mirror of
				https://gitlab.gnome.org/GNOME/libxml2.git
				synced 2025-10-28 23:14:57 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			915 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			915 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*************************************************************************
 | |
|  *
 | |
|  * $Id$
 | |
|  *
 | |
|  * Copyright (C) 2001 Bjorn Reese <breese@users.sourceforge.net>
 | |
|  *
 | |
|  * Permission to use, copy, modify, and distribute this software for any
 | |
|  * purpose with or without fee is hereby granted, provided that the above
 | |
|  * copyright notice and this permission notice appear in all copies.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
 | |
|  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
 | |
|  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE AUTHORS AND
 | |
|  * CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.
 | |
|  *
 | |
|  ************************************************************************
 | |
|  *
 | |
|  * Functions to handle special quantities in floating-point numbers
 | |
|  * (that is, NaNs and infinity). They provide the capability to detect
 | |
|  * and fabricate special quantities.
 | |
|  *
 | |
|  * Although written to be as portable as possible, it can never be
 | |
|  * guaranteed to work on all platforms, as not all hardware supports
 | |
|  * special quantities.
 | |
|  *
 | |
|  * The approach used here (approximately) is to:
 | |
|  *
 | |
|  *   1. Use C99 functionality when available.
 | |
|  *   2. Use IEEE 754 bit-patterns if possible.
 | |
|  *   3. Use platform-specific techniques.
 | |
|  *
 | |
|  ************************************************************************/
 | |
| 
 | |
| /*
 | |
|  * TODO:
 | |
|  *  o Put all the magic into trio_fpclassify_and_signbit(), and use this from
 | |
|  *    trio_isnan() etc.
 | |
|  */
 | |
| 
 | |
| /*************************************************************************
 | |
|  * Include files
 | |
|  */
 | |
| #include "triodef.h"
 | |
| #include "trionan.h"
 | |
| 
 | |
| #include <math.h>
 | |
| #include <string.h>
 | |
| #include <limits.h>
 | |
| #include <float.h>
 | |
| #if defined(TRIO_PLATFORM_UNIX)
 | |
| # include <signal.h>
 | |
| #endif
 | |
| #if defined(TRIO_COMPILER_DECC)
 | |
| #  if defined(__linux__)
 | |
| #   include <cpml.h>
 | |
| #  else
 | |
| #   include <fp_class.h>
 | |
| #  endif
 | |
| #endif
 | |
| #include <assert.h>
 | |
| 
 | |
| #if defined(TRIO_DOCUMENTATION)
 | |
| # include "doc/doc_nan.h"
 | |
| #endif
 | |
| /** @addtogroup SpecialQuantities
 | |
|     @{
 | |
| */
 | |
| 
 | |
| /*************************************************************************
 | |
|  * Definitions
 | |
|  */
 | |
| 
 | |
| #define TRIO_TRUE (1 == 1)
 | |
| #define TRIO_FALSE (0 == 1)
 | |
| 
 | |
| /*
 | |
|  * We must enable IEEE floating-point on Alpha
 | |
|  */
 | |
| #if defined(__alpha) && !defined(_IEEE_FP)
 | |
| # if defined(TRIO_COMPILER_DECC)
 | |
| #  if defined(TRIO_PLATFORM_VMS)
 | |
| #   error "Must be compiled with option /IEEE_MODE=UNDERFLOW_TO_ZERO/FLOAT=IEEE"
 | |
| #  else
 | |
| #   if !defined(_CFE)
 | |
| #    error "Must be compiled with option -ieee"
 | |
| #   endif
 | |
| #  endif
 | |
| # elif defined(TRIO_COMPILER_GCC) && (defined(__osf__) || defined(__linux__))
 | |
| #  error "Must be compiled with option -mieee"
 | |
| # endif
 | |
| #endif /* __alpha && ! _IEEE_FP */
 | |
| 
 | |
| /*
 | |
|  * In ANSI/IEEE 754-1985 64-bits double format numbers have the
 | |
|  * following properties (amongst others)
 | |
|  *
 | |
|  *   o FLT_RADIX == 2: binary encoding
 | |
|  *   o DBL_MAX_EXP == 1024: 11 bits exponent, where one bit is used
 | |
|  *     to indicate special numbers (e.g. NaN and Infinity), so the
 | |
|  *     maximum exponent is 10 bits wide (2^10 == 1024).
 | |
|  *   o DBL_MANT_DIG == 53: The mantissa is 52 bits wide, but because
 | |
|  *     numbers are normalized the initial binary 1 is represented
 | |
|  *     implicitly (the so-called "hidden bit"), which leaves us with
 | |
|  *     the ability to represent 53 bits wide mantissa.
 | |
|  */
 | |
| #if (FLT_RADIX == 2) && (DBL_MAX_EXP == 1024) && (DBL_MANT_DIG == 53)
 | |
| # define USE_IEEE_754
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*************************************************************************
 | |
|  * Constants
 | |
|  */
 | |
| 
 | |
| static TRIO_CONST char rcsid[] = "@(#)$Id$";
 | |
| 
 | |
| #if defined(USE_IEEE_754)
 | |
| 
 | |
| /*
 | |
|  * Endian-agnostic indexing macro.
 | |
|  *
 | |
|  * The value of internalEndianMagic, when converted into a 64-bit
 | |
|  * integer, becomes 0x0706050403020100 (we could have used a 64-bit
 | |
|  * integer value instead of a double, but not all platforms supports
 | |
|  * that type). The value is automatically encoded with the correct
 | |
|  * endianness by the compiler, which means that we can support any
 | |
|  * kind of endianness. The individual bytes are then used as an index
 | |
|  * for the IEEE 754 bit-patterns and masks.
 | |
|  */
 | |
| #define TRIO_DOUBLE_INDEX(x) (((unsigned char *)&internalEndianMagic)[7-(x)])
 | |
| 
 | |
| #if (defined(__BORLANDC__) && __BORLANDC__ >= 0x0590)
 | |
| static TRIO_CONST double internalEndianMagic = 7.949928895127362e-275;
 | |
| #else
 | |
| static TRIO_CONST double internalEndianMagic = 7.949928895127363e-275;
 | |
| #endif
 | |
| 
 | |
| /* Mask for the exponent */
 | |
| static TRIO_CONST unsigned char ieee_754_exponent_mask[] = {
 | |
|   0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
 | |
| };
 | |
| 
 | |
| /* Mask for the mantissa */
 | |
| static TRIO_CONST unsigned char ieee_754_mantissa_mask[] = {
 | |
|   0x00, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
 | |
| };
 | |
| 
 | |
| /* Mask for the sign bit */
 | |
| static TRIO_CONST unsigned char ieee_754_sign_mask[] = {
 | |
|   0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
 | |
| };
 | |
| 
 | |
| /* Bit-pattern for negative zero */
 | |
| static TRIO_CONST unsigned char ieee_754_negzero_array[] = {
 | |
|   0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
 | |
| };
 | |
| 
 | |
| /* Bit-pattern for infinity */
 | |
| static TRIO_CONST unsigned char ieee_754_infinity_array[] = {
 | |
|   0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
 | |
| };
 | |
| 
 | |
| /* Bit-pattern for quiet NaN */
 | |
| static TRIO_CONST unsigned char ieee_754_qnan_array[] = {
 | |
|   0x7F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
 | |
| };
 | |
| 
 | |
| 
 | |
| /*************************************************************************
 | |
|  * Functions
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * trio_make_double
 | |
|  */
 | |
| TRIO_PRIVATE double
 | |
| trio_make_double
 | |
| TRIO_ARGS1((values),
 | |
| 	   TRIO_CONST unsigned char *values)
 | |
| {
 | |
|   TRIO_VOLATILE double result;
 | |
|   int i;
 | |
| 
 | |
|   for (i = 0; i < (int)sizeof(double); i++) {
 | |
|     ((TRIO_VOLATILE unsigned char *)&result)[TRIO_DOUBLE_INDEX(i)] = values[i];
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * trio_is_special_quantity
 | |
|  */
 | |
| TRIO_PRIVATE int
 | |
| trio_is_special_quantity
 | |
| TRIO_ARGS2((number, has_mantissa),
 | |
| 	   double number,
 | |
| 	   int *has_mantissa)
 | |
| {
 | |
|   unsigned int i;
 | |
|   unsigned char current;
 | |
|   int is_special_quantity = TRIO_TRUE;
 | |
| 
 | |
|   *has_mantissa = 0;
 | |
| 
 | |
|   for (i = 0; i < (unsigned int)sizeof(double); i++) {
 | |
|     current = ((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)];
 | |
|     is_special_quantity
 | |
|       &= ((current & ieee_754_exponent_mask[i]) == ieee_754_exponent_mask[i]);
 | |
|     *has_mantissa |= (current & ieee_754_mantissa_mask[i]);
 | |
|   }
 | |
|   return is_special_quantity;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * trio_is_negative
 | |
|  */
 | |
| TRIO_PRIVATE int
 | |
| trio_is_negative
 | |
| TRIO_ARGS1((number),
 | |
| 	   double number)
 | |
| {
 | |
|   unsigned int i;
 | |
|   int is_negative = TRIO_FALSE;
 | |
| 
 | |
|   for (i = 0; i < (unsigned int)sizeof(double); i++) {
 | |
|     is_negative |= (((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)]
 | |
| 		    & ieee_754_sign_mask[i]);
 | |
|   }
 | |
|   return is_negative;
 | |
| }
 | |
| 
 | |
| #endif /* USE_IEEE_754 */
 | |
| 
 | |
| 
 | |
| /**
 | |
|    Generate negative zero.
 | |
| 
 | |
|    @return Floating-point representation of negative zero.
 | |
| */
 | |
| TRIO_PUBLIC double
 | |
| trio_nzero(TRIO_NOARGS)
 | |
| {
 | |
| #if defined(USE_IEEE_754)
 | |
|   return trio_make_double(ieee_754_negzero_array);
 | |
| #else
 | |
|   TRIO_VOLATILE double zero = 0.0;
 | |
| 
 | |
|   return -zero;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|    Generate positive infinity.
 | |
| 
 | |
|    @return Floating-point representation of positive infinity.
 | |
| */
 | |
| TRIO_PUBLIC double
 | |
| trio_pinf(TRIO_NOARGS)
 | |
| {
 | |
|   /* Cache the result */
 | |
|   static double result = 0.0;
 | |
| 
 | |
|   if (result == 0.0) {
 | |
| 
 | |
| #if defined(INFINITY) && defined(__STDC_IEC_559__)
 | |
|     result = (double)INFINITY;
 | |
| 
 | |
| #elif defined(USE_IEEE_754)
 | |
|     result = trio_make_double(ieee_754_infinity_array);
 | |
| 
 | |
| #else
 | |
|     /*
 | |
|      * If HUGE_VAL is different from DBL_MAX, then HUGE_VAL is used
 | |
|      * as infinity. Otherwise we have to resort to an overflow
 | |
|      * operation to generate infinity.
 | |
|      */
 | |
| # if defined(TRIO_PLATFORM_UNIX)
 | |
|     void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
 | |
| # endif
 | |
| 
 | |
|     result = HUGE_VAL;
 | |
|     if (HUGE_VAL == DBL_MAX) {
 | |
|       /* Force overflow */
 | |
|       result += HUGE_VAL;
 | |
|     }
 | |
| 
 | |
| # if defined(TRIO_PLATFORM_UNIX)
 | |
|     signal(SIGFPE, signal_handler);
 | |
| # endif
 | |
| 
 | |
| #endif
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /**
 | |
|    Generate negative infinity.
 | |
| 
 | |
|    @return Floating-point value of negative infinity.
 | |
| */
 | |
| TRIO_PUBLIC double
 | |
| trio_ninf(TRIO_NOARGS)
 | |
| {
 | |
|   static double result = 0.0;
 | |
| 
 | |
|   if (result == 0.0) {
 | |
|     /*
 | |
|      * Negative infinity is calculated by negating positive infinity,
 | |
|      * which can be done because it is legal to do calculations on
 | |
|      * infinity (for example,  1 / infinity == 0).
 | |
|      */
 | |
|     result = -trio_pinf();
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /**
 | |
|    Generate NaN.
 | |
| 
 | |
|    @return Floating-point representation of NaN.
 | |
| */
 | |
| TRIO_PUBLIC double
 | |
| trio_nan(TRIO_NOARGS)
 | |
| {
 | |
|   /* Cache the result */
 | |
|   static double result = 0.0;
 | |
| 
 | |
|   if (result == 0.0) {
 | |
| 
 | |
| #if defined(TRIO_COMPILER_SUPPORTS_C99)
 | |
|     result = nan("");
 | |
| 
 | |
| #elif defined(NAN) && defined(__STDC_IEC_559__)
 | |
|     result = (double)NAN;
 | |
| 
 | |
| #elif defined(USE_IEEE_754)
 | |
|     result = trio_make_double(ieee_754_qnan_array);
 | |
| 
 | |
| #else
 | |
|     /*
 | |
|      * There are several ways to generate NaN. The one used here is
 | |
|      * to divide infinity by infinity. I would have preferred to add
 | |
|      * negative infinity to positive infinity, but that yields wrong
 | |
|      * result (infinity) on FreeBSD.
 | |
|      *
 | |
|      * This may fail if the hardware does not support NaN, or if
 | |
|      * the Invalid Operation floating-point exception is unmasked.
 | |
|      */
 | |
| # if defined(TRIO_PLATFORM_UNIX)
 | |
|     void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
 | |
| # endif
 | |
| 
 | |
|     result = trio_pinf() / trio_pinf();
 | |
| 
 | |
| # if defined(TRIO_PLATFORM_UNIX)
 | |
|     signal(SIGFPE, signal_handler);
 | |
| # endif
 | |
| 
 | |
| #endif
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /**
 | |
|    Check for NaN.
 | |
| 
 | |
|    @param number An arbitrary floating-point number.
 | |
|    @return Boolean value indicating whether or not the number is a NaN.
 | |
| */
 | |
| TRIO_PUBLIC int
 | |
| trio_isnan
 | |
| TRIO_ARGS1((number),
 | |
| 	   double number)
 | |
| {
 | |
| #if (defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isnan)) \
 | |
|  || defined(TRIO_COMPILER_SUPPORTS_UNIX95)
 | |
|   /*
 | |
|    * C99 defines isnan() as a macro. UNIX95 defines isnan() as a
 | |
|    * function. This function was already present in XPG4, but this
 | |
|    * is a bit tricky to detect with compiler defines, so we choose
 | |
|    * the conservative approach and only use it for UNIX95.
 | |
|    */
 | |
|   return isnan(number);
 | |
| 
 | |
| #elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
 | |
|   /*
 | |
|    * Microsoft Visual C++ and Borland C++ Builder have an _isnan()
 | |
|    * function.
 | |
|    */
 | |
|   return _isnan(number) ? TRIO_TRUE : TRIO_FALSE;
 | |
| 
 | |
| #elif defined(USE_IEEE_754)
 | |
|   /*
 | |
|    * Examine IEEE 754 bit-pattern. A NaN must have a special exponent
 | |
|    * pattern, and a non-empty mantissa.
 | |
|    */
 | |
|   int has_mantissa;
 | |
|   int is_special_quantity;
 | |
| 
 | |
|   is_special_quantity = trio_is_special_quantity(number, &has_mantissa);
 | |
| 
 | |
|   return (is_special_quantity && has_mantissa);
 | |
| 
 | |
| #else
 | |
|   /*
 | |
|    * Fallback solution
 | |
|    */
 | |
|   int status;
 | |
|   double integral, fraction;
 | |
| 
 | |
| # if defined(TRIO_PLATFORM_UNIX)
 | |
|   void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
 | |
| # endif
 | |
| 
 | |
|   status = (/*
 | |
| 	     * NaN is the only number which does not compare to itself
 | |
| 	     */
 | |
| 	    ((TRIO_VOLATILE double)number != (TRIO_VOLATILE double)number) ||
 | |
| 	    /*
 | |
| 	     * Fallback solution if NaN compares to NaN
 | |
| 	     */
 | |
| 	    ((number != 0.0) &&
 | |
| 	     (fraction = modf(number, &integral),
 | |
| 	      integral == fraction)));
 | |
| 
 | |
| # if defined(TRIO_PLATFORM_UNIX)
 | |
|   signal(SIGFPE, signal_handler);
 | |
| # endif
 | |
| 
 | |
|   return status;
 | |
| 
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|    Check for infinity.
 | |
| 
 | |
|    @param number An arbitrary floating-point number.
 | |
|    @return 1 if positive infinity, -1 if negative infinity, 0 otherwise.
 | |
| */
 | |
| TRIO_PUBLIC int
 | |
| trio_isinf
 | |
| TRIO_ARGS1((number),
 | |
| 	   double number)
 | |
| {
 | |
| #if defined(TRIO_COMPILER_DECC) && !defined(__linux__)
 | |
|   /*
 | |
|    * DECC has an isinf() macro, but it works differently than that
 | |
|    * of C99, so we use the fp_class() function instead.
 | |
|    */
 | |
|   return ((fp_class(number) == FP_POS_INF)
 | |
| 	  ? 1
 | |
| 	  : ((fp_class(number) == FP_NEG_INF) ? -1 : 0));
 | |
| 
 | |
| #elif defined(isinf)
 | |
|   /*
 | |
|    * C99 defines isinf() as a macro.
 | |
|    */
 | |
|   return isinf(number)
 | |
|     ? ((number > 0.0) ? 1 : -1)
 | |
|     : 0;
 | |
| 
 | |
| #elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
 | |
|   /*
 | |
|    * Microsoft Visual C++ and Borland C++ Builder have an _fpclass()
 | |
|    * function that can be used to detect infinity.
 | |
|    */
 | |
|   return ((_fpclass(number) == _FPCLASS_PINF)
 | |
| 	  ? 1
 | |
| 	  : ((_fpclass(number) == _FPCLASS_NINF) ? -1 : 0));
 | |
| 
 | |
| #elif defined(USE_IEEE_754)
 | |
|   /*
 | |
|    * Examine IEEE 754 bit-pattern. Infinity must have a special exponent
 | |
|    * pattern, and an empty mantissa.
 | |
|    */
 | |
|   int has_mantissa;
 | |
|   int is_special_quantity;
 | |
| 
 | |
|   is_special_quantity = trio_is_special_quantity(number, &has_mantissa);
 | |
| 
 | |
|   return (is_special_quantity && !has_mantissa)
 | |
|     ? ((number < 0.0) ? -1 : 1)
 | |
|     : 0;
 | |
| 
 | |
| #else
 | |
|   /*
 | |
|    * Fallback solution.
 | |
|    */
 | |
|   int status;
 | |
| 
 | |
| # if defined(TRIO_PLATFORM_UNIX)
 | |
|   void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
 | |
| # endif
 | |
| 
 | |
|   double infinity = trio_pinf();
 | |
| 
 | |
|   status = ((number == infinity)
 | |
| 	    ? 1
 | |
| 	    : ((number == -infinity) ? -1 : 0));
 | |
| 
 | |
| # if defined(TRIO_PLATFORM_UNIX)
 | |
|   signal(SIGFPE, signal_handler);
 | |
| # endif
 | |
| 
 | |
|   return status;
 | |
| 
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| 	/* Temporary fix - this routine is not used anywhere */
 | |
| /**
 | |
|    Check for finity.
 | |
| 
 | |
|    @param number An arbitrary floating-point number.
 | |
|    @return Boolean value indicating whether or not the number is a finite.
 | |
| */
 | |
| TRIO_PUBLIC int
 | |
| trio_isfinite
 | |
| TRIO_ARGS1((number),
 | |
| 	   double number)
 | |
| {
 | |
| #if defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isfinite)
 | |
|   /*
 | |
|    * C99 defines isfinite() as a macro.
 | |
|    */
 | |
|   return isfinite(number);
 | |
| 
 | |
| #elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
 | |
|   /*
 | |
|    * Microsoft Visual C++ and Borland C++ Builder use _finite().
 | |
|    */
 | |
|   return _finite(number);
 | |
| 
 | |
| #elif defined(USE_IEEE_754)
 | |
|   /*
 | |
|    * Examine IEEE 754 bit-pattern. For finity we do not care about the
 | |
|    * mantissa.
 | |
|    */
 | |
|   int dummy;
 | |
| 
 | |
|   return (! trio_is_special_quantity(number, &dummy));
 | |
| 
 | |
| #else
 | |
|   /*
 | |
|    * Fallback solution.
 | |
|    */
 | |
|   return ((trio_isinf(number) == 0) && (trio_isnan(number) == 0));
 | |
| 
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * The sign of NaN is always false
 | |
|  */
 | |
| TRIO_PUBLIC int
 | |
| trio_fpclassify_and_signbit
 | |
| TRIO_ARGS2((number, is_negative),
 | |
| 	   double number,
 | |
| 	   int *is_negative)
 | |
| {
 | |
| #if defined(fpclassify) && defined(signbit)
 | |
|   /*
 | |
|    * C99 defines fpclassify() and signbit() as a macros
 | |
|    */
 | |
|   *is_negative = signbit(number);
 | |
|   switch (fpclassify(number)) {
 | |
|   case FP_NAN:
 | |
|     return TRIO_FP_NAN;
 | |
|   case FP_INFINITE:
 | |
|     return TRIO_FP_INFINITE;
 | |
|   case FP_SUBNORMAL:
 | |
|     return TRIO_FP_SUBNORMAL;
 | |
|   case FP_ZERO:
 | |
|     return TRIO_FP_ZERO;
 | |
|   default:
 | |
|     return TRIO_FP_NORMAL;
 | |
|   }
 | |
| 
 | |
| #else
 | |
| # if defined(TRIO_COMPILER_DECC)
 | |
|   /*
 | |
|    * DECC has an fp_class() function.
 | |
|    */
 | |
| #  define TRIO_FPCLASSIFY(n) fp_class(n)
 | |
| #  define TRIO_QUIET_NAN FP_QNAN
 | |
| #  define TRIO_SIGNALLING_NAN FP_SNAN
 | |
| #  define TRIO_POSITIVE_INFINITY FP_POS_INF
 | |
| #  define TRIO_NEGATIVE_INFINITY FP_NEG_INF
 | |
| #  define TRIO_POSITIVE_SUBNORMAL FP_POS_DENORM
 | |
| #  define TRIO_NEGATIVE_SUBNORMAL FP_NEG_DENORM
 | |
| #  define TRIO_POSITIVE_ZERO FP_POS_ZERO
 | |
| #  define TRIO_NEGATIVE_ZERO FP_NEG_ZERO
 | |
| #  define TRIO_POSITIVE_NORMAL FP_POS_NORM
 | |
| #  define TRIO_NEGATIVE_NORMAL FP_NEG_NORM
 | |
| 
 | |
| # elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
 | |
|   /*
 | |
|    * Microsoft Visual C++ and Borland C++ Builder have an _fpclass()
 | |
|    * function.
 | |
|    */
 | |
| #  define TRIO_FPCLASSIFY(n) _fpclass(n)
 | |
| #  define TRIO_QUIET_NAN _FPCLASS_QNAN
 | |
| #  define TRIO_SIGNALLING_NAN _FPCLASS_SNAN
 | |
| #  define TRIO_POSITIVE_INFINITY _FPCLASS_PINF
 | |
| #  define TRIO_NEGATIVE_INFINITY _FPCLASS_NINF
 | |
| #  define TRIO_POSITIVE_SUBNORMAL _FPCLASS_PD
 | |
| #  define TRIO_NEGATIVE_SUBNORMAL _FPCLASS_ND
 | |
| #  define TRIO_POSITIVE_ZERO _FPCLASS_PZ
 | |
| #  define TRIO_NEGATIVE_ZERO _FPCLASS_NZ
 | |
| #  define TRIO_POSITIVE_NORMAL _FPCLASS_PN
 | |
| #  define TRIO_NEGATIVE_NORMAL _FPCLASS_NN
 | |
| 
 | |
| # elif defined(FP_PLUS_NORM)
 | |
|   /*
 | |
|    * HP-UX 9.x and 10.x have an fpclassify() function, that is different
 | |
|    * from the C99 fpclassify() macro supported on HP-UX 11.x.
 | |
|    *
 | |
|    * AIX has class() for C, and _class() for C++, which returns the
 | |
|    * same values as the HP-UX fpclassify() function.
 | |
|    */
 | |
| #  if defined(TRIO_PLATFORM_AIX)
 | |
| #   if defined(__cplusplus)
 | |
| #    define TRIO_FPCLASSIFY(n) _class(n)
 | |
| #   else
 | |
| #    define TRIO_FPCLASSIFY(n) class(n)
 | |
| #   endif
 | |
| #  else
 | |
| #   define TRIO_FPCLASSIFY(n) fpclassify(n)
 | |
| #  endif
 | |
| #  define TRIO_QUIET_NAN FP_QNAN
 | |
| #  define TRIO_SIGNALLING_NAN FP_SNAN
 | |
| #  define TRIO_POSITIVE_INFINITY FP_PLUS_INF
 | |
| #  define TRIO_NEGATIVE_INFINITY FP_MINUS_INF
 | |
| #  define TRIO_POSITIVE_SUBNORMAL FP_PLUS_DENORM
 | |
| #  define TRIO_NEGATIVE_SUBNORMAL FP_MINUS_DENORM
 | |
| #  define TRIO_POSITIVE_ZERO FP_PLUS_ZERO
 | |
| #  define TRIO_NEGATIVE_ZERO FP_MINUS_ZERO
 | |
| #  define TRIO_POSITIVE_NORMAL FP_PLUS_NORM
 | |
| #  define TRIO_NEGATIVE_NORMAL FP_MINUS_NORM
 | |
| # endif
 | |
| 
 | |
| # if defined(TRIO_FPCLASSIFY)
 | |
|   switch (TRIO_FPCLASSIFY(number)) {
 | |
|   case TRIO_QUIET_NAN:
 | |
|   case TRIO_SIGNALLING_NAN:
 | |
|     *is_negative = TRIO_FALSE; /* NaN has no sign */
 | |
|     return TRIO_FP_NAN;
 | |
|   case TRIO_POSITIVE_INFINITY:
 | |
|     *is_negative = TRIO_FALSE;
 | |
|     return TRIO_FP_INFINITE;
 | |
|   case TRIO_NEGATIVE_INFINITY:
 | |
|     *is_negative = TRIO_TRUE;
 | |
|     return TRIO_FP_INFINITE;
 | |
|   case TRIO_POSITIVE_SUBNORMAL:
 | |
|     *is_negative = TRIO_FALSE;
 | |
|     return TRIO_FP_SUBNORMAL;
 | |
|   case TRIO_NEGATIVE_SUBNORMAL:
 | |
|     *is_negative = TRIO_TRUE;
 | |
|     return TRIO_FP_SUBNORMAL;
 | |
|   case TRIO_POSITIVE_ZERO:
 | |
|     *is_negative = TRIO_FALSE;
 | |
|     return TRIO_FP_ZERO;
 | |
|   case TRIO_NEGATIVE_ZERO:
 | |
|     *is_negative = TRIO_TRUE;
 | |
|     return TRIO_FP_ZERO;
 | |
|   case TRIO_POSITIVE_NORMAL:
 | |
|     *is_negative = TRIO_FALSE;
 | |
|     return TRIO_FP_NORMAL;
 | |
|   case TRIO_NEGATIVE_NORMAL:
 | |
|     *is_negative = TRIO_TRUE;
 | |
|     return TRIO_FP_NORMAL;
 | |
|   default:
 | |
|     /* Just in case... */
 | |
|     *is_negative = (number < 0.0);
 | |
|     return TRIO_FP_NORMAL;
 | |
|   }
 | |
| 
 | |
| # else
 | |
|   /*
 | |
|    * Fallback solution.
 | |
|    */
 | |
|   int rc;
 | |
| 
 | |
|   if (number == 0.0) {
 | |
|     /*
 | |
|      * In IEEE 754 the sign of zero is ignored in comparisons, so we
 | |
|      * have to handle this as a special case by examining the sign bit
 | |
|      * directly.
 | |
|      */
 | |
| #  if defined(USE_IEEE_754)
 | |
|     *is_negative = trio_is_negative(number);
 | |
| #  else
 | |
|     *is_negative = TRIO_FALSE; /* FIXME */
 | |
| #  endif
 | |
|     return TRIO_FP_ZERO;
 | |
|   }
 | |
|   if (trio_isnan(number)) {
 | |
|     *is_negative = TRIO_FALSE;
 | |
|     return TRIO_FP_NAN;
 | |
|   }
 | |
|   if ((rc = trio_isinf(number))) {
 | |
|     *is_negative = (rc == -1);
 | |
|     return TRIO_FP_INFINITE;
 | |
|   }
 | |
|   if ((number > 0.0) && (number < DBL_MIN)) {
 | |
|     *is_negative = TRIO_FALSE;
 | |
|     return TRIO_FP_SUBNORMAL;
 | |
|   }
 | |
|   if ((number < 0.0) && (number > -DBL_MIN)) {
 | |
|     *is_negative = TRIO_TRUE;
 | |
|     return TRIO_FP_SUBNORMAL;
 | |
|   }
 | |
|   *is_negative = (number < 0.0);
 | |
|   return TRIO_FP_NORMAL;
 | |
| 
 | |
| # endif
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|    Examine the sign of a number.
 | |
| 
 | |
|    @param number An arbitrary floating-point number.
 | |
|    @return Boolean value indicating whether or not the number has the
 | |
|    sign bit set (i.e. is negative).
 | |
| */
 | |
| TRIO_PUBLIC int
 | |
| trio_signbit
 | |
| TRIO_ARGS1((number),
 | |
| 	   double number)
 | |
| {
 | |
|   int is_negative;
 | |
| 
 | |
|   (void)trio_fpclassify_and_signbit(number, &is_negative);
 | |
|   return is_negative;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| 	/* Temporary fix - this routine is not used in libxml */
 | |
| /**
 | |
|    Examine the class of a number.
 | |
| 
 | |
|    @param number An arbitrary floating-point number.
 | |
|    @return Enumerable value indicating the class of @p number
 | |
| */
 | |
| TRIO_PUBLIC int
 | |
| trio_fpclassify
 | |
| TRIO_ARGS1((number),
 | |
| 	   double number)
 | |
| {
 | |
|   int dummy;
 | |
| 
 | |
|   return trio_fpclassify_and_signbit(number, &dummy);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /** @} SpecialQuantities */
 | |
| 
 | |
| /*************************************************************************
 | |
|  * For test purposes.
 | |
|  *
 | |
|  * Add the following compiler option to include this test code.
 | |
|  *
 | |
|  *  Unix : -DSTANDALONE
 | |
|  *  VMS  : /DEFINE=(STANDALONE)
 | |
|  */
 | |
| #if defined(STANDALONE)
 | |
| # include <stdio.h>
 | |
| 
 | |
| static TRIO_CONST char *
 | |
| getClassification
 | |
| TRIO_ARGS1((type),
 | |
| 	   int type)
 | |
| {
 | |
|   switch (type) {
 | |
|   case TRIO_FP_INFINITE:
 | |
|     return "FP_INFINITE";
 | |
|   case TRIO_FP_NAN:
 | |
|     return "FP_NAN";
 | |
|   case TRIO_FP_NORMAL:
 | |
|     return "FP_NORMAL";
 | |
|   case TRIO_FP_SUBNORMAL:
 | |
|     return "FP_SUBNORMAL";
 | |
|   case TRIO_FP_ZERO:
 | |
|     return "FP_ZERO";
 | |
|   default:
 | |
|     return "FP_UNKNOWN";
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void
 | |
| print_class
 | |
| TRIO_ARGS2((prefix, number),
 | |
| 	   TRIO_CONST char *prefix,
 | |
| 	   double number)
 | |
| {
 | |
|   printf("%-6s: %s %-15s %g\n",
 | |
| 	 prefix,
 | |
| 	 trio_signbit(number) ? "-" : "+",
 | |
| 	 getClassification(TRIO_FPCLASSIFY(number)),
 | |
| 	 number);
 | |
| }
 | |
| 
 | |
| int main(TRIO_NOARGS)
 | |
| {
 | |
|   double my_nan;
 | |
|   double my_pinf;
 | |
|   double my_ninf;
 | |
| # if defined(TRIO_PLATFORM_UNIX)
 | |
|   void (*signal_handler) TRIO_PROTO((int));
 | |
| # endif
 | |
| 
 | |
|   my_nan = trio_nan();
 | |
|   my_pinf = trio_pinf();
 | |
|   my_ninf = trio_ninf();
 | |
| 
 | |
|   print_class("Nan", my_nan);
 | |
|   print_class("PInf", my_pinf);
 | |
|   print_class("NInf", my_ninf);
 | |
|   print_class("PZero", 0.0);
 | |
|   print_class("NZero", -0.0);
 | |
|   print_class("PNorm", 1.0);
 | |
|   print_class("NNorm", -1.0);
 | |
|   print_class("PSub", 1.01e-307 - 1.00e-307);
 | |
|   print_class("NSub", 1.00e-307 - 1.01e-307);
 | |
| 
 | |
|   printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
 | |
| 	 my_nan,
 | |
| 	 ((unsigned char *)&my_nan)[0],
 | |
| 	 ((unsigned char *)&my_nan)[1],
 | |
| 	 ((unsigned char *)&my_nan)[2],
 | |
| 	 ((unsigned char *)&my_nan)[3],
 | |
| 	 ((unsigned char *)&my_nan)[4],
 | |
| 	 ((unsigned char *)&my_nan)[5],
 | |
| 	 ((unsigned char *)&my_nan)[6],
 | |
| 	 ((unsigned char *)&my_nan)[7],
 | |
| 	 trio_isnan(my_nan), trio_isinf(my_nan));
 | |
|   printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
 | |
| 	 my_pinf,
 | |
| 	 ((unsigned char *)&my_pinf)[0],
 | |
| 	 ((unsigned char *)&my_pinf)[1],
 | |
| 	 ((unsigned char *)&my_pinf)[2],
 | |
| 	 ((unsigned char *)&my_pinf)[3],
 | |
| 	 ((unsigned char *)&my_pinf)[4],
 | |
| 	 ((unsigned char *)&my_pinf)[5],
 | |
| 	 ((unsigned char *)&my_pinf)[6],
 | |
| 	 ((unsigned char *)&my_pinf)[7],
 | |
| 	 trio_isnan(my_pinf), trio_isinf(my_pinf));
 | |
|   printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
 | |
| 	 my_ninf,
 | |
| 	 ((unsigned char *)&my_ninf)[0],
 | |
| 	 ((unsigned char *)&my_ninf)[1],
 | |
| 	 ((unsigned char *)&my_ninf)[2],
 | |
| 	 ((unsigned char *)&my_ninf)[3],
 | |
| 	 ((unsigned char *)&my_ninf)[4],
 | |
| 	 ((unsigned char *)&my_ninf)[5],
 | |
| 	 ((unsigned char *)&my_ninf)[6],
 | |
| 	 ((unsigned char *)&my_ninf)[7],
 | |
| 	 trio_isnan(my_ninf), trio_isinf(my_ninf));
 | |
| 
 | |
| # if defined(TRIO_PLATFORM_UNIX)
 | |
|   signal_handler = signal(SIGFPE, SIG_IGN);
 | |
| # endif
 | |
| 
 | |
|   my_pinf = DBL_MAX + DBL_MAX;
 | |
|   my_ninf = -my_pinf;
 | |
|   my_nan = my_pinf / my_pinf;
 | |
| 
 | |
| # if defined(TRIO_PLATFORM_UNIX)
 | |
|   signal(SIGFPE, signal_handler);
 | |
| # endif
 | |
| 
 | |
|   printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
 | |
| 	 my_nan,
 | |
| 	 ((unsigned char *)&my_nan)[0],
 | |
| 	 ((unsigned char *)&my_nan)[1],
 | |
| 	 ((unsigned char *)&my_nan)[2],
 | |
| 	 ((unsigned char *)&my_nan)[3],
 | |
| 	 ((unsigned char *)&my_nan)[4],
 | |
| 	 ((unsigned char *)&my_nan)[5],
 | |
| 	 ((unsigned char *)&my_nan)[6],
 | |
| 	 ((unsigned char *)&my_nan)[7],
 | |
| 	 trio_isnan(my_nan), trio_isinf(my_nan));
 | |
|   printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
 | |
| 	 my_pinf,
 | |
| 	 ((unsigned char *)&my_pinf)[0],
 | |
| 	 ((unsigned char *)&my_pinf)[1],
 | |
| 	 ((unsigned char *)&my_pinf)[2],
 | |
| 	 ((unsigned char *)&my_pinf)[3],
 | |
| 	 ((unsigned char *)&my_pinf)[4],
 | |
| 	 ((unsigned char *)&my_pinf)[5],
 | |
| 	 ((unsigned char *)&my_pinf)[6],
 | |
| 	 ((unsigned char *)&my_pinf)[7],
 | |
| 	 trio_isnan(my_pinf), trio_isinf(my_pinf));
 | |
|   printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
 | |
| 	 my_ninf,
 | |
| 	 ((unsigned char *)&my_ninf)[0],
 | |
| 	 ((unsigned char *)&my_ninf)[1],
 | |
| 	 ((unsigned char *)&my_ninf)[2],
 | |
| 	 ((unsigned char *)&my_ninf)[3],
 | |
| 	 ((unsigned char *)&my_ninf)[4],
 | |
| 	 ((unsigned char *)&my_ninf)[5],
 | |
| 	 ((unsigned char *)&my_ninf)[6],
 | |
| 	 ((unsigned char *)&my_ninf)[7],
 | |
| 	 trio_isnan(my_ninf), trio_isinf(my_ninf));
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| #endif
 |