1
0
mirror of https://github.com/Mbed-TLS/mbedtls.git synced 2025-07-30 22:43:08 +03:00

Switch to the new code style

Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
This commit is contained in:
Gilles Peskine
2023-01-11 14:52:35 +01:00
parent 480f683d15
commit 1b6c09a62e
391 changed files with 73134 additions and 75084 deletions

View File

@ -44,8 +44,7 @@
#include <windows.h>
#include <process.h>
struct _hr_time
{
struct _hr_time {
LARGE_INTEGER start;
};
@ -58,75 +57,72 @@ struct _hr_time
* platform matches the ifdefs above, it will be used. */
#include <time.h>
#include <sys/time.h>
struct _hr_time
{
struct _hr_time {
struct timeval start;
};
#endif /* _WIN32 && !EFIX64 && !EFI32 */
#if !defined(HAVE_HARDCLOCK) && defined(MBEDTLS_HAVE_ASM) && \
( defined(_MSC_VER) && defined(_M_IX86) ) || defined(__WATCOMC__)
(defined(_MSC_VER) && defined(_M_IX86)) || defined(__WATCOMC__)
#define HAVE_HARDCLOCK
unsigned long mbedtls_timing_hardclock( void )
unsigned long mbedtls_timing_hardclock(void)
{
unsigned long tsc;
__asm rdtsc
__asm mov [tsc], eax
return( tsc );
__asm mov[tsc], eax
return tsc;
}
#endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM &&
( _MSC_VER && _M_IX86 ) || __WATCOMC__ */
/* some versions of mingw-64 have 32-bit longs even on x84_64 */
#if !defined(HAVE_HARDCLOCK) && defined(MBEDTLS_HAVE_ASM) && \
defined(__GNUC__) && ( defined(__i386__) || ( \
( defined(__amd64__) || defined( __x86_64__) ) && __SIZEOF_LONG__ == 4 ) )
defined(__GNUC__) && (defined(__i386__) || ( \
(defined(__amd64__) || defined(__x86_64__)) && __SIZEOF_LONG__ == 4))
#define HAVE_HARDCLOCK
unsigned long mbedtls_timing_hardclock( void )
unsigned long mbedtls_timing_hardclock(void)
{
unsigned long lo, hi;
asm volatile( "rdtsc" : "=a" (lo), "=d" (hi) );
return( lo );
asm volatile ("rdtsc" : "=a" (lo), "=d" (hi));
return lo;
}
#endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM &&
__GNUC__ && __i386__ */
#if !defined(HAVE_HARDCLOCK) && defined(MBEDTLS_HAVE_ASM) && \
defined(__GNUC__) && ( defined(__amd64__) || defined(__x86_64__) )
defined(__GNUC__) && (defined(__amd64__) || defined(__x86_64__))
#define HAVE_HARDCLOCK
unsigned long mbedtls_timing_hardclock( void )
unsigned long mbedtls_timing_hardclock(void)
{
unsigned long lo, hi;
asm volatile( "rdtsc" : "=a" (lo), "=d" (hi) );
return( lo | ( hi << 32 ) );
asm volatile ("rdtsc" : "=a" (lo), "=d" (hi));
return lo | (hi << 32);
}
#endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM &&
__GNUC__ && ( __amd64__ || __x86_64__ ) */
#if !defined(HAVE_HARDCLOCK) && defined(MBEDTLS_HAVE_ASM) && \
defined(__GNUC__) && ( defined(__powerpc__) || defined(__ppc__) )
defined(__GNUC__) && (defined(__powerpc__) || defined(__ppc__))
#define HAVE_HARDCLOCK
unsigned long mbedtls_timing_hardclock( void )
unsigned long mbedtls_timing_hardclock(void)
{
unsigned long tbl, tbu0, tbu1;
do
{
asm volatile( "mftbu %0" : "=r" (tbu0) );
asm volatile( "mftb %0" : "=r" (tbl ) );
asm volatile( "mftbu %0" : "=r" (tbu1) );
}
while( tbu0 != tbu1 );
do {
asm volatile ("mftbu %0" : "=r" (tbu0));
asm volatile ("mftb %0" : "=r" (tbl));
asm volatile ("mftbu %0" : "=r" (tbu1));
} while (tbu0 != tbu1);
return( tbl );
return tbl;
}
#endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM &&
__GNUC__ && ( __powerpc__ || __ppc__ ) */
@ -139,11 +135,11 @@ unsigned long mbedtls_timing_hardclock( void )
#else
#define HAVE_HARDCLOCK
unsigned long mbedtls_timing_hardclock( void )
unsigned long mbedtls_timing_hardclock(void)
{
unsigned long tick;
asm volatile( "rdpr %%tick, %0;" : "=&r" (tick) );
return( tick );
asm volatile ("rdpr %%tick, %0;" : "=&r" (tick));
return tick;
}
#endif /* __OpenBSD__ */
#endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM &&
@ -154,12 +150,12 @@ unsigned long mbedtls_timing_hardclock( void )
#define HAVE_HARDCLOCK
unsigned long mbedtls_timing_hardclock( void )
unsigned long mbedtls_timing_hardclock(void)
{
unsigned long tick;
asm volatile( ".byte 0x83, 0x41, 0x00, 0x00" );
asm volatile( "mov %%g1, %0" : "=r" (tick) );
return( tick );
asm volatile (".byte 0x83, 0x41, 0x00, 0x00");
asm volatile ("mov %%g1, %0" : "=r" (tick));
return tick;
}
#endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM &&
__GNUC__ && __sparc__ && !__sparc64__ */
@ -169,11 +165,11 @@ unsigned long mbedtls_timing_hardclock( void )
#define HAVE_HARDCLOCK
unsigned long mbedtls_timing_hardclock( void )
unsigned long mbedtls_timing_hardclock(void)
{
unsigned long cc;
asm volatile( "rpcc %0" : "=r" (cc) );
return( cc & 0xFFFFFFFF );
asm volatile ("rpcc %0" : "=r" (cc));
return cc & 0xFFFFFFFF;
}
#endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM &&
__GNUC__ && __alpha__ */
@ -183,11 +179,11 @@ unsigned long mbedtls_timing_hardclock( void )
#define HAVE_HARDCLOCK
unsigned long mbedtls_timing_hardclock( void )
unsigned long mbedtls_timing_hardclock(void)
{
unsigned long itc;
asm volatile( "mov %0 = ar.itc" : "=r" (itc) );
return( itc );
asm volatile ("mov %0 = ar.itc" : "=r" (itc));
return itc;
}
#endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM &&
__GNUC__ && __ia64__ */
@ -197,13 +193,13 @@ unsigned long mbedtls_timing_hardclock( void )
#define HAVE_HARDCLOCK
unsigned long mbedtls_timing_hardclock( void )
unsigned long mbedtls_timing_hardclock(void)
{
LARGE_INTEGER offset;
QueryPerformanceCounter( &offset );
QueryPerformanceCounter(&offset);
return( (unsigned long)( offset.QuadPart ) );
return (unsigned long) (offset.QuadPart);
}
#endif /* !HAVE_HARDCLOCK && _MSC_VER && !EFIX64 && !EFI32 */
@ -214,19 +210,18 @@ unsigned long mbedtls_timing_hardclock( void )
static int hardclock_init = 0;
static struct timeval tv_init;
unsigned long mbedtls_timing_hardclock( void )
unsigned long mbedtls_timing_hardclock(void)
{
struct timeval tv_cur;
if( hardclock_init == 0 )
{
gettimeofday( &tv_init, NULL );
if (hardclock_init == 0) {
gettimeofday(&tv_init, NULL);
hardclock_init = 1;
}
gettimeofday( &tv_cur, NULL );
return( ( tv_cur.tv_sec - tv_init.tv_sec ) * 1000000U
+ ( tv_cur.tv_usec - tv_init.tv_usec ) );
gettimeofday(&tv_cur, NULL);
return (tv_cur.tv_sec - tv_init.tv_sec) * 1000000U
+ (tv_cur.tv_usec - tv_init.tv_usec);
}
#endif /* !HAVE_HARDCLOCK */
@ -234,43 +229,39 @@ volatile int mbedtls_timing_alarmed = 0;
#if defined(_WIN32) && !defined(EFIX64) && !defined(EFI32)
unsigned long mbedtls_timing_get_timer( struct mbedtls_timing_hr_time *val, int reset )
unsigned long mbedtls_timing_get_timer(struct mbedtls_timing_hr_time *val, int reset)
{
struct _hr_time *t = (struct _hr_time *) val;
if( reset )
{
QueryPerformanceCounter( &t->start );
return( 0 );
}
else
{
if (reset) {
QueryPerformanceCounter(&t->start);
return 0;
} else {
unsigned long delta;
LARGE_INTEGER now, hfreq;
QueryPerformanceCounter( &now );
QueryPerformanceFrequency( &hfreq );
delta = (unsigned long)( ( now.QuadPart - t->start.QuadPart ) * 1000ul
/ hfreq.QuadPart );
return( delta );
QueryPerformanceCounter(&now);
QueryPerformanceFrequency(&hfreq);
delta = (unsigned long) ((now.QuadPart - t->start.QuadPart) * 1000ul
/ hfreq.QuadPart);
return delta;
}
}
/* It's OK to use a global because alarm() is supposed to be global anyway */
static DWORD alarmMs;
static void TimerProc( void *TimerContext )
static void TimerProc(void *TimerContext)
{
(void) TimerContext;
Sleep( alarmMs );
Sleep(alarmMs);
mbedtls_timing_alarmed = 1;
/* _endthread will be called implicitly on return
* That ensures execution of thread function's epilogue */
}
void mbedtls_set_alarm( int seconds )
void mbedtls_set_alarm(int seconds)
{
if( seconds == 0 )
{
if (seconds == 0) {
/* No need to create a thread for this simple case.
* Also, this shorcut is more reliable at least on MinGW32 */
mbedtls_timing_alarmed = 1;
@ -279,44 +270,40 @@ void mbedtls_set_alarm( int seconds )
mbedtls_timing_alarmed = 0;
alarmMs = seconds * 1000;
(void) _beginthread( TimerProc, 0, NULL );
(void) _beginthread(TimerProc, 0, NULL);
}
#else /* _WIN32 && !EFIX64 && !EFI32 */
unsigned long mbedtls_timing_get_timer( struct mbedtls_timing_hr_time *val, int reset )
unsigned long mbedtls_timing_get_timer(struct mbedtls_timing_hr_time *val, int reset)
{
struct _hr_time *t = (struct _hr_time *) val;
if( reset )
{
gettimeofday( &t->start, NULL );
return( 0 );
}
else
{
if (reset) {
gettimeofday(&t->start, NULL);
return 0;
} else {
unsigned long delta;
struct timeval now;
gettimeofday( &now, NULL );
delta = ( now.tv_sec - t->start.tv_sec ) * 1000ul
+ ( now.tv_usec - t->start.tv_usec ) / 1000;
return( delta );
gettimeofday(&now, NULL);
delta = (now.tv_sec - t->start.tv_sec) * 1000ul
+ (now.tv_usec - t->start.tv_usec) / 1000;
return delta;
}
}
static void sighandler( int signum )
static void sighandler(int signum)
{
mbedtls_timing_alarmed = 1;
signal( signum, sighandler );
signal(signum, sighandler);
}
void mbedtls_set_alarm( int seconds )
void mbedtls_set_alarm(int seconds)
{
mbedtls_timing_alarmed = 0;
signal( SIGALRM, sighandler );
alarm( seconds );
if( seconds == 0 )
{
signal(SIGALRM, sighandler);
alarm(seconds);
if (seconds == 0) {
/* alarm(0) cancelled any previous pending alarm, but the
handler won't fire, so raise the flag straight away. */
mbedtls_timing_alarmed = 1;
@ -328,37 +315,41 @@ void mbedtls_set_alarm( int seconds )
/*
* Set delays to watch
*/
void mbedtls_timing_set_delay( void *data, uint32_t int_ms, uint32_t fin_ms )
void mbedtls_timing_set_delay(void *data, uint32_t int_ms, uint32_t fin_ms)
{
mbedtls_timing_delay_context *ctx = (mbedtls_timing_delay_context *) data;
ctx->int_ms = int_ms;
ctx->fin_ms = fin_ms;
if( fin_ms != 0 )
(void) mbedtls_timing_get_timer( &ctx->timer, 1 );
if (fin_ms != 0) {
(void) mbedtls_timing_get_timer(&ctx->timer, 1);
}
}
/*
* Get number of delays expired
*/
int mbedtls_timing_get_delay( void *data )
int mbedtls_timing_get_delay(void *data)
{
mbedtls_timing_delay_context *ctx = (mbedtls_timing_delay_context *) data;
unsigned long elapsed_ms;
if( ctx->fin_ms == 0 )
return( -1 );
if (ctx->fin_ms == 0) {
return -1;
}
elapsed_ms = mbedtls_timing_get_timer( &ctx->timer, 0 );
elapsed_ms = mbedtls_timing_get_timer(&ctx->timer, 0);
if( elapsed_ms >= ctx->fin_ms )
return( 2 );
if (elapsed_ms >= ctx->fin_ms) {
return 2;
}
if( elapsed_ms >= ctx->int_ms )
return( 1 );
if (elapsed_ms >= ctx->int_ms) {
return 1;
}
return( 0 );
return 0;
}
@ -368,16 +359,17 @@ int mbedtls_timing_get_delay( void *data )
* Busy-waits for the given number of milliseconds.
* Used for testing mbedtls_timing_hardclock.
*/
static void busy_msleep( unsigned long msec )
static void busy_msleep(unsigned long msec)
{
struct mbedtls_timing_hr_time hires;
unsigned long i = 0; /* for busy-waiting */
volatile unsigned long j; /* to prevent optimisation */
(void) mbedtls_timing_get_timer( &hires, 1 );
(void) mbedtls_timing_get_timer(&hires, 1);
while( mbedtls_timing_get_timer( &hires, 0 ) < msec )
while (mbedtls_timing_get_timer(&hires, 0) < msec) {
i++;
}
j = i;
(void) j;
@ -385,19 +377,19 @@ static void busy_msleep( unsigned long msec )
#define FAIL do \
{ \
if( verbose != 0 ) \
if (verbose != 0) \
{ \
mbedtls_printf( "failed at line %d\n", __LINE__ ); \
mbedtls_printf( " cycles=%lu ratio=%lu millisecs=%lu secs=%lu hardfail=%d a=%lu b=%lu\n", \
cycles, ratio, millisecs, secs, hardfail, \
(unsigned long) a, (unsigned long) b ); \
mbedtls_printf( " elapsed(hires)=%lu elapsed(ctx)=%lu status(ctx)=%d\n", \
mbedtls_timing_get_timer( &hires, 0 ), \
mbedtls_timing_get_timer( &ctx.timer, 0 ), \
mbedtls_timing_get_delay( &ctx ) ); \
mbedtls_printf("failed at line %d\n", __LINE__); \
mbedtls_printf(" cycles=%lu ratio=%lu millisecs=%lu secs=%lu hardfail=%d a=%lu b=%lu\n", \
cycles, ratio, millisecs, secs, hardfail, \
(unsigned long) a, (unsigned long) b); \
mbedtls_printf(" elapsed(hires)=%lu elapsed(ctx)=%lu status(ctx)=%d\n", \
mbedtls_timing_get_timer(&hires, 0), \
mbedtls_timing_get_timer(&ctx.timer, 0), \
mbedtls_timing_get_delay(&ctx)); \
} \
return( 1 ); \
} while( 0 )
return 1; \
} while (0)
/*
* Checkup routine
@ -405,7 +397,7 @@ static void busy_msleep( unsigned long msec )
* Warning: this is work in progress, some tests may not be reliable enough
* yet! False positives may happen.
*/
int mbedtls_timing_self_test( int verbose )
int mbedtls_timing_self_test(int verbose)
{
unsigned long cycles = 0, ratio = 0;
unsigned long millisecs = 0, secs = 0;
@ -414,63 +406,75 @@ int mbedtls_timing_self_test( int verbose )
uint32_t a = 0, b = 0;
mbedtls_timing_delay_context ctx;
if( verbose != 0 )
mbedtls_printf( " TIMING tests note: will take some time!\n" );
if (verbose != 0) {
mbedtls_printf(" TIMING tests note: will take some time!\n");
}
if( verbose != 0 )
mbedtls_printf( " TIMING test #1 (set_alarm / get_timer): " );
if (verbose != 0) {
mbedtls_printf(" TIMING test #1 (set_alarm / get_timer): ");
}
{
secs = 1;
(void) mbedtls_timing_get_timer( &hires, 1 );
(void) mbedtls_timing_get_timer(&hires, 1);
mbedtls_set_alarm( (int) secs );
while( !mbedtls_timing_alarmed )
mbedtls_set_alarm((int) secs);
while (!mbedtls_timing_alarmed) {
;
}
millisecs = mbedtls_timing_get_timer( &hires, 0 );
millisecs = mbedtls_timing_get_timer(&hires, 0);
/* For some reason on Windows it looks like alarm has an extra delay
* (maybe related to creating a new thread). Allow some room here. */
if( millisecs < 800 * secs || millisecs > 1200 * secs + 300 )
if (millisecs < 800 * secs || millisecs > 1200 * secs + 300) {
FAIL;
}
}
if( verbose != 0 )
mbedtls_printf( "passed\n" );
if (verbose != 0) {
mbedtls_printf("passed\n");
}
if( verbose != 0 )
mbedtls_printf( " TIMING test #2 (set/get_delay ): " );
if (verbose != 0) {
mbedtls_printf(" TIMING test #2 (set/get_delay ): ");
}
{
a = 800;
b = 400;
mbedtls_timing_set_delay( &ctx, a, a + b ); /* T = 0 */
mbedtls_timing_set_delay(&ctx, a, a + b); /* T = 0 */
busy_msleep( a - a / 4 ); /* T = a - a/4 */
if( mbedtls_timing_get_delay( &ctx ) != 0 )
busy_msleep(a - a / 4); /* T = a - a/4 */
if (mbedtls_timing_get_delay(&ctx) != 0) {
FAIL;
}
busy_msleep( a / 4 + b / 4 ); /* T = a + b/4 */
if( mbedtls_timing_get_delay( &ctx ) != 1 )
busy_msleep(a / 4 + b / 4); /* T = a + b/4 */
if (mbedtls_timing_get_delay(&ctx) != 1) {
FAIL;
}
busy_msleep( b ); /* T = a + b + b/4 */
if( mbedtls_timing_get_delay( &ctx ) != 2 )
busy_msleep(b); /* T = a + b + b/4 */
if (mbedtls_timing_get_delay(&ctx) != 2) {
FAIL;
}
}
mbedtls_timing_set_delay( &ctx, 0, 0 );
busy_msleep( 200 );
if( mbedtls_timing_get_delay( &ctx ) != -1 )
mbedtls_timing_set_delay(&ctx, 0, 0);
busy_msleep(200);
if (mbedtls_timing_get_delay(&ctx) != -1) {
FAIL;
}
if( verbose != 0 )
mbedtls_printf( "passed\n" );
if (verbose != 0) {
mbedtls_printf("passed\n");
}
if( verbose != 0 )
mbedtls_printf( " TIMING test #3 (hardclock / get_timer): " );
if (verbose != 0) {
mbedtls_printf(" TIMING test #3 (hardclock / get_timer): ");
}
/*
* Allow one failure for possible counter wrapping.
@ -479,10 +483,10 @@ int mbedtls_timing_self_test( int verbose )
*/
hard_test:
if( hardfail > 1 )
{
if( verbose != 0 )
mbedtls_printf( "failed (ignored)\n" );
if (hardfail > 1) {
if (verbose != 0) {
mbedtls_printf("failed (ignored)\n");
}
goto hard_test_done;
}
@ -490,35 +494,35 @@ hard_test:
/* Get a reference ratio cycles/ms */
millisecs = 1;
cycles = mbedtls_timing_hardclock();
busy_msleep( millisecs );
busy_msleep(millisecs);
cycles = mbedtls_timing_hardclock() - cycles;
ratio = cycles / millisecs;
/* Check that the ratio is mostly constant */
for( millisecs = 2; millisecs <= 4; millisecs++ )
{
for (millisecs = 2; millisecs <= 4; millisecs++) {
cycles = mbedtls_timing_hardclock();
busy_msleep( millisecs );
busy_msleep(millisecs);
cycles = mbedtls_timing_hardclock() - cycles;
/* Allow variation up to 20% */
if( cycles / millisecs < ratio - ratio / 5 ||
cycles / millisecs > ratio + ratio / 5 )
{
if (cycles / millisecs < ratio - ratio / 5 ||
cycles / millisecs > ratio + ratio / 5) {
hardfail++;
goto hard_test;
}
}
if( verbose != 0 )
mbedtls_printf( "passed\n" );
if (verbose != 0) {
mbedtls_printf("passed\n");
}
hard_test_done:
if( verbose != 0 )
mbedtls_printf( "\n" );
if (verbose != 0) {
mbedtls_printf("\n");
}
return( 0 );
return 0;
}
#endif /* MBEDTLS_SELF_TEST */