y,
buf + 1 + plen, plen ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
if( buf[0] == 0x04 )
{
/* format == MBEDTLS_ECP_PF_UNCOMPRESSED */
if( ilen != 1 + plen * 2 )
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
return( mbedtls_mpi_read_binary( &pt->Y, buf + 1 + plen, plen ) );
}
else if( buf[0] == 0x02 || buf[0] == 0x03 )
{
/* format == MBEDTLS_ECP_PF_COMPRESSED */
if( ilen != 1 + plen )
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
return( mbedtls_ecp_sw_derive_y( grp, &pt->X, &pt->Y,
( buf[0] & 1 ) ) );
}
else
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
}
#endif
@ -1191,6 +1211,86 @@ cleanup:
MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( (X), (Y), (cond) ) )
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
/*
* Computes the right-hand side of the Short Weierstrass equation
* RHS = X^3 + A X + B
*/
static int ecp_sw_rhs( const mbedtls_ecp_group *grp,
mbedtls_mpi *rhs,
const mbedtls_mpi *X )
{
int ret;
/* Compute X^3 + A X + B as X (X^2 + A) + B */
MPI_ECP_SQR( rhs, X );
/* Special case for A = -3 */
if( grp->A.p == NULL )
{
MPI_ECP_SUB_INT( rhs, rhs, 3 );
}
else
{
MPI_ECP_ADD( rhs, rhs, &grp->A );
}
MPI_ECP_MUL( rhs, rhs, X );
MPI_ECP_ADD( rhs, rhs, &grp->B );
cleanup:
return( ret );
}
/*
* Derive Y from X and a parity bit
*/
static int mbedtls_ecp_sw_derive_y( const mbedtls_ecp_group *grp,
const mbedtls_mpi *X,
mbedtls_mpi *Y,
int parity_bit )
{
/* w = y^2 = x^3 + ax + b
* y = sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4)
*
* Note: this method for extracting square root does not validate that w
* was indeed a square so this function will return garbage in Y if X
* does not correspond to a point on the curve.
*/
/* Check prerequisite p = 3 mod 4 */
if( mbedtls_mpi_get_bit( &grp->P, 0 ) != 1 ||
mbedtls_mpi_get_bit( &grp->P, 1 ) != 1 )
return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
int ret;
mbedtls_mpi exp;
mbedtls_mpi_init( &exp );
/* use Y to store intermediate result, actually w above */
MBEDTLS_MPI_CHK( ecp_sw_rhs( grp, Y, X ) );
/* w = y^2 */ /* Y contains y^2 intermediate result */
/* exp = ((p+1)/4) */
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &exp, &grp->P, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &exp, 2 ) );
/* sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4) */
MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( Y, Y /*y^2*/, &exp, &grp->P, NULL ) );
/* check parity bit match or else invert Y */
/* This quick inversion implementation is valid because Y != 0 for all
* Short Weierstrass curves supported by mbedtls, as each supported curve
* has an order that is a large prime, so each supported curve does not
* have any point of order 2, and a point with Y == 0 would be of order 2 */
if( mbedtls_mpi_get_bit( Y, 0 ) != parity_bit )
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( Y, &grp->P, Y ) );
cleanup:
mbedtls_mpi_free( &exp );
return( ret );
}
/*
* For curves in short Weierstrass form, we do all the internal operations in
* Jacobian coordinates.
@ -2611,23 +2711,10 @@ static int ecp_check_pubkey_sw( const mbedtls_ecp_group *grp, const mbedtls_ecp_
/*
* YY = Y^2
* RHS = X (X^2 + A) + B = X^3 + A X + B
* RHS = X^3 + A X + B
*/
MPI_ECP_SQR( &YY, &pt->Y );
MPI_ECP_SQR( &RHS, &pt->X );
/* Special case for A = -3 */
if( grp->A.p == NULL )
{
MPI_ECP_SUB_INT( &RHS, &RHS, 3 );
}
else
{
MPI_ECP_ADD( &RHS, &RHS, &grp->A );
}
MPI_ECP_MUL( &RHS, &RHS, &pt->X );
MPI_ECP_ADD( &RHS, &RHS, &grp->B );
MBEDTLS_MPI_CHK( ecp_sw_rhs( grp, &RHS, &pt->X ) );
if( MPI_ECP_CMP( &YY, &RHS ) != 0 )
ret = MBEDTLS_ERR_ECP_INVALID_KEY;