mirror of
				https://gitlab.gnome.org/GNOME/libxml2.git
				synced 2025-10-28 23:14:57 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			602 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			602 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Taken from https://github.com/swenson/sort
 | |
|  * Revision: 05fd77bfec049ce8b7c408c4d3dd2d51ee061a15
 | |
|  * Removed all code unrelated to Timsort and made minor adjustments for
 | |
|  * cross-platform compatibility.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The MIT License (MIT)
 | |
|  *
 | |
|  * Copyright (c) 2010-2017 Christopher Swenson.
 | |
|  * Copyright (c) 2012 Vojtech Fried.
 | |
|  * Copyright (c) 2012 Google Inc. All Rights Reserved.
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a
 | |
|  * copy of this software and associated documentation files (the "Software"),
 | |
|  * to deal in the Software without restriction, including without limitation
 | |
|  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 | |
|  * and/or sell copies of the Software, and to permit persons to whom the
 | |
|  * Software is furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
|  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 | |
|  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 | |
|  * DEALINGS IN THE SOFTWARE.
 | |
|  */
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <stdio.h>
 | |
| #include <string.h>
 | |
| #ifdef HAVE_STDINT_H
 | |
| #include <stdint.h>
 | |
| #elif defined(_WIN32)
 | |
| typedef unsigned __int64 uint64_t;
 | |
| #endif
 | |
| 
 | |
| #ifndef SORT_NAME
 | |
| #error "Must declare SORT_NAME"
 | |
| #endif
 | |
| 
 | |
| #ifndef SORT_TYPE
 | |
| #error "Must declare SORT_TYPE"
 | |
| #endif
 | |
| 
 | |
| #ifndef SORT_CMP
 | |
| #define SORT_CMP(x, y)  ((x) < (y) ? -1 : ((x) == (y) ? 0 : 1))
 | |
| #endif
 | |
| 
 | |
| #ifndef TIM_SORT_STACK_SIZE
 | |
| #define TIM_SORT_STACK_SIZE 128
 | |
| #endif
 | |
| 
 | |
| #define SORT_SWAP(x,y) {SORT_TYPE __SORT_SWAP_t = (x); (x) = (y); (y) = __SORT_SWAP_t;}
 | |
| 
 | |
| 
 | |
| /* Common, type-agnostic functions and constants that we don't want to declare twice. */
 | |
| #ifndef SORT_COMMON_H
 | |
| #define SORT_COMMON_H
 | |
| 
 | |
| #ifndef MAX
 | |
| #define MAX(x,y) (((x) > (y) ? (x) : (y)))
 | |
| #endif
 | |
| 
 | |
| #ifndef MIN
 | |
| #define MIN(x,y) (((x) < (y) ? (x) : (y)))
 | |
| #endif
 | |
| 
 | |
| static int compute_minrun(const uint64_t);
 | |
| 
 | |
| #ifndef CLZ
 | |
| #if defined(__GNUC__) && ((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ > 3))
 | |
| #define CLZ __builtin_clzll
 | |
| #else
 | |
| 
 | |
| static int clzll(uint64_t);
 | |
| 
 | |
| /* adapted from Hacker's Delight */
 | |
| static int clzll(uint64_t x) {
 | |
|   int n;
 | |
| 
 | |
|   if (x == 0) {
 | |
|     return 64;
 | |
|   }
 | |
| 
 | |
|   n = 0;
 | |
| 
 | |
|   if (x <= 0x00000000FFFFFFFFL) {
 | |
|     n = n + 32;
 | |
|     x = x << 32;
 | |
|   }
 | |
| 
 | |
|   if (x <= 0x0000FFFFFFFFFFFFL) {
 | |
|     n = n + 16;
 | |
|     x = x << 16;
 | |
|   }
 | |
| 
 | |
|   if (x <= 0x00FFFFFFFFFFFFFFL) {
 | |
|     n = n + 8;
 | |
|     x = x << 8;
 | |
|   }
 | |
| 
 | |
|   if (x <= 0x0FFFFFFFFFFFFFFFL) {
 | |
|     n = n + 4;
 | |
|     x = x << 4;
 | |
|   }
 | |
| 
 | |
|   if (x <= 0x3FFFFFFFFFFFFFFFL) {
 | |
|     n = n + 2;
 | |
|     x = x << 2;
 | |
|   }
 | |
| 
 | |
|   if (x <= 0x7FFFFFFFFFFFFFFFL) {
 | |
|     n = n + 1;
 | |
|   }
 | |
| 
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| #define CLZ clzll
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| static __inline int compute_minrun(const uint64_t size) {
 | |
|   const int top_bit = 64 - CLZ(size);
 | |
|   const int shift = MAX(top_bit, 6) - 6;
 | |
|   const int minrun = size >> shift;
 | |
|   const uint64_t mask = (1ULL << shift) - 1;
 | |
| 
 | |
|   if (mask & size) {
 | |
|     return minrun + 1;
 | |
|   }
 | |
| 
 | |
|   return minrun;
 | |
| }
 | |
| 
 | |
| #endif /* SORT_COMMON_H */
 | |
| 
 | |
| #define SORT_CONCAT(x, y) x ## _ ## y
 | |
| #define SORT_MAKE_STR1(x, y) SORT_CONCAT(x,y)
 | |
| #define SORT_MAKE_STR(x) SORT_MAKE_STR1(SORT_NAME,x)
 | |
| 
 | |
| #define BINARY_INSERTION_FIND          SORT_MAKE_STR(binary_insertion_find)
 | |
| #define BINARY_INSERTION_SORT_START    SORT_MAKE_STR(binary_insertion_sort_start)
 | |
| #define BINARY_INSERTION_SORT          SORT_MAKE_STR(binary_insertion_sort)
 | |
| #define REVERSE_ELEMENTS               SORT_MAKE_STR(reverse_elements)
 | |
| #define COUNT_RUN                      SORT_MAKE_STR(count_run)
 | |
| #define CHECK_INVARIANT                SORT_MAKE_STR(check_invariant)
 | |
| #define TIM_SORT                       SORT_MAKE_STR(tim_sort)
 | |
| #define TIM_SORT_RESIZE                SORT_MAKE_STR(tim_sort_resize)
 | |
| #define TIM_SORT_MERGE                 SORT_MAKE_STR(tim_sort_merge)
 | |
| #define TIM_SORT_COLLAPSE              SORT_MAKE_STR(tim_sort_collapse)
 | |
| 
 | |
| #ifndef MAX
 | |
| #define MAX(x,y) (((x) > (y) ? (x) : (y)))
 | |
| #endif
 | |
| #ifndef MIN
 | |
| #define MIN(x,y) (((x) < (y) ? (x) : (y)))
 | |
| #endif
 | |
| 
 | |
| typedef struct {
 | |
|   size_t start;
 | |
|   size_t length;
 | |
| } TIM_SORT_RUN_T;
 | |
| 
 | |
| 
 | |
| void BINARY_INSERTION_SORT(SORT_TYPE *dst, const size_t size);
 | |
| void TIM_SORT(SORT_TYPE *dst, const size_t size);
 | |
| 
 | |
| 
 | |
| /* Function used to do a binary search for binary insertion sort */
 | |
| static __inline size_t BINARY_INSERTION_FIND(SORT_TYPE *dst, const SORT_TYPE x,
 | |
|     const size_t size) {
 | |
|   size_t l, c, r;
 | |
|   SORT_TYPE cx;
 | |
|   l = 0;
 | |
|   r = size - 1;
 | |
|   c = r >> 1;
 | |
| 
 | |
|   /* check for out of bounds at the beginning. */
 | |
|   if (SORT_CMP(x, dst[0]) < 0) {
 | |
|     return 0;
 | |
|   } else if (SORT_CMP(x, dst[r]) > 0) {
 | |
|     return r;
 | |
|   }
 | |
| 
 | |
|   cx = dst[c];
 | |
| 
 | |
|   while (1) {
 | |
|     const int val = SORT_CMP(x, cx);
 | |
| 
 | |
|     if (val < 0) {
 | |
|       if (c - l <= 1) {
 | |
|         return c;
 | |
|       }
 | |
| 
 | |
|       r = c;
 | |
|     } else { /* allow = for stability. The binary search favors the right. */
 | |
|       if (r - c <= 1) {
 | |
|         return c + 1;
 | |
|       }
 | |
| 
 | |
|       l = c;
 | |
|     }
 | |
| 
 | |
|     c = l + ((r - l) >> 1);
 | |
|     cx = dst[c];
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Binary insertion sort, but knowing that the first "start" entries are sorted.  Used in timsort. */
 | |
| static void BINARY_INSERTION_SORT_START(SORT_TYPE *dst, const size_t start, const size_t size) {
 | |
|   size_t i;
 | |
| 
 | |
|   for (i = start; i < size; i++) {
 | |
|     size_t j;
 | |
|     SORT_TYPE x;
 | |
|     size_t location;
 | |
| 
 | |
|     /* If this entry is already correct, just move along */
 | |
|     if (SORT_CMP(dst[i - 1], dst[i]) <= 0) {
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* Else we need to find the right place, shift everything over, and squeeze in */
 | |
|     x = dst[i];
 | |
|     location = BINARY_INSERTION_FIND(dst, x, i);
 | |
| 
 | |
|     for (j = i - 1; j >= location; j--) {
 | |
|       dst[j + 1] = dst[j];
 | |
| 
 | |
|       if (j == 0) { /* check edge case because j is unsigned */
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     dst[location] = x;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Binary insertion sort */
 | |
| void BINARY_INSERTION_SORT(SORT_TYPE *dst, const size_t size) {
 | |
|   /* don't bother sorting an array of size <= 1 */
 | |
|   if (size <= 1) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   BINARY_INSERTION_SORT_START(dst, 1, size);
 | |
| }
 | |
| 
 | |
| /* timsort implementation, based on timsort.txt */
 | |
| 
 | |
| static __inline void REVERSE_ELEMENTS(SORT_TYPE *dst, size_t start, size_t end) {
 | |
|   while (1) {
 | |
|     if (start >= end) {
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     SORT_SWAP(dst[start], dst[end]);
 | |
|     start++;
 | |
|     end--;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static size_t COUNT_RUN(SORT_TYPE *dst, const size_t start, const size_t size) {
 | |
|   size_t curr;
 | |
| 
 | |
|   if (size - start == 1) {
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   if (start >= size - 2) {
 | |
|     if (SORT_CMP(dst[size - 2], dst[size - 1]) > 0) {
 | |
|       SORT_SWAP(dst[size - 2], dst[size - 1]);
 | |
|     }
 | |
| 
 | |
|     return 2;
 | |
|   }
 | |
| 
 | |
|   curr = start + 2;
 | |
| 
 | |
|   if (SORT_CMP(dst[start], dst[start + 1]) <= 0) {
 | |
|     /* increasing run */
 | |
|     while (1) {
 | |
|       if (curr == size - 1) {
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (SORT_CMP(dst[curr - 1], dst[curr]) > 0) {
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       curr++;
 | |
|     }
 | |
| 
 | |
|     return curr - start;
 | |
|   } else {
 | |
|     /* decreasing run */
 | |
|     while (1) {
 | |
|       if (curr == size - 1) {
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (SORT_CMP(dst[curr - 1], dst[curr]) <= 0) {
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       curr++;
 | |
|     }
 | |
| 
 | |
|     /* reverse in-place */
 | |
|     REVERSE_ELEMENTS(dst, start, curr - 1);
 | |
|     return curr - start;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static int CHECK_INVARIANT(TIM_SORT_RUN_T *stack, const int stack_curr) {
 | |
|   size_t A, B, C;
 | |
| 
 | |
|   if (stack_curr < 2) {
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   if (stack_curr == 2) {
 | |
|     const size_t A1 = stack[stack_curr - 2].length;
 | |
|     const size_t B1 = stack[stack_curr - 1].length;
 | |
| 
 | |
|     if (A1 <= B1) {
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   A = stack[stack_curr - 3].length;
 | |
|   B = stack[stack_curr - 2].length;
 | |
|   C = stack[stack_curr - 1].length;
 | |
| 
 | |
|   if ((A <= B + C) || (B <= C)) {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|   size_t alloc;
 | |
|   SORT_TYPE *storage;
 | |
| } TEMP_STORAGE_T;
 | |
| 
 | |
| static void TIM_SORT_RESIZE(TEMP_STORAGE_T *store, const size_t new_size) {
 | |
|   if (store->alloc < new_size) {
 | |
|     SORT_TYPE *tempstore = (SORT_TYPE *)realloc(store->storage, new_size * sizeof(SORT_TYPE));
 | |
| 
 | |
|     if (tempstore == NULL) {
 | |
|       fprintf(stderr, "Error allocating temporary storage for tim sort: need %lu bytes",
 | |
|               (unsigned long)(sizeof(SORT_TYPE) * new_size));
 | |
|       exit(1);
 | |
|     }
 | |
| 
 | |
|     store->storage = tempstore;
 | |
|     store->alloc = new_size;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void TIM_SORT_MERGE(SORT_TYPE *dst, const TIM_SORT_RUN_T *stack, const int stack_curr,
 | |
|                            TEMP_STORAGE_T *store) {
 | |
|   const size_t A = stack[stack_curr - 2].length;
 | |
|   const size_t B = stack[stack_curr - 1].length;
 | |
|   const size_t curr = stack[stack_curr - 2].start;
 | |
|   SORT_TYPE *storage;
 | |
|   size_t i, j, k;
 | |
|   TIM_SORT_RESIZE(store, MIN(A, B));
 | |
|   storage = store->storage;
 | |
| 
 | |
|   /* left merge */
 | |
|   if (A < B) {
 | |
|     memcpy(storage, &dst[curr], A * sizeof(SORT_TYPE));
 | |
|     i = 0;
 | |
|     j = curr + A;
 | |
| 
 | |
|     for (k = curr; k < curr + A + B; k++) {
 | |
|       if ((i < A) && (j < curr + A + B)) {
 | |
|         if (SORT_CMP(storage[i], dst[j]) <= 0) {
 | |
|           dst[k] = storage[i++];
 | |
|         } else {
 | |
|           dst[k] = dst[j++];
 | |
|         }
 | |
|       } else if (i < A) {
 | |
|         dst[k] = storage[i++];
 | |
|       } else {
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     /* right merge */
 | |
|     memcpy(storage, &dst[curr + A], B * sizeof(SORT_TYPE));
 | |
|     i = B;
 | |
|     j = curr + A;
 | |
|     k = curr + A + B;
 | |
| 
 | |
|     while (k > curr) {
 | |
|       k--;
 | |
|       if ((i > 0) && (j > curr)) {
 | |
|         if (SORT_CMP(dst[j - 1], storage[i - 1]) > 0) {
 | |
|           dst[k] = dst[--j];
 | |
|         } else {
 | |
|           dst[k] = storage[--i];
 | |
|         }
 | |
|       } else if (i > 0) {
 | |
|         dst[k] = storage[--i];
 | |
|       } else {
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static int TIM_SORT_COLLAPSE(SORT_TYPE *dst, TIM_SORT_RUN_T *stack, int stack_curr,
 | |
|                              TEMP_STORAGE_T *store, const size_t size) {
 | |
|   while (1) {
 | |
|     size_t A, B, C, D;
 | |
|     int ABC, BCD, CD;
 | |
| 
 | |
|     /* if the stack only has one thing on it, we are done with the collapse */
 | |
|     if (stack_curr <= 1) {
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     /* if this is the last merge, just do it */
 | |
|     if ((stack_curr == 2) && (stack[0].length + stack[1].length == size)) {
 | |
|       TIM_SORT_MERGE(dst, stack, stack_curr, store);
 | |
|       stack[0].length += stack[1].length;
 | |
|       stack_curr--;
 | |
|       break;
 | |
|     }
 | |
|     /* check if the invariant is off for a stack of 2 elements */
 | |
|     else if ((stack_curr == 2) && (stack[0].length <= stack[1].length)) {
 | |
|       TIM_SORT_MERGE(dst, stack, stack_curr, store);
 | |
|       stack[0].length += stack[1].length;
 | |
|       stack_curr--;
 | |
|       break;
 | |
|     } else if (stack_curr == 2) {
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     B = stack[stack_curr - 3].length;
 | |
|     C = stack[stack_curr - 2].length;
 | |
|     D = stack[stack_curr - 1].length;
 | |
| 
 | |
|     if (stack_curr >= 4) {
 | |
|       A = stack[stack_curr - 4].length;
 | |
|       ABC = (A <= B + C);
 | |
|     } else {
 | |
|       ABC = 0;
 | |
|     }
 | |
| 
 | |
|     BCD = (B <= C + D) || ABC;
 | |
|     CD = (C <= D);
 | |
| 
 | |
|     /* Both invariants are good */
 | |
|     if (!BCD && !CD) {
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     /* left merge */
 | |
|     if (BCD && !CD) {
 | |
|       TIM_SORT_MERGE(dst, stack, stack_curr - 1, store);
 | |
|       stack[stack_curr - 3].length += stack[stack_curr - 2].length;
 | |
|       stack[stack_curr - 2] = stack[stack_curr - 1];
 | |
|       stack_curr--;
 | |
|     } else {
 | |
|       /* right merge */
 | |
|       TIM_SORT_MERGE(dst, stack, stack_curr, store);
 | |
|       stack[stack_curr - 2].length += stack[stack_curr - 1].length;
 | |
|       stack_curr--;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return stack_curr;
 | |
| }
 | |
| 
 | |
| static __inline int PUSH_NEXT(SORT_TYPE *dst,
 | |
|                               const size_t size,
 | |
|                               TEMP_STORAGE_T *store,
 | |
|                               const size_t minrun,
 | |
|                               TIM_SORT_RUN_T *run_stack,
 | |
|                               size_t *stack_curr,
 | |
|                               size_t *curr) {
 | |
|   size_t len = COUNT_RUN(dst, *curr, size);
 | |
|   size_t run = minrun;
 | |
| 
 | |
|   if (run > size - *curr) {
 | |
|     run = size - *curr;
 | |
|   }
 | |
| 
 | |
|   if (run > len) {
 | |
|     BINARY_INSERTION_SORT_START(&dst[*curr], len, run);
 | |
|     len = run;
 | |
|   }
 | |
| 
 | |
|   run_stack[*stack_curr].start = *curr;
 | |
|   run_stack[*stack_curr].length = len;
 | |
|   (*stack_curr)++;
 | |
|   *curr += len;
 | |
| 
 | |
|   if (*curr == size) {
 | |
|     /* finish up */
 | |
|     while (*stack_curr > 1) {
 | |
|       TIM_SORT_MERGE(dst, run_stack, *stack_curr, store);
 | |
|       run_stack[*stack_curr - 2].length += run_stack[*stack_curr - 1].length;
 | |
|       (*stack_curr)--;
 | |
|     }
 | |
| 
 | |
|     if (store->storage != NULL) {
 | |
|       free(store->storage);
 | |
|       store->storage = NULL;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| void TIM_SORT(SORT_TYPE *dst, const size_t size) {
 | |
|   size_t minrun;
 | |
|   TEMP_STORAGE_T _store, *store;
 | |
|   TIM_SORT_RUN_T run_stack[TIM_SORT_STACK_SIZE];
 | |
|   size_t stack_curr = 0;
 | |
|   size_t curr = 0;
 | |
| 
 | |
|   /* don't bother sorting an array of size 1 */
 | |
|   if (size <= 1) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (size < 64) {
 | |
|     BINARY_INSERTION_SORT(dst, size);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   /* compute the minimum run length */
 | |
|   minrun = compute_minrun(size);
 | |
|   /* temporary storage for merges */
 | |
|   store = &_store;
 | |
|   store->alloc = 0;
 | |
|   store->storage = NULL;
 | |
| 
 | |
|   if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   while (1) {
 | |
|     if (!CHECK_INVARIANT(run_stack, stack_curr)) {
 | |
|       stack_curr = TIM_SORT_COLLAPSE(dst, run_stack, stack_curr, store, size);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| #undef SORT_CONCAT
 | |
| #undef SORT_MAKE_STR1
 | |
| #undef SORT_MAKE_STR
 | |
| #undef SORT_NAME
 | |
| #undef SORT_TYPE
 | |
| #undef SORT_CMP
 | |
| #undef TEMP_STORAGE_T
 | |
| #undef TIM_SORT_RUN_T
 | |
| #undef PUSH_NEXT
 | |
| #undef SORT_SWAP
 | |
| #undef SORT_CONCAT
 | |
| #undef SORT_MAKE_STR1
 | |
| #undef SORT_MAKE_STR
 | |
| #undef BINARY_INSERTION_FIND
 | |
| #undef BINARY_INSERTION_SORT_START
 | |
| #undef BINARY_INSERTION_SORT
 | |
| #undef REVERSE_ELEMENTS
 | |
| #undef COUNT_RUN
 | |
| #undef TIM_SORT
 | |
| #undef TIM_SORT_RESIZE
 | |
| #undef TIM_SORT_COLLAPSE
 | |
| #undef TIM_SORT_RUN_T
 | |
| #undef TEMP_STORAGE_T
 |