mirror of
https://gitlab.gnome.org/GNOME/libxml2.git
synced 2025-10-21 14:53:44 +03:00
6332 lines
170 KiB
C
6332 lines
170 KiB
C
/*
|
|
* regexp.c: generic and extensible Regular Expression engine
|
|
*
|
|
* Basically designed with the purpose of compiling regexps for
|
|
* the variety of validation/schemas mechanisms now available in
|
|
* XML related specifications these include:
|
|
* - XML-1.0 DTD validation
|
|
* - XML Schemas structure part 1
|
|
* - XML Schemas Datatypes part 2 especially Appendix F
|
|
* - RELAX-NG/TREX i.e. the counter proposal
|
|
*
|
|
* See Copyright for the status of this software.
|
|
*
|
|
* Author: Daniel Veillard
|
|
*/
|
|
|
|
#define IN_LIBXML
|
|
#include "libxml.h"
|
|
|
|
#ifdef LIBXML_REGEXP_ENABLED
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
|
|
#include <libxml/tree.h>
|
|
#include <libxml/parserInternals.h>
|
|
#include <libxml/xmlregexp.h>
|
|
#include <libxml/xmlautomata.h>
|
|
|
|
#include "private/error.h"
|
|
#include "private/memory.h"
|
|
#include "private/regexp.h"
|
|
|
|
#ifndef SIZE_MAX
|
|
#define SIZE_MAX ((size_t) -1)
|
|
#endif
|
|
|
|
/* #define DEBUG_REGEXP */
|
|
|
|
#define MAX_PUSH 10000000
|
|
|
|
#ifdef ERROR
|
|
#undef ERROR
|
|
#endif
|
|
#define ERROR(str) \
|
|
ctxt->error = XML_REGEXP_COMPILE_ERROR; \
|
|
xmlRegexpErrCompile(ctxt, str);
|
|
#define NEXT ctxt->cur++
|
|
#define CUR (*(ctxt->cur))
|
|
#define NXT(index) (ctxt->cur[index])
|
|
|
|
#define NEXTL(l) ctxt->cur += l;
|
|
#define XML_REG_STRING_SEPARATOR '|'
|
|
/*
|
|
* Need PREV to check on a '-' within a Character Group. May only be used
|
|
* when it's guaranteed that cur is not at the beginning of ctxt->string!
|
|
*/
|
|
#define PREV (ctxt->cur[-1])
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Unicode support *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef struct {
|
|
const char *rangename;
|
|
const xmlChRangeGroup group;
|
|
} xmlUnicodeRange;
|
|
|
|
#include "codegen/unicode.inc"
|
|
|
|
/**
|
|
* binary table lookup for user-supplied name
|
|
*
|
|
* @param sptr a table of xmlUnicodeRange structs
|
|
* @param numentries number of table entries
|
|
* @param tname name to be found
|
|
* @returns pointer to range function if found, otherwise NULL
|
|
*/
|
|
static const xmlChRangeGroup *
|
|
xmlUnicodeLookup(const xmlUnicodeRange *sptr, int numentries,
|
|
const char *tname) {
|
|
int low, high, mid, cmp;
|
|
|
|
if (tname == NULL) return(NULL);
|
|
|
|
low = 0;
|
|
high = numentries - 1;
|
|
while (low <= high) {
|
|
mid = (low + high) / 2;
|
|
cmp = strcmp(tname, sptr[mid].rangename);
|
|
if (cmp == 0)
|
|
return (&sptr[mid].group);
|
|
if (cmp < 0)
|
|
high = mid - 1;
|
|
else
|
|
low = mid + 1;
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/**
|
|
* Check whether the character is part of the UCS Block
|
|
*
|
|
* @param code UCS code point
|
|
* @param block UCS block name
|
|
* @returns 1 if true, 0 if false and -1 on unknown block
|
|
*/
|
|
static int
|
|
xmlUCSIsBlock(int code, const char *block) {
|
|
const xmlChRangeGroup *group;
|
|
|
|
group = xmlUnicodeLookup(xmlUnicodeBlocks,
|
|
sizeof(xmlUnicodeBlocks) / sizeof(xmlUnicodeBlocks[0]), block);
|
|
if (group == NULL)
|
|
return (-1);
|
|
return (xmlCharInRange(code, group));
|
|
}
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Datatypes and structures *
|
|
* *
|
|
************************************************************************/
|
|
|
|
/*
|
|
* Note: the order of the enums below is significant, do not shuffle
|
|
*/
|
|
typedef enum {
|
|
XML_REGEXP_EPSILON = 1,
|
|
XML_REGEXP_CHARVAL,
|
|
XML_REGEXP_RANGES,
|
|
XML_REGEXP_SUBREG, /* used for () sub regexps */
|
|
XML_REGEXP_STRING,
|
|
XML_REGEXP_ANYCHAR, /* . */
|
|
XML_REGEXP_ANYSPACE, /* \s */
|
|
XML_REGEXP_NOTSPACE, /* \S */
|
|
XML_REGEXP_INITNAME, /* \l */
|
|
XML_REGEXP_NOTINITNAME, /* \L */
|
|
XML_REGEXP_NAMECHAR, /* \c */
|
|
XML_REGEXP_NOTNAMECHAR, /* \C */
|
|
XML_REGEXP_DECIMAL, /* \d */
|
|
XML_REGEXP_NOTDECIMAL, /* \D */
|
|
XML_REGEXP_REALCHAR, /* \w */
|
|
XML_REGEXP_NOTREALCHAR, /* \W */
|
|
XML_REGEXP_LETTER = 100,
|
|
XML_REGEXP_LETTER_UPPERCASE,
|
|
XML_REGEXP_LETTER_LOWERCASE,
|
|
XML_REGEXP_LETTER_TITLECASE,
|
|
XML_REGEXP_LETTER_MODIFIER,
|
|
XML_REGEXP_LETTER_OTHERS,
|
|
XML_REGEXP_MARK,
|
|
XML_REGEXP_MARK_NONSPACING,
|
|
XML_REGEXP_MARK_SPACECOMBINING,
|
|
XML_REGEXP_MARK_ENCLOSING,
|
|
XML_REGEXP_NUMBER,
|
|
XML_REGEXP_NUMBER_DECIMAL,
|
|
XML_REGEXP_NUMBER_LETTER,
|
|
XML_REGEXP_NUMBER_OTHERS,
|
|
XML_REGEXP_PUNCT,
|
|
XML_REGEXP_PUNCT_CONNECTOR,
|
|
XML_REGEXP_PUNCT_DASH,
|
|
XML_REGEXP_PUNCT_OPEN,
|
|
XML_REGEXP_PUNCT_CLOSE,
|
|
XML_REGEXP_PUNCT_INITQUOTE,
|
|
XML_REGEXP_PUNCT_FINQUOTE,
|
|
XML_REGEXP_PUNCT_OTHERS,
|
|
XML_REGEXP_SEPAR,
|
|
XML_REGEXP_SEPAR_SPACE,
|
|
XML_REGEXP_SEPAR_LINE,
|
|
XML_REGEXP_SEPAR_PARA,
|
|
XML_REGEXP_SYMBOL,
|
|
XML_REGEXP_SYMBOL_MATH,
|
|
XML_REGEXP_SYMBOL_CURRENCY,
|
|
XML_REGEXP_SYMBOL_MODIFIER,
|
|
XML_REGEXP_SYMBOL_OTHERS,
|
|
XML_REGEXP_OTHER,
|
|
XML_REGEXP_OTHER_CONTROL,
|
|
XML_REGEXP_OTHER_FORMAT,
|
|
XML_REGEXP_OTHER_PRIVATE,
|
|
XML_REGEXP_OTHER_NA,
|
|
XML_REGEXP_BLOCK_NAME
|
|
} xmlRegAtomType;
|
|
|
|
typedef enum {
|
|
XML_REGEXP_QUANT_EPSILON = 1,
|
|
XML_REGEXP_QUANT_ONCE,
|
|
XML_REGEXP_QUANT_OPT,
|
|
XML_REGEXP_QUANT_MULT,
|
|
XML_REGEXP_QUANT_PLUS,
|
|
XML_REGEXP_QUANT_ONCEONLY,
|
|
XML_REGEXP_QUANT_ALL,
|
|
XML_REGEXP_QUANT_RANGE
|
|
} xmlRegQuantType;
|
|
|
|
typedef enum {
|
|
XML_REGEXP_START_STATE = 1,
|
|
XML_REGEXP_FINAL_STATE,
|
|
XML_REGEXP_TRANS_STATE,
|
|
XML_REGEXP_SINK_STATE,
|
|
XML_REGEXP_UNREACH_STATE
|
|
} xmlRegStateType;
|
|
|
|
typedef enum {
|
|
XML_REGEXP_MARK_NORMAL = 0,
|
|
XML_REGEXP_MARK_START,
|
|
XML_REGEXP_MARK_VISITED
|
|
} xmlRegMarkedType;
|
|
|
|
typedef struct _xmlRegRange xmlRegRange;
|
|
typedef xmlRegRange *xmlRegRangePtr;
|
|
|
|
struct _xmlRegRange {
|
|
int neg; /* 0 normal, 1 not, 2 exclude */
|
|
xmlRegAtomType type;
|
|
int start;
|
|
int end;
|
|
xmlChar *blockName;
|
|
};
|
|
|
|
typedef struct _xmlRegAtom xmlRegAtom;
|
|
typedef xmlRegAtom *xmlRegAtomPtr;
|
|
|
|
typedef struct _xmlAutomataState xmlRegState;
|
|
typedef xmlRegState *xmlRegStatePtr;
|
|
|
|
struct _xmlRegAtom {
|
|
int no;
|
|
xmlRegAtomType type;
|
|
xmlRegQuantType quant;
|
|
int min;
|
|
int max;
|
|
|
|
void *valuep;
|
|
void *valuep2;
|
|
int neg;
|
|
int codepoint;
|
|
xmlRegStatePtr start;
|
|
xmlRegStatePtr start0;
|
|
xmlRegStatePtr stop;
|
|
int maxRanges;
|
|
int nbRanges;
|
|
xmlRegRangePtr *ranges;
|
|
void *data;
|
|
};
|
|
|
|
typedef struct _xmlRegCounter xmlRegCounter;
|
|
typedef xmlRegCounter *xmlRegCounterPtr;
|
|
|
|
struct _xmlRegCounter {
|
|
int min;
|
|
int max;
|
|
};
|
|
|
|
typedef struct _xmlRegTrans xmlRegTrans;
|
|
typedef xmlRegTrans *xmlRegTransPtr;
|
|
|
|
struct _xmlRegTrans {
|
|
xmlRegAtomPtr atom;
|
|
int to;
|
|
int counter;
|
|
int count;
|
|
int nd;
|
|
};
|
|
|
|
struct _xmlAutomataState {
|
|
xmlRegStateType type;
|
|
xmlRegMarkedType mark;
|
|
xmlRegMarkedType markd;
|
|
xmlRegMarkedType reached;
|
|
int no;
|
|
int maxTrans;
|
|
int nbTrans;
|
|
xmlRegTrans *trans;
|
|
/* knowing states pointing to us can speed things up */
|
|
int maxTransTo;
|
|
int nbTransTo;
|
|
int *transTo;
|
|
};
|
|
|
|
typedef struct _xmlAutomata xmlRegParserCtxt;
|
|
typedef xmlRegParserCtxt *xmlRegParserCtxtPtr;
|
|
|
|
#define AM_AUTOMATA_RNG 1
|
|
|
|
struct _xmlAutomata {
|
|
xmlChar *string;
|
|
xmlChar *cur;
|
|
|
|
int error;
|
|
int neg;
|
|
|
|
xmlRegStatePtr start;
|
|
xmlRegStatePtr end;
|
|
xmlRegStatePtr state;
|
|
|
|
xmlRegAtomPtr atom;
|
|
|
|
int maxAtoms;
|
|
int nbAtoms;
|
|
xmlRegAtomPtr *atoms;
|
|
|
|
int maxStates;
|
|
int nbStates;
|
|
xmlRegStatePtr *states;
|
|
|
|
int maxCounters;
|
|
int nbCounters;
|
|
xmlRegCounter *counters;
|
|
|
|
int determinist;
|
|
int negs;
|
|
int flags;
|
|
|
|
int depth;
|
|
};
|
|
|
|
struct _xmlRegexp {
|
|
xmlChar *string;
|
|
int nbStates;
|
|
xmlRegStatePtr *states;
|
|
int nbAtoms;
|
|
xmlRegAtomPtr *atoms;
|
|
int nbCounters;
|
|
xmlRegCounter *counters;
|
|
int determinist;
|
|
int flags;
|
|
/*
|
|
* That's the compact form for determinists automatas
|
|
*/
|
|
int nbstates;
|
|
int *compact;
|
|
void **transdata;
|
|
int nbstrings;
|
|
xmlChar **stringMap;
|
|
};
|
|
|
|
typedef struct _xmlRegExecRollback xmlRegExecRollback;
|
|
typedef xmlRegExecRollback *xmlRegExecRollbackPtr;
|
|
|
|
struct _xmlRegExecRollback {
|
|
xmlRegStatePtr state;/* the current state */
|
|
int index; /* the index in the input stack */
|
|
int nextbranch; /* the next transition to explore in that state */
|
|
int *counts; /* save the automata state if it has some */
|
|
};
|
|
|
|
typedef struct _xmlRegInputToken xmlRegInputToken;
|
|
typedef xmlRegInputToken *xmlRegInputTokenPtr;
|
|
|
|
struct _xmlRegInputToken {
|
|
xmlChar *value;
|
|
void *data;
|
|
};
|
|
|
|
struct _xmlRegExecCtxt {
|
|
int status; /* execution status != 0 indicate an error */
|
|
int determinist; /* did we find an indeterministic behaviour */
|
|
xmlRegexpPtr comp; /* the compiled regexp */
|
|
xmlRegExecCallbacks callback;
|
|
void *data;
|
|
|
|
xmlRegStatePtr state;/* the current state */
|
|
int transno; /* the current transition on that state */
|
|
int transcount; /* the number of chars in char counted transitions */
|
|
|
|
/*
|
|
* A stack of rollback states
|
|
*/
|
|
int maxRollbacks;
|
|
int nbRollbacks;
|
|
xmlRegExecRollback *rollbacks;
|
|
|
|
/*
|
|
* The state of the automata if any
|
|
*/
|
|
int *counts;
|
|
|
|
/*
|
|
* The input stack
|
|
*/
|
|
int inputStackMax;
|
|
int inputStackNr;
|
|
int index;
|
|
int *charStack;
|
|
const xmlChar *inputString; /* when operating on characters */
|
|
xmlRegInputTokenPtr inputStack;/* when operating on strings */
|
|
|
|
/*
|
|
* error handling
|
|
*/
|
|
int errStateNo; /* the error state number */
|
|
xmlRegStatePtr errState; /* the error state */
|
|
xmlChar *errString; /* the string raising the error */
|
|
int *errCounts; /* counters at the error state */
|
|
int nbPush;
|
|
};
|
|
|
|
#define REGEXP_ALL_COUNTER 0x123456
|
|
#define REGEXP_ALL_LAX_COUNTER 0x123457
|
|
|
|
static void xmlFAParseRegExp(xmlRegParserCtxtPtr ctxt, int top);
|
|
static void xmlRegFreeState(xmlRegStatePtr state);
|
|
static void xmlRegFreeAtom(xmlRegAtomPtr atom);
|
|
static int xmlRegStrEqualWildcard(const xmlChar *expStr, const xmlChar *valStr);
|
|
static int xmlRegCheckCharacter(xmlRegAtomPtr atom, int codepoint);
|
|
static int xmlRegCheckCharacterRange(xmlRegAtomType type, int codepoint,
|
|
int neg, int start, int end, const xmlChar *blockName);
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Regexp memory error handler *
|
|
* *
|
|
************************************************************************/
|
|
/**
|
|
* Handle an out of memory condition
|
|
*
|
|
* @param ctxt regexp parser context
|
|
*/
|
|
static void
|
|
xmlRegexpErrMemory(xmlRegParserCtxtPtr ctxt)
|
|
{
|
|
if (ctxt != NULL)
|
|
ctxt->error = XML_ERR_NO_MEMORY;
|
|
|
|
xmlRaiseMemoryError(NULL, NULL, NULL, XML_FROM_REGEXP, NULL);
|
|
}
|
|
|
|
/**
|
|
* Handle a compilation failure
|
|
*
|
|
* @param ctxt regexp parser context
|
|
* @param extra extra information
|
|
*/
|
|
static void
|
|
xmlRegexpErrCompile(xmlRegParserCtxtPtr ctxt, const char *extra)
|
|
{
|
|
const char *regexp = NULL;
|
|
int idx = 0;
|
|
int res;
|
|
|
|
if (ctxt != NULL) {
|
|
regexp = (const char *) ctxt->string;
|
|
idx = ctxt->cur - ctxt->string;
|
|
ctxt->error = XML_REGEXP_COMPILE_ERROR;
|
|
}
|
|
|
|
res = xmlRaiseError(NULL, NULL, NULL, NULL, NULL, XML_FROM_REGEXP,
|
|
XML_REGEXP_COMPILE_ERROR, XML_ERR_FATAL,
|
|
NULL, 0, extra, regexp, NULL, idx, 0,
|
|
"failed to compile: %s\n", extra);
|
|
if (res < 0)
|
|
xmlRegexpErrMemory(ctxt);
|
|
}
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Allocation/Deallocation *
|
|
* *
|
|
************************************************************************/
|
|
|
|
static int xmlFAComputesDeterminism(xmlRegParserCtxtPtr ctxt);
|
|
|
|
/**
|
|
* Allocate a two-dimensional array and set all elements to zero.
|
|
*
|
|
* @param dim1 size of first dimension
|
|
* @param dim2 size of second dimension
|
|
* @param elemSize size of element
|
|
* @returns the new array or NULL in case of error.
|
|
*/
|
|
static void*
|
|
xmlRegCalloc2(size_t dim1, size_t dim2, size_t elemSize) {
|
|
size_t totalSize;
|
|
void *ret;
|
|
|
|
/* Check for overflow */
|
|
if ((dim2 == 0) || (elemSize == 0) ||
|
|
(dim1 > SIZE_MAX / dim2 / elemSize))
|
|
return (NULL);
|
|
totalSize = dim1 * dim2 * elemSize;
|
|
ret = xmlMalloc(totalSize);
|
|
if (ret != NULL)
|
|
memset(ret, 0, totalSize);
|
|
return (ret);
|
|
}
|
|
|
|
/**
|
|
* Allocate a new regexp and fill it with the result from the parser
|
|
*
|
|
* @param ctxt the parser context used to build it
|
|
* @returns the new regexp or NULL in case of error
|
|
*/
|
|
static xmlRegexpPtr
|
|
xmlRegEpxFromParse(xmlRegParserCtxtPtr ctxt) {
|
|
xmlRegexpPtr ret;
|
|
|
|
ret = (xmlRegexpPtr) xmlMalloc(sizeof(xmlRegexp));
|
|
if (ret == NULL) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
return(NULL);
|
|
}
|
|
memset(ret, 0, sizeof(xmlRegexp));
|
|
ret->string = ctxt->string;
|
|
ret->nbStates = ctxt->nbStates;
|
|
ret->states = ctxt->states;
|
|
ret->nbAtoms = ctxt->nbAtoms;
|
|
ret->atoms = ctxt->atoms;
|
|
ret->nbCounters = ctxt->nbCounters;
|
|
ret->counters = ctxt->counters;
|
|
ret->determinist = ctxt->determinist;
|
|
ret->flags = ctxt->flags;
|
|
if (ret->determinist == -1) {
|
|
if (xmlRegexpIsDeterminist(ret) < 0) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
xmlFree(ret);
|
|
return(NULL);
|
|
}
|
|
}
|
|
|
|
if ((ret->determinist != 0) &&
|
|
(ret->nbCounters == 0) &&
|
|
(ctxt->negs == 0) &&
|
|
(ret->atoms != NULL) &&
|
|
(ret->atoms[0] != NULL) &&
|
|
(ret->atoms[0]->type == XML_REGEXP_STRING)) {
|
|
int i, j, nbstates = 0, nbatoms = 0;
|
|
int *stateRemap;
|
|
int *stringRemap;
|
|
int *transitions;
|
|
void **transdata;
|
|
xmlChar **stringMap;
|
|
xmlChar *value;
|
|
|
|
/*
|
|
* Switch to a compact representation
|
|
* 1/ counting the effective number of states left
|
|
* 2/ counting the unique number of atoms, and check that
|
|
* they are all of the string type
|
|
* 3/ build a table state x atom for the transitions
|
|
*/
|
|
|
|
stateRemap = xmlMalloc(ret->nbStates * sizeof(int));
|
|
if (stateRemap == NULL) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
xmlFree(ret);
|
|
return(NULL);
|
|
}
|
|
for (i = 0;i < ret->nbStates;i++) {
|
|
if (ret->states[i] != NULL) {
|
|
stateRemap[i] = nbstates;
|
|
nbstates++;
|
|
} else {
|
|
stateRemap[i] = -1;
|
|
}
|
|
}
|
|
stringMap = xmlMalloc(ret->nbAtoms * sizeof(char *));
|
|
if (stringMap == NULL) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
xmlFree(stateRemap);
|
|
xmlFree(ret);
|
|
return(NULL);
|
|
}
|
|
stringRemap = xmlMalloc(ret->nbAtoms * sizeof(int));
|
|
if (stringRemap == NULL) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
xmlFree(stringMap);
|
|
xmlFree(stateRemap);
|
|
xmlFree(ret);
|
|
return(NULL);
|
|
}
|
|
for (i = 0;i < ret->nbAtoms;i++) {
|
|
if ((ret->atoms[i]->type == XML_REGEXP_STRING) &&
|
|
(ret->atoms[i]->quant == XML_REGEXP_QUANT_ONCE)) {
|
|
value = ret->atoms[i]->valuep;
|
|
for (j = 0;j < nbatoms;j++) {
|
|
if (xmlStrEqual(stringMap[j], value)) {
|
|
stringRemap[i] = j;
|
|
break;
|
|
}
|
|
}
|
|
if (j >= nbatoms) {
|
|
stringRemap[i] = nbatoms;
|
|
stringMap[nbatoms] = xmlStrdup(value);
|
|
if (stringMap[nbatoms] == NULL) {
|
|
for (i = 0;i < nbatoms;i++)
|
|
xmlFree(stringMap[i]);
|
|
xmlFree(stringRemap);
|
|
xmlFree(stringMap);
|
|
xmlFree(stateRemap);
|
|
xmlFree(ret);
|
|
return(NULL);
|
|
}
|
|
nbatoms++;
|
|
}
|
|
} else {
|
|
xmlFree(stateRemap);
|
|
xmlFree(stringRemap);
|
|
for (i = 0;i < nbatoms;i++)
|
|
xmlFree(stringMap[i]);
|
|
xmlFree(stringMap);
|
|
xmlFree(ret);
|
|
return(NULL);
|
|
}
|
|
}
|
|
transitions = (int *) xmlRegCalloc2(nbstates + 1, nbatoms + 1,
|
|
sizeof(int));
|
|
if (transitions == NULL) {
|
|
xmlFree(stateRemap);
|
|
xmlFree(stringRemap);
|
|
for (i = 0;i < nbatoms;i++)
|
|
xmlFree(stringMap[i]);
|
|
xmlFree(stringMap);
|
|
xmlFree(ret);
|
|
return(NULL);
|
|
}
|
|
|
|
/*
|
|
* Allocate the transition table. The first entry for each
|
|
* state corresponds to the state type.
|
|
*/
|
|
transdata = NULL;
|
|
|
|
for (i = 0;i < ret->nbStates;i++) {
|
|
int stateno, atomno, targetno, prev;
|
|
xmlRegStatePtr state;
|
|
xmlRegTransPtr trans;
|
|
|
|
stateno = stateRemap[i];
|
|
if (stateno == -1)
|
|
continue;
|
|
state = ret->states[i];
|
|
|
|
transitions[stateno * (nbatoms + 1)] = state->type;
|
|
|
|
for (j = 0;j < state->nbTrans;j++) {
|
|
trans = &(state->trans[j]);
|
|
if ((trans->to < 0) || (trans->atom == NULL))
|
|
continue;
|
|
atomno = stringRemap[trans->atom->no];
|
|
if ((trans->atom->data != NULL) && (transdata == NULL)) {
|
|
transdata = (void **) xmlRegCalloc2(nbstates, nbatoms,
|
|
sizeof(void *));
|
|
if (transdata == NULL) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
break;
|
|
}
|
|
}
|
|
targetno = stateRemap[trans->to];
|
|
/*
|
|
* if the same atom can generate transitions to 2 different
|
|
* states then it means the automata is not deterministic and
|
|
* the compact form can't be used !
|
|
*/
|
|
prev = transitions[stateno * (nbatoms + 1) + atomno + 1];
|
|
if (prev != 0) {
|
|
if (prev != targetno + 1) {
|
|
ret->determinist = 0;
|
|
if (transdata != NULL)
|
|
xmlFree(transdata);
|
|
xmlFree(transitions);
|
|
xmlFree(stateRemap);
|
|
xmlFree(stringRemap);
|
|
for (i = 0;i < nbatoms;i++)
|
|
xmlFree(stringMap[i]);
|
|
xmlFree(stringMap);
|
|
goto not_determ;
|
|
}
|
|
} else {
|
|
transitions[stateno * (nbatoms + 1) + atomno + 1] =
|
|
targetno + 1; /* to avoid 0 */
|
|
if (transdata != NULL)
|
|
transdata[stateno * nbatoms + atomno] =
|
|
trans->atom->data;
|
|
}
|
|
}
|
|
}
|
|
ret->determinist = 1;
|
|
/*
|
|
* Cleanup of the old data
|
|
*/
|
|
if (ret->states != NULL) {
|
|
for (i = 0;i < ret->nbStates;i++)
|
|
xmlRegFreeState(ret->states[i]);
|
|
xmlFree(ret->states);
|
|
}
|
|
ret->states = NULL;
|
|
ret->nbStates = 0;
|
|
if (ret->atoms != NULL) {
|
|
for (i = 0;i < ret->nbAtoms;i++)
|
|
xmlRegFreeAtom(ret->atoms[i]);
|
|
xmlFree(ret->atoms);
|
|
}
|
|
ret->atoms = NULL;
|
|
ret->nbAtoms = 0;
|
|
|
|
ret->compact = transitions;
|
|
ret->transdata = transdata;
|
|
ret->stringMap = stringMap;
|
|
ret->nbstrings = nbatoms;
|
|
ret->nbstates = nbstates;
|
|
xmlFree(stateRemap);
|
|
xmlFree(stringRemap);
|
|
}
|
|
not_determ:
|
|
ctxt->string = NULL;
|
|
ctxt->nbStates = 0;
|
|
ctxt->states = NULL;
|
|
ctxt->nbAtoms = 0;
|
|
ctxt->atoms = NULL;
|
|
ctxt->nbCounters = 0;
|
|
ctxt->counters = NULL;
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* Allocate a new regexp parser context
|
|
*
|
|
* @param string the string to parse
|
|
* @returns the new context or NULL in case of error
|
|
*/
|
|
static xmlRegParserCtxtPtr
|
|
xmlRegNewParserCtxt(const xmlChar *string) {
|
|
xmlRegParserCtxtPtr ret;
|
|
|
|
ret = (xmlRegParserCtxtPtr) xmlMalloc(sizeof(xmlRegParserCtxt));
|
|
if (ret == NULL)
|
|
return(NULL);
|
|
memset(ret, 0, sizeof(xmlRegParserCtxt));
|
|
if (string != NULL) {
|
|
ret->string = xmlStrdup(string);
|
|
if (ret->string == NULL) {
|
|
xmlFree(ret);
|
|
return(NULL);
|
|
}
|
|
}
|
|
ret->cur = ret->string;
|
|
ret->neg = 0;
|
|
ret->negs = 0;
|
|
ret->error = 0;
|
|
ret->determinist = -1;
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* Allocate a new regexp range
|
|
*
|
|
* @param ctxt the regexp parser context
|
|
* @param neg is that negative
|
|
* @param type the type of range
|
|
* @param start the start codepoint
|
|
* @param end the end codepoint
|
|
* @returns the new range or NULL in case of error
|
|
*/
|
|
static xmlRegRangePtr
|
|
xmlRegNewRange(xmlRegParserCtxtPtr ctxt,
|
|
int neg, xmlRegAtomType type, int start, int end) {
|
|
xmlRegRangePtr ret;
|
|
|
|
ret = (xmlRegRangePtr) xmlMalloc(sizeof(xmlRegRange));
|
|
if (ret == NULL) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
return(NULL);
|
|
}
|
|
ret->neg = neg;
|
|
ret->type = type;
|
|
ret->start = start;
|
|
ret->end = end;
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* Free a regexp range
|
|
*
|
|
* @param range the regexp range
|
|
*/
|
|
static void
|
|
xmlRegFreeRange(xmlRegRangePtr range) {
|
|
if (range == NULL)
|
|
return;
|
|
|
|
if (range->blockName != NULL)
|
|
xmlFree(range->blockName);
|
|
xmlFree(range);
|
|
}
|
|
|
|
/**
|
|
* Copy a regexp range
|
|
*
|
|
* @param ctxt regexp parser context
|
|
* @param range the regexp range
|
|
* @returns the new copy or NULL in case of error.
|
|
*/
|
|
static xmlRegRangePtr
|
|
xmlRegCopyRange(xmlRegParserCtxtPtr ctxt, xmlRegRangePtr range) {
|
|
xmlRegRangePtr ret;
|
|
|
|
if (range == NULL)
|
|
return(NULL);
|
|
|
|
ret = xmlRegNewRange(ctxt, range->neg, range->type, range->start,
|
|
range->end);
|
|
if (ret == NULL)
|
|
return(NULL);
|
|
if (range->blockName != NULL) {
|
|
ret->blockName = xmlStrdup(range->blockName);
|
|
if (ret->blockName == NULL) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
xmlRegFreeRange(ret);
|
|
return(NULL);
|
|
}
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* Allocate a new atom
|
|
*
|
|
* @param ctxt the regexp parser context
|
|
* @param type the type of atom
|
|
* @returns the new atom or NULL in case of error
|
|
*/
|
|
static xmlRegAtomPtr
|
|
xmlRegNewAtom(xmlRegParserCtxtPtr ctxt, xmlRegAtomType type) {
|
|
xmlRegAtomPtr ret;
|
|
|
|
ret = (xmlRegAtomPtr) xmlMalloc(sizeof(xmlRegAtom));
|
|
if (ret == NULL) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
return(NULL);
|
|
}
|
|
memset(ret, 0, sizeof(xmlRegAtom));
|
|
ret->type = type;
|
|
ret->quant = XML_REGEXP_QUANT_ONCE;
|
|
ret->min = 0;
|
|
ret->max = 0;
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* Free a regexp atom
|
|
*
|
|
* @param atom the regexp atom
|
|
*/
|
|
static void
|
|
xmlRegFreeAtom(xmlRegAtomPtr atom) {
|
|
int i;
|
|
|
|
if (atom == NULL)
|
|
return;
|
|
|
|
for (i = 0;i < atom->nbRanges;i++)
|
|
xmlRegFreeRange(atom->ranges[i]);
|
|
if (atom->ranges != NULL)
|
|
xmlFree(atom->ranges);
|
|
if ((atom->type == XML_REGEXP_STRING) && (atom->valuep != NULL))
|
|
xmlFree(atom->valuep);
|
|
if ((atom->type == XML_REGEXP_STRING) && (atom->valuep2 != NULL))
|
|
xmlFree(atom->valuep2);
|
|
if ((atom->type == XML_REGEXP_BLOCK_NAME) && (atom->valuep != NULL))
|
|
xmlFree(atom->valuep);
|
|
xmlFree(atom);
|
|
}
|
|
|
|
/**
|
|
* Allocate a new regexp range
|
|
*
|
|
* @param ctxt the regexp parser context
|
|
* @param atom the original atom
|
|
* @returns the new atom or NULL in case of error
|
|
*/
|
|
static xmlRegAtomPtr
|
|
xmlRegCopyAtom(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom) {
|
|
xmlRegAtomPtr ret;
|
|
|
|
ret = (xmlRegAtomPtr) xmlMalloc(sizeof(xmlRegAtom));
|
|
if (ret == NULL) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
return(NULL);
|
|
}
|
|
memset(ret, 0, sizeof(xmlRegAtom));
|
|
ret->type = atom->type;
|
|
ret->quant = atom->quant;
|
|
ret->min = atom->min;
|
|
ret->max = atom->max;
|
|
if (atom->nbRanges > 0) {
|
|
int i;
|
|
|
|
ret->ranges = (xmlRegRangePtr *) xmlMalloc(sizeof(xmlRegRangePtr) *
|
|
atom->nbRanges);
|
|
if (ret->ranges == NULL) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
goto error;
|
|
}
|
|
for (i = 0;i < atom->nbRanges;i++) {
|
|
ret->ranges[i] = xmlRegCopyRange(ctxt, atom->ranges[i]);
|
|
if (ret->ranges[i] == NULL)
|
|
goto error;
|
|
ret->nbRanges = i + 1;
|
|
}
|
|
}
|
|
return(ret);
|
|
|
|
error:
|
|
xmlRegFreeAtom(ret);
|
|
return(NULL);
|
|
}
|
|
|
|
static xmlRegStatePtr
|
|
xmlRegNewState(xmlRegParserCtxtPtr ctxt) {
|
|
xmlRegStatePtr ret;
|
|
|
|
ret = (xmlRegStatePtr) xmlMalloc(sizeof(xmlRegState));
|
|
if (ret == NULL) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
return(NULL);
|
|
}
|
|
memset(ret, 0, sizeof(xmlRegState));
|
|
ret->type = XML_REGEXP_TRANS_STATE;
|
|
ret->mark = XML_REGEXP_MARK_NORMAL;
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* Free a regexp state
|
|
*
|
|
* @param state the regexp state
|
|
*/
|
|
static void
|
|
xmlRegFreeState(xmlRegStatePtr state) {
|
|
if (state == NULL)
|
|
return;
|
|
|
|
if (state->trans != NULL)
|
|
xmlFree(state->trans);
|
|
if (state->transTo != NULL)
|
|
xmlFree(state->transTo);
|
|
xmlFree(state);
|
|
}
|
|
|
|
/**
|
|
* Free a regexp parser context
|
|
*
|
|
* @param ctxt the regexp parser context
|
|
*/
|
|
static void
|
|
xmlRegFreeParserCtxt(xmlRegParserCtxtPtr ctxt) {
|
|
int i;
|
|
if (ctxt == NULL)
|
|
return;
|
|
|
|
if (ctxt->string != NULL)
|
|
xmlFree(ctxt->string);
|
|
if (ctxt->states != NULL) {
|
|
for (i = 0;i < ctxt->nbStates;i++)
|
|
xmlRegFreeState(ctxt->states[i]);
|
|
xmlFree(ctxt->states);
|
|
}
|
|
if (ctxt->atoms != NULL) {
|
|
for (i = 0;i < ctxt->nbAtoms;i++)
|
|
xmlRegFreeAtom(ctxt->atoms[i]);
|
|
xmlFree(ctxt->atoms);
|
|
}
|
|
if (ctxt->counters != NULL)
|
|
xmlFree(ctxt->counters);
|
|
xmlFree(ctxt);
|
|
}
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Display of Data structures *
|
|
* *
|
|
************************************************************************/
|
|
|
|
#ifdef DEBUG_REGEXP
|
|
static void
|
|
xmlRegPrintAtomType(FILE *output, xmlRegAtomType type) {
|
|
switch (type) {
|
|
case XML_REGEXP_EPSILON:
|
|
fprintf(output, "epsilon "); break;
|
|
case XML_REGEXP_CHARVAL:
|
|
fprintf(output, "charval "); break;
|
|
case XML_REGEXP_RANGES:
|
|
fprintf(output, "ranges "); break;
|
|
case XML_REGEXP_SUBREG:
|
|
fprintf(output, "subexpr "); break;
|
|
case XML_REGEXP_STRING:
|
|
fprintf(output, "string "); break;
|
|
case XML_REGEXP_ANYCHAR:
|
|
fprintf(output, "anychar "); break;
|
|
case XML_REGEXP_ANYSPACE:
|
|
fprintf(output, "anyspace "); break;
|
|
case XML_REGEXP_NOTSPACE:
|
|
fprintf(output, "notspace "); break;
|
|
case XML_REGEXP_INITNAME:
|
|
fprintf(output, "initname "); break;
|
|
case XML_REGEXP_NOTINITNAME:
|
|
fprintf(output, "notinitname "); break;
|
|
case XML_REGEXP_NAMECHAR:
|
|
fprintf(output, "namechar "); break;
|
|
case XML_REGEXP_NOTNAMECHAR:
|
|
fprintf(output, "notnamechar "); break;
|
|
case XML_REGEXP_DECIMAL:
|
|
fprintf(output, "decimal "); break;
|
|
case XML_REGEXP_NOTDECIMAL:
|
|
fprintf(output, "notdecimal "); break;
|
|
case XML_REGEXP_REALCHAR:
|
|
fprintf(output, "realchar "); break;
|
|
case XML_REGEXP_NOTREALCHAR:
|
|
fprintf(output, "notrealchar "); break;
|
|
case XML_REGEXP_LETTER:
|
|
fprintf(output, "LETTER "); break;
|
|
case XML_REGEXP_LETTER_UPPERCASE:
|
|
fprintf(output, "LETTER_UPPERCASE "); break;
|
|
case XML_REGEXP_LETTER_LOWERCASE:
|
|
fprintf(output, "LETTER_LOWERCASE "); break;
|
|
case XML_REGEXP_LETTER_TITLECASE:
|
|
fprintf(output, "LETTER_TITLECASE "); break;
|
|
case XML_REGEXP_LETTER_MODIFIER:
|
|
fprintf(output, "LETTER_MODIFIER "); break;
|
|
case XML_REGEXP_LETTER_OTHERS:
|
|
fprintf(output, "LETTER_OTHERS "); break;
|
|
case XML_REGEXP_MARK:
|
|
fprintf(output, "MARK "); break;
|
|
case XML_REGEXP_MARK_NONSPACING:
|
|
fprintf(output, "MARK_NONSPACING "); break;
|
|
case XML_REGEXP_MARK_SPACECOMBINING:
|
|
fprintf(output, "MARK_SPACECOMBINING "); break;
|
|
case XML_REGEXP_MARK_ENCLOSING:
|
|
fprintf(output, "MARK_ENCLOSING "); break;
|
|
case XML_REGEXP_NUMBER:
|
|
fprintf(output, "NUMBER "); break;
|
|
case XML_REGEXP_NUMBER_DECIMAL:
|
|
fprintf(output, "NUMBER_DECIMAL "); break;
|
|
case XML_REGEXP_NUMBER_LETTER:
|
|
fprintf(output, "NUMBER_LETTER "); break;
|
|
case XML_REGEXP_NUMBER_OTHERS:
|
|
fprintf(output, "NUMBER_OTHERS "); break;
|
|
case XML_REGEXP_PUNCT:
|
|
fprintf(output, "PUNCT "); break;
|
|
case XML_REGEXP_PUNCT_CONNECTOR:
|
|
fprintf(output, "PUNCT_CONNECTOR "); break;
|
|
case XML_REGEXP_PUNCT_DASH:
|
|
fprintf(output, "PUNCT_DASH "); break;
|
|
case XML_REGEXP_PUNCT_OPEN:
|
|
fprintf(output, "PUNCT_OPEN "); break;
|
|
case XML_REGEXP_PUNCT_CLOSE:
|
|
fprintf(output, "PUNCT_CLOSE "); break;
|
|
case XML_REGEXP_PUNCT_INITQUOTE:
|
|
fprintf(output, "PUNCT_INITQUOTE "); break;
|
|
case XML_REGEXP_PUNCT_FINQUOTE:
|
|
fprintf(output, "PUNCT_FINQUOTE "); break;
|
|
case XML_REGEXP_PUNCT_OTHERS:
|
|
fprintf(output, "PUNCT_OTHERS "); break;
|
|
case XML_REGEXP_SEPAR:
|
|
fprintf(output, "SEPAR "); break;
|
|
case XML_REGEXP_SEPAR_SPACE:
|
|
fprintf(output, "SEPAR_SPACE "); break;
|
|
case XML_REGEXP_SEPAR_LINE:
|
|
fprintf(output, "SEPAR_LINE "); break;
|
|
case XML_REGEXP_SEPAR_PARA:
|
|
fprintf(output, "SEPAR_PARA "); break;
|
|
case XML_REGEXP_SYMBOL:
|
|
fprintf(output, "SYMBOL "); break;
|
|
case XML_REGEXP_SYMBOL_MATH:
|
|
fprintf(output, "SYMBOL_MATH "); break;
|
|
case XML_REGEXP_SYMBOL_CURRENCY:
|
|
fprintf(output, "SYMBOL_CURRENCY "); break;
|
|
case XML_REGEXP_SYMBOL_MODIFIER:
|
|
fprintf(output, "SYMBOL_MODIFIER "); break;
|
|
case XML_REGEXP_SYMBOL_OTHERS:
|
|
fprintf(output, "SYMBOL_OTHERS "); break;
|
|
case XML_REGEXP_OTHER:
|
|
fprintf(output, "OTHER "); break;
|
|
case XML_REGEXP_OTHER_CONTROL:
|
|
fprintf(output, "OTHER_CONTROL "); break;
|
|
case XML_REGEXP_OTHER_FORMAT:
|
|
fprintf(output, "OTHER_FORMAT "); break;
|
|
case XML_REGEXP_OTHER_PRIVATE:
|
|
fprintf(output, "OTHER_PRIVATE "); break;
|
|
case XML_REGEXP_OTHER_NA:
|
|
fprintf(output, "OTHER_NA "); break;
|
|
case XML_REGEXP_BLOCK_NAME:
|
|
fprintf(output, "BLOCK "); break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
xmlRegPrintQuantType(FILE *output, xmlRegQuantType type) {
|
|
switch (type) {
|
|
case XML_REGEXP_QUANT_EPSILON:
|
|
fprintf(output, "epsilon "); break;
|
|
case XML_REGEXP_QUANT_ONCE:
|
|
fprintf(output, "once "); break;
|
|
case XML_REGEXP_QUANT_OPT:
|
|
fprintf(output, "? "); break;
|
|
case XML_REGEXP_QUANT_MULT:
|
|
fprintf(output, "* "); break;
|
|
case XML_REGEXP_QUANT_PLUS:
|
|
fprintf(output, "+ "); break;
|
|
case XML_REGEXP_QUANT_RANGE:
|
|
fprintf(output, "range "); break;
|
|
case XML_REGEXP_QUANT_ONCEONLY:
|
|
fprintf(output, "onceonly "); break;
|
|
case XML_REGEXP_QUANT_ALL:
|
|
fprintf(output, "all "); break;
|
|
}
|
|
}
|
|
static void
|
|
xmlRegPrintRange(FILE *output, xmlRegRangePtr range) {
|
|
fprintf(output, " range: ");
|
|
if (range->neg)
|
|
fprintf(output, "negative ");
|
|
xmlRegPrintAtomType(output, range->type);
|
|
fprintf(output, "%c - %c\n", range->start, range->end);
|
|
}
|
|
|
|
static void
|
|
xmlRegPrintAtom(FILE *output, xmlRegAtomPtr atom) {
|
|
fprintf(output, " atom: ");
|
|
if (atom == NULL) {
|
|
fprintf(output, "NULL\n");
|
|
return;
|
|
}
|
|
if (atom->neg)
|
|
fprintf(output, "not ");
|
|
xmlRegPrintAtomType(output, atom->type);
|
|
xmlRegPrintQuantType(output, atom->quant);
|
|
if (atom->quant == XML_REGEXP_QUANT_RANGE)
|
|
fprintf(output, "%d-%d ", atom->min, atom->max);
|
|
if (atom->type == XML_REGEXP_STRING)
|
|
fprintf(output, "'%s' ", (char *) atom->valuep);
|
|
if (atom->type == XML_REGEXP_CHARVAL)
|
|
fprintf(output, "char %c\n", atom->codepoint);
|
|
else if (atom->type == XML_REGEXP_RANGES) {
|
|
int i;
|
|
fprintf(output, "%d entries\n", atom->nbRanges);
|
|
for (i = 0; i < atom->nbRanges;i++)
|
|
xmlRegPrintRange(output, atom->ranges[i]);
|
|
} else {
|
|
fprintf(output, "\n");
|
|
}
|
|
}
|
|
|
|
static void
|
|
xmlRegPrintAtomCompact(FILE* output, xmlRegexpPtr regexp, int atom)
|
|
{
|
|
if (output == NULL || regexp == NULL || atom < 0 ||
|
|
atom >= regexp->nbstrings) {
|
|
return;
|
|
}
|
|
fprintf(output, " atom: ");
|
|
|
|
xmlRegPrintAtomType(output, XML_REGEXP_STRING);
|
|
xmlRegPrintQuantType(output, XML_REGEXP_QUANT_ONCE);
|
|
fprintf(output, "'%s' ", (char *) regexp->stringMap[atom]);
|
|
fprintf(output, "\n");
|
|
}
|
|
|
|
static void
|
|
xmlRegPrintTrans(FILE *output, xmlRegTransPtr trans) {
|
|
fprintf(output, " trans: ");
|
|
if (trans == NULL) {
|
|
fprintf(output, "NULL\n");
|
|
return;
|
|
}
|
|
if (trans->to < 0) {
|
|
fprintf(output, "removed\n");
|
|
return;
|
|
}
|
|
if (trans->nd != 0) {
|
|
if (trans->nd == 2)
|
|
fprintf(output, "last not determinist, ");
|
|
else
|
|
fprintf(output, "not determinist, ");
|
|
}
|
|
if (trans->counter >= 0) {
|
|
fprintf(output, "counted %d, ", trans->counter);
|
|
}
|
|
if (trans->count == REGEXP_ALL_COUNTER) {
|
|
fprintf(output, "all transition, ");
|
|
} else if (trans->count >= 0) {
|
|
fprintf(output, "count based %d, ", trans->count);
|
|
}
|
|
if (trans->atom == NULL) {
|
|
fprintf(output, "epsilon to %d\n", trans->to);
|
|
return;
|
|
}
|
|
if (trans->atom->type == XML_REGEXP_CHARVAL)
|
|
fprintf(output, "char %c ", trans->atom->codepoint);
|
|
fprintf(output, "atom %d, to %d\n", trans->atom->no, trans->to);
|
|
}
|
|
|
|
static void
|
|
xmlRegPrintTransCompact(
|
|
FILE* output,
|
|
xmlRegexpPtr regexp,
|
|
int state,
|
|
int atom
|
|
)
|
|
{
|
|
int target;
|
|
if (output == NULL || regexp == NULL || regexp->compact == NULL ||
|
|
state < 0 || atom < 0) {
|
|
return;
|
|
}
|
|
target = regexp->compact[state * (regexp->nbstrings + 1) + atom + 1];
|
|
fprintf(output, " trans: ");
|
|
|
|
/* TODO maybe skip 'removed' transitions, because they actually never existed */
|
|
if (target < 0) {
|
|
fprintf(output, "removed\n");
|
|
return;
|
|
}
|
|
|
|
/* We will ignore most of the attributes used in xmlRegPrintTrans,
|
|
* since the compact form is much simpler and uses only a part of the
|
|
* features provided by the libxml2 regexp libary
|
|
* (no rollbacks, counters etc.) */
|
|
|
|
/* Compared to the standard representation, an automata written using the
|
|
* compact form will ALWAYS be deterministic!
|
|
* From xmlRegPrintTrans:
|
|
if (trans->nd != 0) {
|
|
...
|
|
* trans->nd will always be 0! */
|
|
|
|
/* In automata represented in compact form, the transitions will not use
|
|
* counters.
|
|
* From xmlRegPrintTrans:
|
|
if (trans->counter >= 0) {
|
|
...
|
|
* regexp->counters == NULL, so trans->counter < 0 */
|
|
|
|
/* In compact form, we won't use */
|
|
|
|
/* An automata in the compact representation will always use string
|
|
* atoms.
|
|
* From xmlRegPrintTrans:
|
|
if (trans->atom->type == XML_REGEXP_CHARVAL)
|
|
...
|
|
* trans->atom != NULL && trans->atom->type == XML_REGEXP_STRING */
|
|
|
|
fprintf(output, "atom %d, to %d\n", atom, target);
|
|
}
|
|
|
|
static void
|
|
xmlRegPrintState(FILE *output, xmlRegStatePtr state) {
|
|
int i;
|
|
|
|
fprintf(output, " state: ");
|
|
if (state == NULL) {
|
|
fprintf(output, "NULL\n");
|
|
return;
|
|
}
|
|
if (state->type == XML_REGEXP_START_STATE)
|
|
fprintf(output, "START ");
|
|
if (state->type == XML_REGEXP_FINAL_STATE)
|
|
fprintf(output, "FINAL ");
|
|
|
|
fprintf(output, "%d, %d transitions:\n", state->no, state->nbTrans);
|
|
for (i = 0;i < state->nbTrans; i++) {
|
|
xmlRegPrintTrans(output, &(state->trans[i]));
|
|
}
|
|
}
|
|
|
|
static void
|
|
xmlRegPrintStateCompact(FILE* output, xmlRegexpPtr regexp, int state)
|
|
{
|
|
int nbTrans = 0;
|
|
int i;
|
|
int target;
|
|
xmlRegStateType stateType;
|
|
|
|
if (output == NULL || regexp == NULL || regexp->compact == NULL ||
|
|
state < 0) {
|
|
return;
|
|
}
|
|
|
|
fprintf(output, " state: ");
|
|
|
|
stateType = regexp->compact[state * (regexp->nbstrings + 1)];
|
|
if (stateType == XML_REGEXP_START_STATE) {
|
|
fprintf(output, " START ");
|
|
}
|
|
|
|
if (stateType == XML_REGEXP_FINAL_STATE) {
|
|
fprintf(output, " FINAL ");
|
|
}
|
|
|
|
/* Print all atoms. */
|
|
for (i = 0; i < regexp->nbstrings; i++) {
|
|
xmlRegPrintAtomCompact(output, regexp, i);
|
|
}
|
|
|
|
/* Count all the transitions from the compact representation. */
|
|
for (i = 0; i < regexp->nbstrings; i++) {
|
|
target = regexp->compact[state * (regexp->nbstrings + 1) + i + 1];
|
|
if (target > 0 && target <= regexp->nbstates &&
|
|
regexp->compact[(target - 1) * (regexp->nbstrings + 1)] ==
|
|
XML_REGEXP_SINK_STATE) {
|
|
nbTrans++;
|
|
}
|
|
}
|
|
|
|
fprintf(output, "%d, %d transitions:\n", state, nbTrans);
|
|
|
|
/* Print all transitions */
|
|
for (i = 0; i < regexp->nbstrings; i++) {
|
|
xmlRegPrintTransCompact(output, regexp, state, i);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* @param output an output stream
|
|
* @param regexp the regexp instance
|
|
*
|
|
* Print the compact representation of a regexp, in the same fashion as the
|
|
* public #xmlRegexpPrint function.
|
|
*/
|
|
static void
|
|
xmlRegPrintCompact(FILE* output, xmlRegexpPtr regexp)
|
|
{
|
|
int i;
|
|
if (output == NULL || regexp == NULL || regexp->compact == NULL) {
|
|
return;
|
|
}
|
|
|
|
fprintf(output, "'%s' ", regexp->string);
|
|
|
|
fprintf(output, "%d atoms:\n", regexp->nbstrings);
|
|
fprintf(output, "\n");
|
|
for (i = 0; i < regexp->nbstrings; i++) {
|
|
fprintf(output, " %02d ", i);
|
|
xmlRegPrintAtomCompact(output, regexp, i);
|
|
}
|
|
|
|
fprintf(output, "%d states:", regexp->nbstates);
|
|
fprintf(output, "\n");
|
|
for (i = 0; i < regexp->nbstates; i++) {
|
|
xmlRegPrintStateCompact(output, regexp, i);
|
|
}
|
|
|
|
fprintf(output, "%d counters:\n", 0);
|
|
}
|
|
|
|
static void
|
|
xmlRegexpPrintInternal(FILE *output, xmlRegexpPtr regexp) {
|
|
int i;
|
|
|
|
if (output == NULL)
|
|
return;
|
|
fprintf(output, " regexp: ");
|
|
if (regexp == NULL) {
|
|
fprintf(output, "NULL\n");
|
|
return;
|
|
}
|
|
if (regexp->compact) {
|
|
xmlRegPrintCompact(output, regexp);
|
|
return;
|
|
}
|
|
|
|
fprintf(output, "'%s' ", regexp->string);
|
|
fprintf(output, "\n");
|
|
fprintf(output, "%d atoms:\n", regexp->nbAtoms);
|
|
for (i = 0;i < regexp->nbAtoms; i++) {
|
|
fprintf(output, " %02d ", i);
|
|
xmlRegPrintAtom(output, regexp->atoms[i]);
|
|
}
|
|
fprintf(output, "%d states:", regexp->nbStates);
|
|
fprintf(output, "\n");
|
|
for (i = 0;i < regexp->nbStates; i++) {
|
|
xmlRegPrintState(output, regexp->states[i]);
|
|
}
|
|
fprintf(output, "%d counters:\n", regexp->nbCounters);
|
|
for (i = 0;i < regexp->nbCounters; i++) {
|
|
fprintf(output, " %d: min %d max %d\n", i, regexp->counters[i].min,
|
|
regexp->counters[i].max);
|
|
}
|
|
}
|
|
#endif /* DEBUG_REGEXP */
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Finite Automata structures manipulations *
|
|
* *
|
|
************************************************************************/
|
|
|
|
static xmlRegRangePtr
|
|
xmlRegAtomAddRange(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom,
|
|
int neg, xmlRegAtomType type, int start, int end,
|
|
xmlChar *blockName) {
|
|
xmlRegRangePtr range;
|
|
|
|
if (atom == NULL) {
|
|
ERROR("add range: atom is NULL");
|
|
return(NULL);
|
|
}
|
|
if (atom->type != XML_REGEXP_RANGES) {
|
|
ERROR("add range: atom is not ranges");
|
|
return(NULL);
|
|
}
|
|
if (atom->nbRanges >= atom->maxRanges) {
|
|
xmlRegRangePtr *tmp;
|
|
int newSize;
|
|
|
|
newSize = xmlGrowCapacity(atom->maxRanges, sizeof(tmp[0]),
|
|
4, XML_MAX_ITEMS);
|
|
if (newSize < 0) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
return(NULL);
|
|
}
|
|
tmp = xmlRealloc(atom->ranges, newSize * sizeof(tmp[0]));
|
|
if (tmp == NULL) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
return(NULL);
|
|
}
|
|
atom->ranges = tmp;
|
|
atom->maxRanges = newSize;
|
|
}
|
|
range = xmlRegNewRange(ctxt, neg, type, start, end);
|
|
if (range == NULL)
|
|
return(NULL);
|
|
range->blockName = blockName;
|
|
atom->ranges[atom->nbRanges++] = range;
|
|
|
|
return(range);
|
|
}
|
|
|
|
static int
|
|
xmlRegGetCounter(xmlRegParserCtxtPtr ctxt) {
|
|
if (ctxt->nbCounters >= ctxt->maxCounters) {
|
|
xmlRegCounter *tmp;
|
|
int newSize;
|
|
|
|
newSize = xmlGrowCapacity(ctxt->maxCounters, sizeof(tmp[0]),
|
|
4, XML_MAX_ITEMS);
|
|
if (newSize < 0) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
return(-1);
|
|
}
|
|
tmp = xmlRealloc(ctxt->counters, newSize * sizeof(tmp[0]));
|
|
if (tmp == NULL) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
return(-1);
|
|
}
|
|
ctxt->counters = tmp;
|
|
ctxt->maxCounters = newSize;
|
|
}
|
|
ctxt->counters[ctxt->nbCounters].min = -1;
|
|
ctxt->counters[ctxt->nbCounters].max = -1;
|
|
return(ctxt->nbCounters++);
|
|
}
|
|
|
|
static int
|
|
xmlRegAtomPush(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom) {
|
|
if (atom == NULL) {
|
|
ERROR("atom push: atom is NULL");
|
|
return(-1);
|
|
}
|
|
if (ctxt->nbAtoms >= ctxt->maxAtoms) {
|
|
xmlRegAtomPtr *tmp;
|
|
int newSize;
|
|
|
|
newSize = xmlGrowCapacity(ctxt->maxAtoms, sizeof(tmp[0]),
|
|
4, XML_MAX_ITEMS);
|
|
if (newSize < 0) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
return(-1);
|
|
}
|
|
tmp = xmlRealloc(ctxt->atoms, newSize * sizeof(tmp[0]));
|
|
if (tmp == NULL) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
return(-1);
|
|
}
|
|
ctxt->atoms = tmp;
|
|
ctxt->maxAtoms = newSize;
|
|
}
|
|
atom->no = ctxt->nbAtoms;
|
|
ctxt->atoms[ctxt->nbAtoms++] = atom;
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
xmlRegStateAddTransTo(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr target,
|
|
int from) {
|
|
if (target->nbTransTo >= target->maxTransTo) {
|
|
int *tmp;
|
|
int newSize;
|
|
|
|
newSize = xmlGrowCapacity(target->maxTransTo, sizeof(tmp[0]),
|
|
8, XML_MAX_ITEMS);
|
|
if (newSize < 0) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
return;
|
|
}
|
|
tmp = xmlRealloc(target->transTo, newSize * sizeof(tmp[0]));
|
|
if (tmp == NULL) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
return;
|
|
}
|
|
target->transTo = tmp;
|
|
target->maxTransTo = newSize;
|
|
}
|
|
target->transTo[target->nbTransTo] = from;
|
|
target->nbTransTo++;
|
|
}
|
|
|
|
static void
|
|
xmlRegStateAddTrans(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state,
|
|
xmlRegAtomPtr atom, xmlRegStatePtr target,
|
|
int counter, int count) {
|
|
|
|
int nrtrans;
|
|
|
|
if (state == NULL) {
|
|
ERROR("add state: state is NULL");
|
|
return;
|
|
}
|
|
if (target == NULL) {
|
|
ERROR("add state: target is NULL");
|
|
return;
|
|
}
|
|
/*
|
|
* Other routines follow the philosophy 'When in doubt, add a transition'
|
|
* so we check here whether such a transition is already present and, if
|
|
* so, silently ignore this request.
|
|
*/
|
|
|
|
for (nrtrans = state->nbTrans - 1; nrtrans >= 0; nrtrans--) {
|
|
xmlRegTransPtr trans = &(state->trans[nrtrans]);
|
|
if ((trans->atom == atom) &&
|
|
(trans->to == target->no) &&
|
|
(trans->counter == counter) &&
|
|
(trans->count == count)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (state->nbTrans >= state->maxTrans) {
|
|
xmlRegTrans *tmp;
|
|
int newSize;
|
|
|
|
newSize = xmlGrowCapacity(state->maxTrans, sizeof(tmp[0]),
|
|
8, XML_MAX_ITEMS);
|
|
if (newSize < 0) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
return;
|
|
}
|
|
tmp = xmlRealloc(state->trans, newSize * sizeof(tmp[0]));
|
|
if (tmp == NULL) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
return;
|
|
}
|
|
state->trans = tmp;
|
|
state->maxTrans = newSize;
|
|
}
|
|
|
|
state->trans[state->nbTrans].atom = atom;
|
|
state->trans[state->nbTrans].to = target->no;
|
|
state->trans[state->nbTrans].counter = counter;
|
|
state->trans[state->nbTrans].count = count;
|
|
state->trans[state->nbTrans].nd = 0;
|
|
state->nbTrans++;
|
|
xmlRegStateAddTransTo(ctxt, target, state->no);
|
|
}
|
|
|
|
static xmlRegStatePtr
|
|
xmlRegStatePush(xmlRegParserCtxtPtr ctxt) {
|
|
xmlRegStatePtr state;
|
|
|
|
if (ctxt->nbStates >= ctxt->maxStates) {
|
|
xmlRegStatePtr *tmp;
|
|
int newSize;
|
|
|
|
newSize = xmlGrowCapacity(ctxt->maxStates, sizeof(tmp[0]),
|
|
4, XML_MAX_ITEMS);
|
|
if (newSize < 0) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
return(NULL);
|
|
}
|
|
tmp = xmlRealloc(ctxt->states, newSize * sizeof(tmp[0]));
|
|
if (tmp == NULL) {
|
|
xmlRegexpErrMemory(ctxt);
|
|
return(NULL);
|
|
}
|
|
ctxt->states = tmp;
|
|
ctxt->maxStates = newSize;
|
|
}
|
|
|
|
state = xmlRegNewState(ctxt);
|
|
if (state == NULL)
|
|
return(NULL);
|
|
|
|
state->no = ctxt->nbStates;
|
|
ctxt->states[ctxt->nbStates++] = state;
|
|
|
|
return(state);
|
|
}
|
|
|
|
/**
|
|
* @param ctxt a regexp parser context
|
|
* @param from the from state
|
|
* @param to the target state or NULL for building a new one
|
|
* @param lax
|
|
*/
|
|
static int
|
|
xmlFAGenerateAllTransition(xmlRegParserCtxtPtr ctxt,
|
|
xmlRegStatePtr from, xmlRegStatePtr to,
|
|
int lax) {
|
|
if (to == NULL) {
|
|
to = xmlRegStatePush(ctxt);
|
|
if (to == NULL)
|
|
return(-1);
|
|
ctxt->state = to;
|
|
}
|
|
if (lax)
|
|
xmlRegStateAddTrans(ctxt, from, NULL, to, -1, REGEXP_ALL_LAX_COUNTER);
|
|
else
|
|
xmlRegStateAddTrans(ctxt, from, NULL, to, -1, REGEXP_ALL_COUNTER);
|
|
return(0);
|
|
}
|
|
|
|
/**
|
|
* @param ctxt a regexp parser context
|
|
* @param from the from state
|
|
* @param to the target state or NULL for building a new one
|
|
*/
|
|
static int
|
|
xmlFAGenerateEpsilonTransition(xmlRegParserCtxtPtr ctxt,
|
|
xmlRegStatePtr from, xmlRegStatePtr to) {
|
|
if (to == NULL) {
|
|
to = xmlRegStatePush(ctxt);
|
|
if (to == NULL)
|
|
return(-1);
|
|
ctxt->state = to;
|
|
}
|
|
xmlRegStateAddTrans(ctxt, from, NULL, to, -1, -1);
|
|
return(0);
|
|
}
|
|
|
|
/**
|
|
* @param ctxt a regexp parser context
|
|
* @param from the from state
|
|
* @param to the target state or NULL for building a new one
|
|
* @param counter the counter for that transition
|
|
*/
|
|
static int
|
|
xmlFAGenerateCountedEpsilonTransition(xmlRegParserCtxtPtr ctxt,
|
|
xmlRegStatePtr from, xmlRegStatePtr to, int counter) {
|
|
if (to == NULL) {
|
|
to = xmlRegStatePush(ctxt);
|
|
if (to == NULL)
|
|
return(-1);
|
|
ctxt->state = to;
|
|
}
|
|
xmlRegStateAddTrans(ctxt, from, NULL, to, counter, -1);
|
|
return(0);
|
|
}
|
|
|
|
/**
|
|
* @param ctxt a regexp parser context
|
|
* @param from the from state
|
|
* @param to the target state or NULL for building a new one
|
|
* @param counter the counter for that transition
|
|
*/
|
|
static int
|
|
xmlFAGenerateCountedTransition(xmlRegParserCtxtPtr ctxt,
|
|
xmlRegStatePtr from, xmlRegStatePtr to, int counter) {
|
|
if (to == NULL) {
|
|
to = xmlRegStatePush(ctxt);
|
|
if (to == NULL)
|
|
return(-1);
|
|
ctxt->state = to;
|
|
}
|
|
xmlRegStateAddTrans(ctxt, from, NULL, to, -1, counter);
|
|
return(0);
|
|
}
|
|
|
|
/**
|
|
* @param ctxt a regexp parser context
|
|
* @param from the from state
|
|
* @param to the target state or NULL for building a new one
|
|
* @param atom the atom generating the transition
|
|
* @returns 0 if success and -1 in case of error.
|
|
*/
|
|
static int
|
|
xmlFAGenerateTransitions(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr from,
|
|
xmlRegStatePtr to, xmlRegAtomPtr atom) {
|
|
xmlRegStatePtr end;
|
|
int nullable = 0;
|
|
|
|
if (atom == NULL) {
|
|
ERROR("generate transition: atom == NULL");
|
|
return(-1);
|
|
}
|
|
if (atom->type == XML_REGEXP_SUBREG) {
|
|
/*
|
|
* this is a subexpression handling one should not need to
|
|
* create a new node except for XML_REGEXP_QUANT_RANGE.
|
|
*/
|
|
if ((to != NULL) && (atom->stop != to) &&
|
|
(atom->quant != XML_REGEXP_QUANT_RANGE)) {
|
|
/*
|
|
* Generate an epsilon transition to link to the target
|
|
*/
|
|
xmlFAGenerateEpsilonTransition(ctxt, atom->stop, to);
|
|
#ifdef DV
|
|
} else if ((to == NULL) && (atom->quant != XML_REGEXP_QUANT_RANGE) &&
|
|
(atom->quant != XML_REGEXP_QUANT_ONCE)) {
|
|
to = xmlRegStatePush(ctxt, to);
|
|
if (to == NULL)
|
|
return(-1);
|
|
ctxt->state = to;
|
|
xmlFAGenerateEpsilonTransition(ctxt, atom->stop, to);
|
|
#endif
|
|
}
|
|
switch (atom->quant) {
|
|
case XML_REGEXP_QUANT_OPT:
|
|
atom->quant = XML_REGEXP_QUANT_ONCE;
|
|
/*
|
|
* transition done to the state after end of atom.
|
|
* 1. set transition from atom start to new state
|
|
* 2. set transition from atom end to this state.
|
|
*/
|
|
if (to == NULL) {
|
|
xmlFAGenerateEpsilonTransition(ctxt, atom->start, 0);
|
|
xmlFAGenerateEpsilonTransition(ctxt, atom->stop,
|
|
ctxt->state);
|
|
} else {
|
|
xmlFAGenerateEpsilonTransition(ctxt, atom->start, to);
|
|
}
|
|
break;
|
|
case XML_REGEXP_QUANT_MULT:
|
|
atom->quant = XML_REGEXP_QUANT_ONCE;
|
|
xmlFAGenerateEpsilonTransition(ctxt, atom->start, atom->stop);
|
|
xmlFAGenerateEpsilonTransition(ctxt, atom->stop, atom->start);
|
|
break;
|
|
case XML_REGEXP_QUANT_PLUS:
|
|
atom->quant = XML_REGEXP_QUANT_ONCE;
|
|
xmlFAGenerateEpsilonTransition(ctxt, atom->stop, atom->start);
|
|
break;
|
|
case XML_REGEXP_QUANT_RANGE: {
|
|
int counter;
|
|
xmlRegStatePtr inter, newstate;
|
|
|
|
/*
|
|
* create the final state now if needed
|
|
*/
|
|
if (to != NULL) {
|
|
newstate = to;
|
|
} else {
|
|
newstate = xmlRegStatePush(ctxt);
|
|
if (newstate == NULL)
|
|
return(-1);
|
|
}
|
|
|
|
/*
|
|
* The principle here is to use counted transition
|
|
* to avoid explosion in the number of states in the
|
|
* graph. This is clearly more complex but should not
|
|
* be exploitable at runtime.
|
|
*/
|
|
if ((atom->min == 0) && (atom->start0 == NULL)) {
|
|
xmlRegAtomPtr copy;
|
|
/*
|
|
* duplicate a transition based on atom to count next
|
|
* occurrences after 1. We cannot loop to atom->start
|
|
* directly because we need an epsilon transition to
|
|
* newstate.
|
|
*/
|
|
/* ???? For some reason it seems we never reach that
|
|
case, I suppose this got optimized out before when
|
|
building the automata */
|
|
copy = xmlRegCopyAtom(ctxt, atom);
|
|
if (copy == NULL)
|
|
return(-1);
|
|
copy->quant = XML_REGEXP_QUANT_ONCE;
|
|
copy->min = 0;
|
|
copy->max = 0;
|
|
|
|
if (xmlFAGenerateTransitions(ctxt, atom->start, NULL, copy)
|
|
< 0) {
|
|
xmlRegFreeAtom(copy);
|
|
return(-1);
|
|
}
|
|
inter = ctxt->state;
|
|
counter = xmlRegGetCounter(ctxt);
|
|
if (counter < 0)
|
|
return(-1);
|
|
ctxt->counters[counter].min = atom->min - 1;
|
|
ctxt->counters[counter].max = atom->max - 1;
|
|
/* count the number of times we see it again */
|
|
xmlFAGenerateCountedEpsilonTransition(ctxt, inter,
|
|
atom->stop, counter);
|
|
/* allow a way out based on the count */
|
|
xmlFAGenerateCountedTransition(ctxt, inter,
|
|
newstate, counter);
|
|
/* and also allow a direct exit for 0 */
|
|
xmlFAGenerateEpsilonTransition(ctxt, atom->start,
|
|
newstate);
|
|
} else {
|
|
/*
|
|
* either we need the atom at least once or there
|
|
* is an atom->start0 allowing to easily plug the
|
|
* epsilon transition.
|
|
*/
|
|
counter = xmlRegGetCounter(ctxt);
|
|
if (counter < 0)
|
|
return(-1);
|
|
ctxt->counters[counter].min = atom->min - 1;
|
|
ctxt->counters[counter].max = atom->max - 1;
|
|
/* allow a way out based on the count */
|
|
xmlFAGenerateCountedTransition(ctxt, atom->stop,
|
|
newstate, counter);
|
|
/* count the number of times we see it again */
|
|
xmlFAGenerateCountedEpsilonTransition(ctxt, atom->stop,
|
|
atom->start, counter);
|
|
/* and if needed allow a direct exit for 0 */
|
|
if (atom->min == 0)
|
|
xmlFAGenerateEpsilonTransition(ctxt, atom->start0,
|
|
newstate);
|
|
|
|
}
|
|
atom->min = 0;
|
|
atom->max = 0;
|
|
atom->quant = XML_REGEXP_QUANT_ONCE;
|
|
ctxt->state = newstate;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
atom->start = NULL;
|
|
atom->start0 = NULL;
|
|
atom->stop = NULL;
|
|
if (xmlRegAtomPush(ctxt, atom) < 0)
|
|
return(-1);
|
|
return(0);
|
|
}
|
|
if ((atom->min == 0) && (atom->max == 0) &&
|
|
(atom->quant == XML_REGEXP_QUANT_RANGE)) {
|
|
/*
|
|
* we can discard the atom and generate an epsilon transition instead
|
|
*/
|
|
if (to == NULL) {
|
|
to = xmlRegStatePush(ctxt);
|
|
if (to == NULL)
|
|
return(-1);
|
|
}
|
|
xmlFAGenerateEpsilonTransition(ctxt, from, to);
|
|
ctxt->state = to;
|
|
xmlRegFreeAtom(atom);
|
|
return(0);
|
|
}
|
|
if (to == NULL) {
|
|
to = xmlRegStatePush(ctxt);
|
|
if (to == NULL)
|
|
return(-1);
|
|
}
|
|
end = to;
|
|
if ((atom->quant == XML_REGEXP_QUANT_MULT) ||
|
|
(atom->quant == XML_REGEXP_QUANT_PLUS)) {
|
|
/*
|
|
* Do not pollute the target state by adding transitions from
|
|
* it as it is likely to be the shared target of multiple branches.
|
|
* So isolate with an epsilon transition.
|
|
*/
|
|
xmlRegStatePtr tmp;
|
|
|
|
tmp = xmlRegStatePush(ctxt);
|
|
if (tmp == NULL)
|
|
return(-1);
|
|
xmlFAGenerateEpsilonTransition(ctxt, tmp, to);
|
|
to = tmp;
|
|
}
|
|
if ((atom->quant == XML_REGEXP_QUANT_RANGE) &&
|
|
(atom->min == 0) && (atom->max > 0)) {
|
|
nullable = 1;
|
|
atom->min = 1;
|
|
if (atom->max == 1)
|
|
atom->quant = XML_REGEXP_QUANT_OPT;
|
|
}
|
|
xmlRegStateAddTrans(ctxt, from, atom, to, -1, -1);
|
|
ctxt->state = end;
|
|
switch (atom->quant) {
|
|
case XML_REGEXP_QUANT_OPT:
|
|
atom->quant = XML_REGEXP_QUANT_ONCE;
|
|
xmlFAGenerateEpsilonTransition(ctxt, from, to);
|
|
break;
|
|
case XML_REGEXP_QUANT_MULT:
|
|
atom->quant = XML_REGEXP_QUANT_ONCE;
|
|
xmlFAGenerateEpsilonTransition(ctxt, from, to);
|
|
xmlRegStateAddTrans(ctxt, to, atom, to, -1, -1);
|
|
break;
|
|
case XML_REGEXP_QUANT_PLUS:
|
|
atom->quant = XML_REGEXP_QUANT_ONCE;
|
|
xmlRegStateAddTrans(ctxt, to, atom, to, -1, -1);
|
|
break;
|
|
case XML_REGEXP_QUANT_RANGE:
|
|
if (nullable)
|
|
xmlFAGenerateEpsilonTransition(ctxt, from, to);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (xmlRegAtomPush(ctxt, atom) < 0)
|
|
return(-1);
|
|
return(0);
|
|
}
|
|
|
|
/**
|
|
* @param ctxt a regexp parser context
|
|
* @param fromnr the from state
|
|
* @param tonr the to state
|
|
* @param counter should that transition be associated to a counted
|
|
*/
|
|
static void
|
|
xmlFAReduceEpsilonTransitions(xmlRegParserCtxtPtr ctxt, int fromnr,
|
|
int tonr, int counter) {
|
|
int transnr;
|
|
xmlRegStatePtr from;
|
|
xmlRegStatePtr to;
|
|
|
|
from = ctxt->states[fromnr];
|
|
if (from == NULL)
|
|
return;
|
|
to = ctxt->states[tonr];
|
|
if (to == NULL)
|
|
return;
|
|
if ((to->mark == XML_REGEXP_MARK_START) ||
|
|
(to->mark == XML_REGEXP_MARK_VISITED))
|
|
return;
|
|
|
|
to->mark = XML_REGEXP_MARK_VISITED;
|
|
if (to->type == XML_REGEXP_FINAL_STATE) {
|
|
from->type = XML_REGEXP_FINAL_STATE;
|
|
}
|
|
for (transnr = 0;transnr < to->nbTrans;transnr++) {
|
|
xmlRegTransPtr t1 = &to->trans[transnr];
|
|
int tcounter;
|
|
|
|
if (t1->to < 0)
|
|
continue;
|
|
if (t1->counter >= 0) {
|
|
/* assert(counter < 0); */
|
|
tcounter = t1->counter;
|
|
} else {
|
|
tcounter = counter;
|
|
}
|
|
if (t1->atom == NULL) {
|
|
/*
|
|
* Don't remove counted transitions
|
|
* Don't loop either
|
|
*/
|
|
if (t1->to != fromnr) {
|
|
if (t1->count >= 0) {
|
|
xmlRegStateAddTrans(ctxt, from, NULL, ctxt->states[t1->to],
|
|
-1, t1->count);
|
|
} else {
|
|
xmlFAReduceEpsilonTransitions(ctxt, fromnr, t1->to,
|
|
tcounter);
|
|
}
|
|
}
|
|
} else {
|
|
xmlRegStateAddTrans(ctxt, from, t1->atom,
|
|
ctxt->states[t1->to], tcounter, -1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @param ctxt a regexp parser context
|
|
* @param tonr the to state
|
|
*/
|
|
static void
|
|
xmlFAFinishReduceEpsilonTransitions(xmlRegParserCtxtPtr ctxt, int tonr) {
|
|
int transnr;
|
|
xmlRegStatePtr to;
|
|
|
|
to = ctxt->states[tonr];
|
|
if (to == NULL)
|
|
return;
|
|
if ((to->mark == XML_REGEXP_MARK_START) ||
|
|
(to->mark == XML_REGEXP_MARK_NORMAL))
|
|
return;
|
|
|
|
to->mark = XML_REGEXP_MARK_NORMAL;
|
|
for (transnr = 0;transnr < to->nbTrans;transnr++) {
|
|
xmlRegTransPtr t1 = &to->trans[transnr];
|
|
if ((t1->to >= 0) && (t1->atom == NULL))
|
|
xmlFAFinishReduceEpsilonTransitions(ctxt, t1->to);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Eliminating general epsilon transitions can get costly in the general
|
|
* algorithm due to the large amount of generated new transitions and
|
|
* associated comparisons. However for simple epsilon transition used just
|
|
* to separate building blocks when generating the automata this can be
|
|
* reduced to state elimination:
|
|
* - if there exists an epsilon from X to Y
|
|
* - if there is no other transition from X
|
|
* then X and Y are semantically equivalent and X can be eliminated
|
|
* If X is the start state then make Y the start state, else replace the
|
|
* target of all transitions to X by transitions to Y.
|
|
*
|
|
* If X is a final state, skip it.
|
|
* Otherwise it would be necessary to manipulate counters for this case when
|
|
* eliminating state 2:
|
|
* State 1 has a transition with an atom to state 2.
|
|
* State 2 is final and has an epsilon transition to state 1.
|
|
*
|
|
* @param ctxt a regexp parser context
|
|
*/
|
|
static void
|
|
xmlFAEliminateSimpleEpsilonTransitions(xmlRegParserCtxtPtr ctxt) {
|
|
int statenr, i, j, newto;
|
|
xmlRegStatePtr state, tmp;
|
|
|
|
for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
|
|
state = ctxt->states[statenr];
|
|
if (state == NULL)
|
|
continue;
|
|
if (state->nbTrans != 1)
|
|
continue;
|
|
if (state->type == XML_REGEXP_UNREACH_STATE ||
|
|
state->type == XML_REGEXP_FINAL_STATE)
|
|
continue;
|
|
/* is the only transition out a basic transition */
|
|
if ((state->trans[0].atom == NULL) &&
|
|
(state->trans[0].to >= 0) &&
|
|
(state->trans[0].to != statenr) &&
|
|
(state->trans[0].counter < 0) &&
|
|
(state->trans[0].count < 0)) {
|
|
newto = state->trans[0].to;
|
|
|
|
if (state->type == XML_REGEXP_START_STATE) {
|
|
} else {
|
|
for (i = 0;i < state->nbTransTo;i++) {
|
|
tmp = ctxt->states[state->transTo[i]];
|
|
for (j = 0;j < tmp->nbTrans;j++) {
|
|
if (tmp->trans[j].to == statenr) {
|
|
tmp->trans[j].to = -1;
|
|
xmlRegStateAddTrans(ctxt, tmp, tmp->trans[j].atom,
|
|
ctxt->states[newto],
|
|
tmp->trans[j].counter,
|
|
tmp->trans[j].count);
|
|
}
|
|
}
|
|
}
|
|
if (state->type == XML_REGEXP_FINAL_STATE)
|
|
ctxt->states[newto]->type = XML_REGEXP_FINAL_STATE;
|
|
/* eliminate the transition completely */
|
|
state->nbTrans = 0;
|
|
|
|
state->type = XML_REGEXP_UNREACH_STATE;
|
|
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
/**
|
|
* @param ctxt a regexp parser context
|
|
*/
|
|
static void
|
|
xmlFAEliminateEpsilonTransitions(xmlRegParserCtxtPtr ctxt) {
|
|
int statenr, transnr;
|
|
xmlRegStatePtr state;
|
|
int has_epsilon;
|
|
|
|
if (ctxt->states == NULL) return;
|
|
|
|
/*
|
|
* Eliminate simple epsilon transition and the associated unreachable
|
|
* states.
|
|
*/
|
|
xmlFAEliminateSimpleEpsilonTransitions(ctxt);
|
|
for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
|
|
state = ctxt->states[statenr];
|
|
if ((state != NULL) && (state->type == XML_REGEXP_UNREACH_STATE)) {
|
|
xmlRegFreeState(state);
|
|
ctxt->states[statenr] = NULL;
|
|
}
|
|
}
|
|
|
|
has_epsilon = 0;
|
|
|
|
/*
|
|
* Build the completed transitions bypassing the epsilons
|
|
* Use a marking algorithm to avoid loops
|
|
* Mark sink states too.
|
|
* Process from the latest states backward to the start when
|
|
* there is long cascading epsilon chains this minimize the
|
|
* recursions and transition compares when adding the new ones
|
|
*/
|
|
for (statenr = ctxt->nbStates - 1;statenr >= 0;statenr--) {
|
|
state = ctxt->states[statenr];
|
|
if (state == NULL)
|
|
continue;
|
|
if ((state->nbTrans == 0) &&
|
|
(state->type != XML_REGEXP_FINAL_STATE)) {
|
|
state->type = XML_REGEXP_SINK_STATE;
|
|
}
|
|
for (transnr = 0;transnr < state->nbTrans;transnr++) {
|
|
if ((state->trans[transnr].atom == NULL) &&
|
|
(state->trans[transnr].to >= 0)) {
|
|
if (state->trans[transnr].to == statenr) {
|
|
state->trans[transnr].to = -1;
|
|
} else if (state->trans[transnr].count < 0) {
|
|
int newto = state->trans[transnr].to;
|
|
|
|
has_epsilon = 1;
|
|
state->trans[transnr].to = -2;
|
|
state->mark = XML_REGEXP_MARK_START;
|
|
xmlFAReduceEpsilonTransitions(ctxt, statenr,
|
|
newto, state->trans[transnr].counter);
|
|
xmlFAFinishReduceEpsilonTransitions(ctxt, newto);
|
|
state->mark = XML_REGEXP_MARK_NORMAL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Eliminate the epsilon transitions
|
|
*/
|
|
if (has_epsilon) {
|
|
for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
|
|
state = ctxt->states[statenr];
|
|
if (state == NULL)
|
|
continue;
|
|
for (transnr = 0;transnr < state->nbTrans;transnr++) {
|
|
xmlRegTransPtr trans = &(state->trans[transnr]);
|
|
if ((trans->atom == NULL) &&
|
|
(trans->count < 0) &&
|
|
(trans->to >= 0)) {
|
|
trans->to = -1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Use this pass to detect unreachable states too
|
|
*/
|
|
for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
|
|
state = ctxt->states[statenr];
|
|
if (state != NULL)
|
|
state->reached = XML_REGEXP_MARK_NORMAL;
|
|
}
|
|
state = ctxt->states[0];
|
|
if (state != NULL)
|
|
state->reached = XML_REGEXP_MARK_START;
|
|
while (state != NULL) {
|
|
xmlRegStatePtr target = NULL;
|
|
state->reached = XML_REGEXP_MARK_VISITED;
|
|
/*
|
|
* Mark all states reachable from the current reachable state
|
|
*/
|
|
for (transnr = 0;transnr < state->nbTrans;transnr++) {
|
|
if ((state->trans[transnr].to >= 0) &&
|
|
((state->trans[transnr].atom != NULL) ||
|
|
(state->trans[transnr].count >= 0))) {
|
|
int newto = state->trans[transnr].to;
|
|
|
|
if (ctxt->states[newto] == NULL)
|
|
continue;
|
|
if (ctxt->states[newto]->reached == XML_REGEXP_MARK_NORMAL) {
|
|
ctxt->states[newto]->reached = XML_REGEXP_MARK_START;
|
|
target = ctxt->states[newto];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* find the next accessible state not explored
|
|
*/
|
|
if (target == NULL) {
|
|
for (statenr = 1;statenr < ctxt->nbStates;statenr++) {
|
|
state = ctxt->states[statenr];
|
|
if ((state != NULL) && (state->reached ==
|
|
XML_REGEXP_MARK_START)) {
|
|
target = state;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
state = target;
|
|
}
|
|
for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
|
|
state = ctxt->states[statenr];
|
|
if ((state != NULL) && (state->reached == XML_REGEXP_MARK_NORMAL)) {
|
|
xmlRegFreeState(state);
|
|
ctxt->states[statenr] = NULL;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
static int
|
|
xmlFACompareRanges(xmlRegRangePtr range1, xmlRegRangePtr range2) {
|
|
int ret = 0;
|
|
|
|
if ((range1->type == XML_REGEXP_RANGES) ||
|
|
(range2->type == XML_REGEXP_RANGES) ||
|
|
(range2->type == XML_REGEXP_SUBREG) ||
|
|
(range1->type == XML_REGEXP_SUBREG) ||
|
|
(range1->type == XML_REGEXP_STRING) ||
|
|
(range2->type == XML_REGEXP_STRING))
|
|
return(-1);
|
|
|
|
/* put them in order */
|
|
if (range1->type > range2->type) {
|
|
xmlRegRangePtr tmp;
|
|
|
|
tmp = range1;
|
|
range1 = range2;
|
|
range2 = tmp;
|
|
}
|
|
if ((range1->type == XML_REGEXP_ANYCHAR) ||
|
|
(range2->type == XML_REGEXP_ANYCHAR)) {
|
|
ret = 1;
|
|
} else if ((range1->type == XML_REGEXP_EPSILON) ||
|
|
(range2->type == XML_REGEXP_EPSILON)) {
|
|
return(0);
|
|
} else if (range1->type == range2->type) {
|
|
if (range1->type != XML_REGEXP_CHARVAL)
|
|
ret = 1;
|
|
else if ((range1->end < range2->start) ||
|
|
(range2->end < range1->start))
|
|
ret = 0;
|
|
else
|
|
ret = 1;
|
|
} else if (range1->type == XML_REGEXP_CHARVAL) {
|
|
int codepoint;
|
|
int neg = 0;
|
|
|
|
/*
|
|
* just check all codepoints in the range for acceptance,
|
|
* this is usually way cheaper since done only once at
|
|
* compilation than testing over and over at runtime or
|
|
* pushing too many states when evaluating.
|
|
*/
|
|
if (((range1->neg == 0) && (range2->neg != 0)) ||
|
|
((range1->neg != 0) && (range2->neg == 0)))
|
|
neg = 1;
|
|
|
|
for (codepoint = range1->start;codepoint <= range1->end ;codepoint++) {
|
|
ret = xmlRegCheckCharacterRange(range2->type, codepoint,
|
|
0, range2->start, range2->end,
|
|
range2->blockName);
|
|
if (ret < 0)
|
|
return(-1);
|
|
if (((neg == 1) && (ret == 0)) ||
|
|
((neg == 0) && (ret == 1)))
|
|
return(1);
|
|
}
|
|
return(0);
|
|
} else if ((range1->type == XML_REGEXP_BLOCK_NAME) ||
|
|
(range2->type == XML_REGEXP_BLOCK_NAME)) {
|
|
if (range1->type == range2->type) {
|
|
ret = xmlStrEqual(range1->blockName, range2->blockName);
|
|
} else {
|
|
/*
|
|
* comparing a block range with anything else is way
|
|
* too costly, and maintaining the table is like too much
|
|
* memory too, so let's force the automata to save state
|
|
* here.
|
|
*/
|
|
return(1);
|
|
}
|
|
} else if ((range1->type < XML_REGEXP_LETTER) ||
|
|
(range2->type < XML_REGEXP_LETTER)) {
|
|
if ((range1->type == XML_REGEXP_ANYSPACE) &&
|
|
(range2->type == XML_REGEXP_NOTSPACE))
|
|
ret = 0;
|
|
else if ((range1->type == XML_REGEXP_INITNAME) &&
|
|
(range2->type == XML_REGEXP_NOTINITNAME))
|
|
ret = 0;
|
|
else if ((range1->type == XML_REGEXP_NAMECHAR) &&
|
|
(range2->type == XML_REGEXP_NOTNAMECHAR))
|
|
ret = 0;
|
|
else if ((range1->type == XML_REGEXP_DECIMAL) &&
|
|
(range2->type == XML_REGEXP_NOTDECIMAL))
|
|
ret = 0;
|
|
else if ((range1->type == XML_REGEXP_REALCHAR) &&
|
|
(range2->type == XML_REGEXP_NOTREALCHAR))
|
|
ret = 0;
|
|
else {
|
|
/* same thing to limit complexity */
|
|
return(1);
|
|
}
|
|
} else {
|
|
ret = 0;
|
|
/* range1->type < range2->type here */
|
|
switch (range1->type) {
|
|
case XML_REGEXP_LETTER:
|
|
/* all disjoint except in the subgroups */
|
|
if ((range2->type == XML_REGEXP_LETTER_UPPERCASE) ||
|
|
(range2->type == XML_REGEXP_LETTER_LOWERCASE) ||
|
|
(range2->type == XML_REGEXP_LETTER_TITLECASE) ||
|
|
(range2->type == XML_REGEXP_LETTER_MODIFIER) ||
|
|
(range2->type == XML_REGEXP_LETTER_OTHERS))
|
|
ret = 1;
|
|
break;
|
|
case XML_REGEXP_MARK:
|
|
if ((range2->type == XML_REGEXP_MARK_NONSPACING) ||
|
|
(range2->type == XML_REGEXP_MARK_SPACECOMBINING) ||
|
|
(range2->type == XML_REGEXP_MARK_ENCLOSING))
|
|
ret = 1;
|
|
break;
|
|
case XML_REGEXP_NUMBER:
|
|
if ((range2->type == XML_REGEXP_NUMBER_DECIMAL) ||
|
|
(range2->type == XML_REGEXP_NUMBER_LETTER) ||
|
|
(range2->type == XML_REGEXP_NUMBER_OTHERS))
|
|
ret = 1;
|
|
break;
|
|
case XML_REGEXP_PUNCT:
|
|
if ((range2->type == XML_REGEXP_PUNCT_CONNECTOR) ||
|
|
(range2->type == XML_REGEXP_PUNCT_DASH) ||
|
|
(range2->type == XML_REGEXP_PUNCT_OPEN) ||
|
|
(range2->type == XML_REGEXP_PUNCT_CLOSE) ||
|
|
(range2->type == XML_REGEXP_PUNCT_INITQUOTE) ||
|
|
(range2->type == XML_REGEXP_PUNCT_FINQUOTE) ||
|
|
(range2->type == XML_REGEXP_PUNCT_OTHERS))
|
|
ret = 1;
|
|
break;
|
|
case XML_REGEXP_SEPAR:
|
|
if ((range2->type == XML_REGEXP_SEPAR_SPACE) ||
|
|
(range2->type == XML_REGEXP_SEPAR_LINE) ||
|
|
(range2->type == XML_REGEXP_SEPAR_PARA))
|
|
ret = 1;
|
|
break;
|
|
case XML_REGEXP_SYMBOL:
|
|
if ((range2->type == XML_REGEXP_SYMBOL_MATH) ||
|
|
(range2->type == XML_REGEXP_SYMBOL_CURRENCY) ||
|
|
(range2->type == XML_REGEXP_SYMBOL_MODIFIER) ||
|
|
(range2->type == XML_REGEXP_SYMBOL_OTHERS))
|
|
ret = 1;
|
|
break;
|
|
case XML_REGEXP_OTHER:
|
|
if ((range2->type == XML_REGEXP_OTHER_CONTROL) ||
|
|
(range2->type == XML_REGEXP_OTHER_FORMAT) ||
|
|
(range2->type == XML_REGEXP_OTHER_PRIVATE))
|
|
ret = 1;
|
|
break;
|
|
default:
|
|
if ((range2->type >= XML_REGEXP_LETTER) &&
|
|
(range2->type < XML_REGEXP_BLOCK_NAME))
|
|
ret = 0;
|
|
else {
|
|
/* safety net ! */
|
|
return(1);
|
|
}
|
|
}
|
|
}
|
|
if (((range1->neg == 0) && (range2->neg != 0)) ||
|
|
((range1->neg != 0) && (range2->neg == 0)))
|
|
ret = !ret;
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* Compares two atoms type to check whether they intersect in some ways,
|
|
* this is used by xmlFACompareAtoms only
|
|
*
|
|
* @param type1 an atom type
|
|
* @param type2 an atom type
|
|
* @returns 1 if they may intersect and 0 otherwise
|
|
*/
|
|
static int
|
|
xmlFACompareAtomTypes(xmlRegAtomType type1, xmlRegAtomType type2) {
|
|
if ((type1 == XML_REGEXP_EPSILON) ||
|
|
(type1 == XML_REGEXP_CHARVAL) ||
|
|
(type1 == XML_REGEXP_RANGES) ||
|
|
(type1 == XML_REGEXP_SUBREG) ||
|
|
(type1 == XML_REGEXP_STRING) ||
|
|
(type1 == XML_REGEXP_ANYCHAR))
|
|
return(1);
|
|
if ((type2 == XML_REGEXP_EPSILON) ||
|
|
(type2 == XML_REGEXP_CHARVAL) ||
|
|
(type2 == XML_REGEXP_RANGES) ||
|
|
(type2 == XML_REGEXP_SUBREG) ||
|
|
(type2 == XML_REGEXP_STRING) ||
|
|
(type2 == XML_REGEXP_ANYCHAR))
|
|
return(1);
|
|
|
|
if (type1 == type2) return(1);
|
|
|
|
/* simplify subsequent compares by making sure type1 < type2 */
|
|
if (type1 > type2) {
|
|
xmlRegAtomType tmp = type1;
|
|
type1 = type2;
|
|
type2 = tmp;
|
|
}
|
|
switch (type1) {
|
|
case XML_REGEXP_ANYSPACE: /* \s */
|
|
/* can't be a letter, number, mark, punctuation, symbol */
|
|
if ((type2 == XML_REGEXP_NOTSPACE) ||
|
|
((type2 >= XML_REGEXP_LETTER) &&
|
|
(type2 <= XML_REGEXP_LETTER_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_NUMBER) &&
|
|
(type2 <= XML_REGEXP_NUMBER_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_MARK) &&
|
|
(type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
|
|
((type2 >= XML_REGEXP_PUNCT) &&
|
|
(type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_SYMBOL) &&
|
|
(type2 <= XML_REGEXP_SYMBOL_OTHERS))
|
|
) return(0);
|
|
break;
|
|
case XML_REGEXP_NOTSPACE: /* \S */
|
|
break;
|
|
case XML_REGEXP_INITNAME: /* \l */
|
|
/* can't be a number, mark, separator, punctuation, symbol or other */
|
|
if ((type2 == XML_REGEXP_NOTINITNAME) ||
|
|
((type2 >= XML_REGEXP_NUMBER) &&
|
|
(type2 <= XML_REGEXP_NUMBER_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_MARK) &&
|
|
(type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
|
|
((type2 >= XML_REGEXP_SEPAR) &&
|
|
(type2 <= XML_REGEXP_SEPAR_PARA)) ||
|
|
((type2 >= XML_REGEXP_PUNCT) &&
|
|
(type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_SYMBOL) &&
|
|
(type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_OTHER) &&
|
|
(type2 <= XML_REGEXP_OTHER_NA))
|
|
) return(0);
|
|
break;
|
|
case XML_REGEXP_NOTINITNAME: /* \L */
|
|
break;
|
|
case XML_REGEXP_NAMECHAR: /* \c */
|
|
/* can't be a mark, separator, punctuation, symbol or other */
|
|
if ((type2 == XML_REGEXP_NOTNAMECHAR) ||
|
|
((type2 >= XML_REGEXP_MARK) &&
|
|
(type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
|
|
((type2 >= XML_REGEXP_PUNCT) &&
|
|
(type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_SEPAR) &&
|
|
(type2 <= XML_REGEXP_SEPAR_PARA)) ||
|
|
((type2 >= XML_REGEXP_SYMBOL) &&
|
|
(type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_OTHER) &&
|
|
(type2 <= XML_REGEXP_OTHER_NA))
|
|
) return(0);
|
|
break;
|
|
case XML_REGEXP_NOTNAMECHAR: /* \C */
|
|
break;
|
|
case XML_REGEXP_DECIMAL: /* \d */
|
|
/* can't be a letter, mark, separator, punctuation, symbol or other */
|
|
if ((type2 == XML_REGEXP_NOTDECIMAL) ||
|
|
(type2 == XML_REGEXP_REALCHAR) ||
|
|
((type2 >= XML_REGEXP_LETTER) &&
|
|
(type2 <= XML_REGEXP_LETTER_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_MARK) &&
|
|
(type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
|
|
((type2 >= XML_REGEXP_PUNCT) &&
|
|
(type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_SEPAR) &&
|
|
(type2 <= XML_REGEXP_SEPAR_PARA)) ||
|
|
((type2 >= XML_REGEXP_SYMBOL) &&
|
|
(type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_OTHER) &&
|
|
(type2 <= XML_REGEXP_OTHER_NA))
|
|
)return(0);
|
|
break;
|
|
case XML_REGEXP_NOTDECIMAL: /* \D */
|
|
break;
|
|
case XML_REGEXP_REALCHAR: /* \w */
|
|
/* can't be a mark, separator, punctuation, symbol or other */
|
|
if ((type2 == XML_REGEXP_NOTDECIMAL) ||
|
|
((type2 >= XML_REGEXP_MARK) &&
|
|
(type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
|
|
((type2 >= XML_REGEXP_PUNCT) &&
|
|
(type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_SEPAR) &&
|
|
(type2 <= XML_REGEXP_SEPAR_PARA)) ||
|
|
((type2 >= XML_REGEXP_SYMBOL) &&
|
|
(type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
|
|
((type2 >= XML_REGEXP_OTHER) &&
|
|
(type2 <= XML_REGEXP_OTHER_NA))
|
|
)return(0);
|
|
break;
|
|
case XML_REGEXP_NOTREALCHAR: /* \W */
|
|
break;
|
|
/*
|
|
* at that point we know both type 1 and type2 are from
|
|
* character categories are ordered and are different,
|
|
* it becomes simple because this is a partition
|
|
*/
|
|
case XML_REGEXP_LETTER:
|
|
if (type2 <= XML_REGEXP_LETTER_OTHERS)
|
|
return(1);
|
|
return(0);
|
|
case XML_REGEXP_LETTER_UPPERCASE:
|
|
case XML_REGEXP_LETTER_LOWERCASE:
|
|
case XML_REGEXP_LETTER_TITLECASE:
|
|
case XML_REGEXP_LETTER_MODIFIER:
|
|
case XML_REGEXP_LETTER_OTHERS:
|
|
return(0);
|
|
case XML_REGEXP_MARK:
|
|
if (type2 <= XML_REGEXP_MARK_ENCLOSING)
|
|
return(1);
|
|
return(0);
|
|
case XML_REGEXP_MARK_NONSPACING:
|
|
case XML_REGEXP_MARK_SPACECOMBINING:
|
|
case XML_REGEXP_MARK_ENCLOSING:
|
|
return(0);
|
|
case XML_REGEXP_NUMBER:
|
|
if (type2 <= XML_REGEXP_NUMBER_OTHERS)
|
|
return(1);
|
|
return(0);
|
|
case XML_REGEXP_NUMBER_DECIMAL:
|
|
case XML_REGEXP_NUMBER_LETTER:
|
|
case XML_REGEXP_NUMBER_OTHERS:
|
|
return(0);
|
|
case XML_REGEXP_PUNCT:
|
|
if (type2 <= XML_REGEXP_PUNCT_OTHERS)
|
|
return(1);
|
|
return(0);
|
|
case XML_REGEXP_PUNCT_CONNECTOR:
|
|
case XML_REGEXP_PUNCT_DASH:
|
|
case XML_REGEXP_PUNCT_OPEN:
|
|
case XML_REGEXP_PUNCT_CLOSE:
|
|
case XML_REGEXP_PUNCT_INITQUOTE:
|
|
case XML_REGEXP_PUNCT_FINQUOTE:
|
|
case XML_REGEXP_PUNCT_OTHERS:
|
|
return(0);
|
|
case XML_REGEXP_SEPAR:
|
|
if (type2 <= XML_REGEXP_SEPAR_PARA)
|
|
return(1);
|
|
return(0);
|
|
case XML_REGEXP_SEPAR_SPACE:
|
|
case XML_REGEXP_SEPAR_LINE:
|
|
case XML_REGEXP_SEPAR_PARA:
|
|
return(0);
|
|
case XML_REGEXP_SYMBOL:
|
|
if (type2 <= XML_REGEXP_SYMBOL_OTHERS)
|
|
return(1);
|
|
return(0);
|
|
case XML_REGEXP_SYMBOL_MATH:
|
|
case XML_REGEXP_SYMBOL_CURRENCY:
|
|
case XML_REGEXP_SYMBOL_MODIFIER:
|
|
case XML_REGEXP_SYMBOL_OTHERS:
|
|
return(0);
|
|
case XML_REGEXP_OTHER:
|
|
if (type2 <= XML_REGEXP_OTHER_NA)
|
|
return(1);
|
|
return(0);
|
|
case XML_REGEXP_OTHER_CONTROL:
|
|
case XML_REGEXP_OTHER_FORMAT:
|
|
case XML_REGEXP_OTHER_PRIVATE:
|
|
case XML_REGEXP_OTHER_NA:
|
|
return(0);
|
|
default:
|
|
break;
|
|
}
|
|
return(1);
|
|
}
|
|
|
|
/**
|
|
* Compares two atoms to check whether they are the same exactly
|
|
* this is used to remove equivalent transitions
|
|
*
|
|
* @param atom1 an atom
|
|
* @param atom2 an atom
|
|
* @param deep if not set only compare string pointers
|
|
* @returns 1 if same and 0 otherwise
|
|
*/
|
|
static int
|
|
xmlFAEqualAtoms(xmlRegAtomPtr atom1, xmlRegAtomPtr atom2, int deep) {
|
|
int ret = 0;
|
|
|
|
if (atom1 == atom2)
|
|
return(1);
|
|
if ((atom1 == NULL) || (atom2 == NULL))
|
|
return(0);
|
|
|
|
if (atom1->type != atom2->type)
|
|
return(0);
|
|
switch (atom1->type) {
|
|
case XML_REGEXP_EPSILON:
|
|
ret = 0;
|
|
break;
|
|
case XML_REGEXP_STRING:
|
|
if (!deep)
|
|
ret = (atom1->valuep == atom2->valuep);
|
|
else
|
|
ret = xmlStrEqual((xmlChar *)atom1->valuep,
|
|
(xmlChar *)atom2->valuep);
|
|
break;
|
|
case XML_REGEXP_CHARVAL:
|
|
ret = (atom1->codepoint == atom2->codepoint);
|
|
break;
|
|
case XML_REGEXP_RANGES:
|
|
/* too hard to do in the general case */
|
|
ret = 0;
|
|
default:
|
|
break;
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* Compares two atoms to check whether they intersect in some ways,
|
|
* this is used by xmlFAComputesDeterminism and xmlFARecurseDeterminism only
|
|
*
|
|
* @param atom1 an atom
|
|
* @param atom2 an atom
|
|
* @param deep if not set only compare string pointers
|
|
* @returns 1 if yes and 0 otherwise
|
|
*/
|
|
static int
|
|
xmlFACompareAtoms(xmlRegAtomPtr atom1, xmlRegAtomPtr atom2, int deep) {
|
|
int ret = 1;
|
|
|
|
if (atom1 == atom2)
|
|
return(1);
|
|
if ((atom1 == NULL) || (atom2 == NULL))
|
|
return(0);
|
|
|
|
if ((atom1->type == XML_REGEXP_ANYCHAR) ||
|
|
(atom2->type == XML_REGEXP_ANYCHAR))
|
|
return(1);
|
|
|
|
if (atom1->type > atom2->type) {
|
|
xmlRegAtomPtr tmp;
|
|
tmp = atom1;
|
|
atom1 = atom2;
|
|
atom2 = tmp;
|
|
}
|
|
if (atom1->type != atom2->type) {
|
|
ret = xmlFACompareAtomTypes(atom1->type, atom2->type);
|
|
/* if they can't intersect at the type level break now */
|
|
if (ret == 0)
|
|
return(0);
|
|
}
|
|
switch (atom1->type) {
|
|
case XML_REGEXP_STRING:
|
|
if (!deep)
|
|
ret = (atom1->valuep != atom2->valuep);
|
|
else {
|
|
xmlChar *val1 = (xmlChar *)atom1->valuep;
|
|
xmlChar *val2 = (xmlChar *)atom2->valuep;
|
|
int compound1 = (xmlStrchr(val1, '|') != NULL);
|
|
int compound2 = (xmlStrchr(val2, '|') != NULL);
|
|
|
|
/* Ignore negative match flag for ##other namespaces */
|
|
if (compound1 != compound2)
|
|
return(0);
|
|
|
|
ret = xmlRegStrEqualWildcard(val1, val2);
|
|
}
|
|
break;
|
|
case XML_REGEXP_EPSILON:
|
|
goto not_determinist;
|
|
case XML_REGEXP_CHARVAL:
|
|
if (atom2->type == XML_REGEXP_CHARVAL) {
|
|
ret = (atom1->codepoint == atom2->codepoint);
|
|
} else {
|
|
ret = xmlRegCheckCharacter(atom2, atom1->codepoint);
|
|
if (ret < 0)
|
|
ret = 1;
|
|
}
|
|
break;
|
|
case XML_REGEXP_RANGES:
|
|
if (atom2->type == XML_REGEXP_RANGES) {
|
|
int i, j, res;
|
|
xmlRegRangePtr r1, r2;
|
|
|
|
/*
|
|
* need to check that none of the ranges eventually matches
|
|
*/
|
|
for (i = 0;i < atom1->nbRanges;i++) {
|
|
for (j = 0;j < atom2->nbRanges;j++) {
|
|
r1 = atom1->ranges[i];
|
|
r2 = atom2->ranges[j];
|
|
res = xmlFACompareRanges(r1, r2);
|
|
if (res == 1) {
|
|
ret = 1;
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
ret = 0;
|
|
}
|
|
break;
|
|
default:
|
|
goto not_determinist;
|
|
}
|
|
done:
|
|
if (atom1->neg != atom2->neg) {
|
|
ret = !ret;
|
|
}
|
|
if (ret == 0)
|
|
return(0);
|
|
not_determinist:
|
|
return(1);
|
|
}
|
|
|
|
/**
|
|
* Check whether the associated regexp is determinist,
|
|
* should be called after xmlFAEliminateEpsilonTransitions
|
|
*
|
|
* @param ctxt a regexp parser context
|
|
* @param state regexp state
|
|
* @param fromnr the from state
|
|
* @param tonr the to state
|
|
* @param atom the atom
|
|
*/
|
|
static int
|
|
xmlFARecurseDeterminism(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state,
|
|
int fromnr, int tonr, xmlRegAtomPtr atom) {
|
|
int ret = 1;
|
|
int res;
|
|
int transnr, nbTrans;
|
|
xmlRegTransPtr t1;
|
|
int deep = 1;
|
|
|
|
if (state == NULL)
|
|
return(ret);
|
|
if (state->markd == XML_REGEXP_MARK_VISITED)
|
|
return(ret);
|
|
|
|
if (ctxt->flags & AM_AUTOMATA_RNG)
|
|
deep = 0;
|
|
|
|
/*
|
|
* don't recurse on transitions potentially added in the course of
|
|
* the elimination.
|
|
*/
|
|
nbTrans = state->nbTrans;
|
|
for (transnr = 0;transnr < nbTrans;transnr++) {
|
|
t1 = &(state->trans[transnr]);
|
|
/*
|
|
* check transitions conflicting with the one looked at
|
|
*/
|
|
if ((t1->to < 0) || (t1->to == fromnr))
|
|
continue;
|
|
if (t1->atom == NULL) {
|
|
state->markd = XML_REGEXP_MARK_VISITED;
|
|
res = xmlFARecurseDeterminism(ctxt, ctxt->states[t1->to],
|
|
fromnr, tonr, atom);
|
|
if (res == 0) {
|
|
ret = 0;
|
|
/* t1->nd = 1; */
|
|
}
|
|
continue;
|
|
}
|
|
if (xmlFACompareAtoms(t1->atom, atom, deep)) {
|
|
/* Treat equal transitions as deterministic. */
|
|
if ((t1->to != tonr) ||
|
|
(!xmlFAEqualAtoms(t1->atom, atom, deep)))
|
|
ret = 0;
|
|
/* mark the transition as non-deterministic */
|
|
t1->nd = 1;
|
|
}
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* Reset flags after checking determinism.
|
|
*
|
|
* @param ctxt a regexp parser context
|
|
* @param state regexp state
|
|
*/
|
|
static void
|
|
xmlFAFinishRecurseDeterminism(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state) {
|
|
int transnr, nbTrans;
|
|
|
|
if (state == NULL)
|
|
return;
|
|
if (state->markd != XML_REGEXP_MARK_VISITED)
|
|
return;
|
|
state->markd = 0;
|
|
|
|
nbTrans = state->nbTrans;
|
|
for (transnr = 0; transnr < nbTrans; transnr++) {
|
|
xmlRegTransPtr t1 = &state->trans[transnr];
|
|
if ((t1->atom == NULL) && (t1->to >= 0))
|
|
xmlFAFinishRecurseDeterminism(ctxt, ctxt->states[t1->to]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Check whether the associated regexp is determinist,
|
|
* should be called after xmlFAEliminateEpsilonTransitions
|
|
*
|
|
* @param ctxt a regexp parser context
|
|
*/
|
|
static int
|
|
xmlFAComputesDeterminism(xmlRegParserCtxtPtr ctxt) {
|
|
int statenr, transnr;
|
|
xmlRegStatePtr state;
|
|
xmlRegTransPtr t1, t2, last;
|
|
int i;
|
|
int ret = 1;
|
|
int deep = 1;
|
|
|
|
if (ctxt->determinist != -1)
|
|
return(ctxt->determinist);
|
|
|
|
if (ctxt->flags & AM_AUTOMATA_RNG)
|
|
deep = 0;
|
|
|
|
/*
|
|
* First cleanup the automata removing cancelled transitions
|
|
*/
|
|
for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
|
|
state = ctxt->states[statenr];
|
|
if (state == NULL)
|
|
continue;
|
|
if (state->nbTrans < 2)
|
|
continue;
|
|
for (transnr = 0;transnr < state->nbTrans;transnr++) {
|
|
t1 = &(state->trans[transnr]);
|
|
/*
|
|
* Determinism checks in case of counted or all transitions
|
|
* will have to be handled separately
|
|
*/
|
|
if (t1->atom == NULL) {
|
|
/* t1->nd = 1; */
|
|
continue;
|
|
}
|
|
if (t1->to < 0) /* eliminated */
|
|
continue;
|
|
for (i = 0;i < transnr;i++) {
|
|
t2 = &(state->trans[i]);
|
|
if (t2->to < 0) /* eliminated */
|
|
continue;
|
|
if (t2->atom != NULL) {
|
|
if (t1->to == t2->to) {
|
|
/*
|
|
* Here we use deep because we want to keep the
|
|
* transitions which indicate a conflict
|
|
*/
|
|
if (xmlFAEqualAtoms(t1->atom, t2->atom, deep) &&
|
|
(t1->counter == t2->counter) &&
|
|
(t1->count == t2->count))
|
|
t2->to = -1; /* eliminated */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check for all states that there aren't 2 transitions
|
|
* with the same atom and a different target.
|
|
*/
|
|
for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
|
|
state = ctxt->states[statenr];
|
|
if (state == NULL)
|
|
continue;
|
|
if (state->nbTrans < 2)
|
|
continue;
|
|
last = NULL;
|
|
for (transnr = 0;transnr < state->nbTrans;transnr++) {
|
|
t1 = &(state->trans[transnr]);
|
|
/*
|
|
* Determinism checks in case of counted or all transitions
|
|
* will have to be handled separately
|
|
*/
|
|
if (t1->atom == NULL) {
|
|
continue;
|
|
}
|
|
if (t1->to < 0) /* eliminated */
|
|
continue;
|
|
for (i = 0;i < transnr;i++) {
|
|
t2 = &(state->trans[i]);
|
|
if (t2->to < 0) /* eliminated */
|
|
continue;
|
|
if (t2->atom != NULL) {
|
|
/*
|
|
* But here we don't use deep because we want to
|
|
* find transitions which indicate a conflict
|
|
*/
|
|
if (xmlFACompareAtoms(t1->atom, t2->atom, 1)) {
|
|
/*
|
|
* Treat equal counter transitions that couldn't be
|
|
* eliminated as deterministic.
|
|
*/
|
|
if ((t1->to != t2->to) ||
|
|
(t1->counter == t2->counter) ||
|
|
(!xmlFAEqualAtoms(t1->atom, t2->atom, deep)))
|
|
ret = 0;
|
|
/* mark the transitions as non-deterministic ones */
|
|
t1->nd = 1;
|
|
t2->nd = 1;
|
|
last = t1;
|
|
}
|
|
} else {
|
|
int res;
|
|
|
|
/*
|
|
* do the closure in case of remaining specific
|
|
* epsilon transitions like choices or all
|
|
*/
|
|
res = xmlFARecurseDeterminism(ctxt, ctxt->states[t2->to],
|
|
statenr, t1->to, t1->atom);
|
|
xmlFAFinishRecurseDeterminism(ctxt, ctxt->states[t2->to]);
|
|
/* don't shortcut the computation so all non deterministic
|
|
transition get marked down
|
|
if (ret == 0)
|
|
return(0);
|
|
*/
|
|
if (res == 0) {
|
|
t1->nd = 1;
|
|
/* t2->nd = 1; */
|
|
last = t1;
|
|
ret = 0;
|
|
}
|
|
}
|
|
}
|
|
/* don't shortcut the computation so all non deterministic
|
|
transition get marked down
|
|
if (ret == 0)
|
|
break; */
|
|
}
|
|
|
|
/*
|
|
* mark specifically the last non-deterministic transition
|
|
* from a state since there is no need to set-up rollback
|
|
* from it
|
|
*/
|
|
if (last != NULL) {
|
|
last->nd = 2;
|
|
}
|
|
|
|
/* don't shortcut the computation so all non deterministic
|
|
transition get marked down
|
|
if (ret == 0)
|
|
break; */
|
|
}
|
|
|
|
ctxt->determinist = ret;
|
|
return(ret);
|
|
}
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Routines to check input against transition atoms *
|
|
* *
|
|
************************************************************************/
|
|
|
|
static int
|
|
xmlRegCheckCharacterRange(xmlRegAtomType type, int codepoint, int neg,
|
|
int start, int end, const xmlChar *blockName) {
|
|
int ret = 0;
|
|
|
|
switch (type) {
|
|
case XML_REGEXP_STRING:
|
|
case XML_REGEXP_SUBREG:
|
|
case XML_REGEXP_RANGES:
|
|
case XML_REGEXP_EPSILON:
|
|
return(-1);
|
|
case XML_REGEXP_ANYCHAR:
|
|
ret = ((codepoint != '\n') && (codepoint != '\r'));
|
|
break;
|
|
case XML_REGEXP_CHARVAL:
|
|
ret = ((codepoint >= start) && (codepoint <= end));
|
|
break;
|
|
case XML_REGEXP_NOTSPACE:
|
|
neg = !neg;
|
|
/* Falls through. */
|
|
case XML_REGEXP_ANYSPACE:
|
|
ret = ((codepoint == '\n') || (codepoint == '\r') ||
|
|
(codepoint == '\t') || (codepoint == ' '));
|
|
break;
|
|
case XML_REGEXP_NOTINITNAME:
|
|
neg = !neg;
|
|
/* Falls through. */
|
|
case XML_REGEXP_INITNAME:
|
|
ret = (IS_LETTER(codepoint) ||
|
|
(codepoint == '_') || (codepoint == ':'));
|
|
break;
|
|
case XML_REGEXP_NOTNAMECHAR:
|
|
neg = !neg;
|
|
/* Falls through. */
|
|
case XML_REGEXP_NAMECHAR:
|
|
ret = (IS_LETTER(codepoint) || IS_DIGIT(codepoint) ||
|
|
(codepoint == '.') || (codepoint == '-') ||
|
|
(codepoint == '_') || (codepoint == ':') ||
|
|
IS_COMBINING(codepoint) || IS_EXTENDER(codepoint));
|
|
break;
|
|
case XML_REGEXP_NOTDECIMAL:
|
|
neg = !neg;
|
|
/* Falls through. */
|
|
case XML_REGEXP_DECIMAL:
|
|
ret = xmlUCSIsCatNd(codepoint);
|
|
break;
|
|
case XML_REGEXP_REALCHAR:
|
|
neg = !neg;
|
|
/* Falls through. */
|
|
case XML_REGEXP_NOTREALCHAR:
|
|
ret = xmlUCSIsCatP(codepoint);
|
|
if (ret == 0)
|
|
ret = xmlUCSIsCatZ(codepoint);
|
|
if (ret == 0)
|
|
ret = xmlUCSIsCatC(codepoint);
|
|
break;
|
|
case XML_REGEXP_LETTER:
|
|
ret = xmlUCSIsCatL(codepoint);
|
|
break;
|
|
case XML_REGEXP_LETTER_UPPERCASE:
|
|
ret = xmlUCSIsCatLu(codepoint);
|
|
break;
|
|
case XML_REGEXP_LETTER_LOWERCASE:
|
|
ret = xmlUCSIsCatLl(codepoint);
|
|
break;
|
|
case XML_REGEXP_LETTER_TITLECASE:
|
|
ret = xmlUCSIsCatLt(codepoint);
|
|
break;
|
|
case XML_REGEXP_LETTER_MODIFIER:
|
|
ret = xmlUCSIsCatLm(codepoint);
|
|
break;
|
|
case XML_REGEXP_LETTER_OTHERS:
|
|
ret = xmlUCSIsCatLo(codepoint);
|
|
break;
|
|
case XML_REGEXP_MARK:
|
|
ret = xmlUCSIsCatM(codepoint);
|
|
break;
|
|
case XML_REGEXP_MARK_NONSPACING:
|
|
ret = xmlUCSIsCatMn(codepoint);
|
|
break;
|
|
case XML_REGEXP_MARK_SPACECOMBINING:
|
|
ret = xmlUCSIsCatMc(codepoint);
|
|
break;
|
|
case XML_REGEXP_MARK_ENCLOSING:
|
|
ret = xmlUCSIsCatMe(codepoint);
|
|
break;
|
|
case XML_REGEXP_NUMBER:
|
|
ret = xmlUCSIsCatN(codepoint);
|
|
break;
|
|
case XML_REGEXP_NUMBER_DECIMAL:
|
|
ret = xmlUCSIsCatNd(codepoint);
|
|
break;
|
|
case XML_REGEXP_NUMBER_LETTER:
|
|
ret = xmlUCSIsCatNl(codepoint);
|
|
break;
|
|
case XML_REGEXP_NUMBER_OTHERS:
|
|
ret = xmlUCSIsCatNo(codepoint);
|
|
break;
|
|
case XML_REGEXP_PUNCT:
|
|
ret = xmlUCSIsCatP(codepoint);
|
|
break;
|
|
case XML_REGEXP_PUNCT_CONNECTOR:
|
|
ret = xmlUCSIsCatPc(codepoint);
|
|
break;
|
|
case XML_REGEXP_PUNCT_DASH:
|
|
ret = xmlUCSIsCatPd(codepoint);
|
|
break;
|
|
case XML_REGEXP_PUNCT_OPEN:
|
|
ret = xmlUCSIsCatPs(codepoint);
|
|
break;
|
|
case XML_REGEXP_PUNCT_CLOSE:
|
|
ret = xmlUCSIsCatPe(codepoint);
|
|
break;
|
|
case XML_REGEXP_PUNCT_INITQUOTE:
|
|
ret = xmlUCSIsCatPi(codepoint);
|
|
break;
|
|
case XML_REGEXP_PUNCT_FINQUOTE:
|
|
ret = xmlUCSIsCatPf(codepoint);
|
|
break;
|
|
case XML_REGEXP_PUNCT_OTHERS:
|
|
ret = xmlUCSIsCatPo(codepoint);
|
|
break;
|
|
case XML_REGEXP_SEPAR:
|
|
ret = xmlUCSIsCatZ(codepoint);
|
|
break;
|
|
case XML_REGEXP_SEPAR_SPACE:
|
|
ret = xmlUCSIsCatZs(codepoint);
|
|
break;
|
|
case XML_REGEXP_SEPAR_LINE:
|
|
ret = xmlUCSIsCatZl(codepoint);
|
|
break;
|
|
case XML_REGEXP_SEPAR_PARA:
|
|
ret = xmlUCSIsCatZp(codepoint);
|
|
break;
|
|
case XML_REGEXP_SYMBOL:
|
|
ret = xmlUCSIsCatS(codepoint);
|
|
break;
|
|
case XML_REGEXP_SYMBOL_MATH:
|
|
ret = xmlUCSIsCatSm(codepoint);
|
|
break;
|
|
case XML_REGEXP_SYMBOL_CURRENCY:
|
|
ret = xmlUCSIsCatSc(codepoint);
|
|
break;
|
|
case XML_REGEXP_SYMBOL_MODIFIER:
|
|
ret = xmlUCSIsCatSk(codepoint);
|
|
break;
|
|
case XML_REGEXP_SYMBOL_OTHERS:
|
|
ret = xmlUCSIsCatSo(codepoint);
|
|
break;
|
|
case XML_REGEXP_OTHER:
|
|
ret = xmlUCSIsCatC(codepoint);
|
|
break;
|
|
case XML_REGEXP_OTHER_CONTROL:
|
|
ret = xmlUCSIsCatCc(codepoint);
|
|
break;
|
|
case XML_REGEXP_OTHER_FORMAT:
|
|
ret = xmlUCSIsCatCf(codepoint);
|
|
break;
|
|
case XML_REGEXP_OTHER_PRIVATE:
|
|
ret = xmlUCSIsCatCo(codepoint);
|
|
break;
|
|
case XML_REGEXP_OTHER_NA:
|
|
/* ret = xmlUCSIsCatCn(codepoint); */
|
|
/* Seems it doesn't exist anymore in recent Unicode releases */
|
|
ret = 0;
|
|
break;
|
|
case XML_REGEXP_BLOCK_NAME:
|
|
ret = xmlUCSIsBlock(codepoint, (const char *) blockName);
|
|
break;
|
|
}
|
|
if (neg)
|
|
return(!ret);
|
|
return(ret);
|
|
}
|
|
|
|
static int
|
|
xmlRegCheckCharacter(xmlRegAtomPtr atom, int codepoint) {
|
|
int i, ret = 0;
|
|
xmlRegRangePtr range;
|
|
|
|
if ((atom == NULL) || (!IS_CHAR(codepoint)))
|
|
return(-1);
|
|
|
|
switch (atom->type) {
|
|
case XML_REGEXP_SUBREG:
|
|
case XML_REGEXP_EPSILON:
|
|
return(-1);
|
|
case XML_REGEXP_CHARVAL:
|
|
return(codepoint == atom->codepoint);
|
|
case XML_REGEXP_RANGES: {
|
|
int accept = 0;
|
|
|
|
for (i = 0;i < atom->nbRanges;i++) {
|
|
range = atom->ranges[i];
|
|
if (range->neg == 2) {
|
|
ret = xmlRegCheckCharacterRange(range->type, codepoint,
|
|
0, range->start, range->end,
|
|
range->blockName);
|
|
if (ret != 0)
|
|
return(0); /* excluded char */
|
|
} else if (range->neg) {
|
|
ret = xmlRegCheckCharacterRange(range->type, codepoint,
|
|
0, range->start, range->end,
|
|
range->blockName);
|
|
if (ret == 0)
|
|
accept = 1;
|
|
else
|
|
return(0);
|
|
} else {
|
|
ret = xmlRegCheckCharacterRange(range->type, codepoint,
|
|
0, range->start, range->end,
|
|
range->blockName);
|
|
if (ret != 0)
|
|
accept = 1; /* might still be excluded */
|
|
}
|
|
}
|
|
return(accept);
|
|
}
|
|
case XML_REGEXP_STRING:
|
|
return(-1);
|
|
case XML_REGEXP_ANYCHAR:
|
|
case XML_REGEXP_ANYSPACE:
|
|
case XML_REGEXP_NOTSPACE:
|
|
case XML_REGEXP_INITNAME:
|
|
case XML_REGEXP_NOTINITNAME:
|
|
case XML_REGEXP_NAMECHAR:
|
|
case XML_REGEXP_NOTNAMECHAR:
|
|
case XML_REGEXP_DECIMAL:
|
|
case XML_REGEXP_NOTDECIMAL:
|
|
case XML_REGEXP_REALCHAR:
|
|
case XML_REGEXP_NOTREALCHAR:
|
|
case XML_REGEXP_LETTER:
|
|
case XML_REGEXP_LETTER_UPPERCASE:
|
|
case XML_REGEXP_LETTER_LOWERCASE:
|
|
case XML_REGEXP_LETTER_TITLECASE:
|
|
case XML_REGEXP_LETTER_MODIFIER:
|
|
case XML_REGEXP_LETTER_OTHERS:
|
|
case XML_REGEXP_MARK:
|
|
case XML_REGEXP_MARK_NONSPACING:
|
|
case XML_REGEXP_MARK_SPACECOMBINING:
|
|
case XML_REGEXP_MARK_ENCLOSING:
|
|
case XML_REGEXP_NUMBER:
|
|
case XML_REGEXP_NUMBER_DECIMAL:
|
|
case XML_REGEXP_NUMBER_LETTER:
|
|
case XML_REGEXP_NUMBER_OTHERS:
|
|
case XML_REGEXP_PUNCT:
|
|
case XML_REGEXP_PUNCT_CONNECTOR:
|
|
case XML_REGEXP_PUNCT_DASH:
|
|
case XML_REGEXP_PUNCT_OPEN:
|
|
case XML_REGEXP_PUNCT_CLOSE:
|
|
case XML_REGEXP_PUNCT_INITQUOTE:
|
|
case XML_REGEXP_PUNCT_FINQUOTE:
|
|
case XML_REGEXP_PUNCT_OTHERS:
|
|
case XML_REGEXP_SEPAR:
|
|
case XML_REGEXP_SEPAR_SPACE:
|
|
case XML_REGEXP_SEPAR_LINE:
|
|
case XML_REGEXP_SEPAR_PARA:
|
|
case XML_REGEXP_SYMBOL:
|
|
case XML_REGEXP_SYMBOL_MATH:
|
|
case XML_REGEXP_SYMBOL_CURRENCY:
|
|
case XML_REGEXP_SYMBOL_MODIFIER:
|
|
case XML_REGEXP_SYMBOL_OTHERS:
|
|
case XML_REGEXP_OTHER:
|
|
case XML_REGEXP_OTHER_CONTROL:
|
|
case XML_REGEXP_OTHER_FORMAT:
|
|
case XML_REGEXP_OTHER_PRIVATE:
|
|
case XML_REGEXP_OTHER_NA:
|
|
case XML_REGEXP_BLOCK_NAME:
|
|
ret = xmlRegCheckCharacterRange(atom->type, codepoint, 0, 0, 0,
|
|
(const xmlChar *)atom->valuep);
|
|
if (atom->neg)
|
|
ret = !ret;
|
|
break;
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Saving and restoring state of an execution context *
|
|
* *
|
|
************************************************************************/
|
|
|
|
static void
|
|
xmlFARegExecSave(xmlRegExecCtxtPtr exec) {
|
|
#ifdef MAX_PUSH
|
|
if (exec->nbPush > MAX_PUSH) {
|
|
exec->status = XML_REGEXP_INTERNAL_LIMIT;
|
|
return;
|
|
}
|
|
exec->nbPush++;
|
|
#endif
|
|
|
|
if (exec->nbRollbacks >= exec->maxRollbacks) {
|
|
xmlRegExecRollback *tmp;
|
|
int newSize;
|
|
int len = exec->nbRollbacks;
|
|
|
|
newSize = xmlGrowCapacity(exec->maxRollbacks, sizeof(tmp[0]),
|
|
4, XML_MAX_ITEMS);
|
|
if (newSize < 0) {
|
|
exec->status = XML_REGEXP_OUT_OF_MEMORY;
|
|
return;
|
|
}
|
|
tmp = xmlRealloc(exec->rollbacks, newSize * sizeof(tmp[0]));
|
|
if (tmp == NULL) {
|
|
exec->status = XML_REGEXP_OUT_OF_MEMORY;
|
|
return;
|
|
}
|
|
exec->rollbacks = tmp;
|
|
exec->maxRollbacks = newSize;
|
|
tmp = &exec->rollbacks[len];
|
|
memset(tmp, 0, (exec->maxRollbacks - len) * sizeof(xmlRegExecRollback));
|
|
}
|
|
exec->rollbacks[exec->nbRollbacks].state = exec->state;
|
|
exec->rollbacks[exec->nbRollbacks].index = exec->index;
|
|
exec->rollbacks[exec->nbRollbacks].nextbranch = exec->transno + 1;
|
|
if (exec->comp->nbCounters > 0) {
|
|
if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
|
|
exec->rollbacks[exec->nbRollbacks].counts = (int *)
|
|
xmlMalloc(exec->comp->nbCounters * sizeof(int));
|
|
if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
|
|
exec->status = XML_REGEXP_OUT_OF_MEMORY;
|
|
return;
|
|
}
|
|
}
|
|
memcpy(exec->rollbacks[exec->nbRollbacks].counts, exec->counts,
|
|
exec->comp->nbCounters * sizeof(int));
|
|
}
|
|
exec->nbRollbacks++;
|
|
}
|
|
|
|
static void
|
|
xmlFARegExecRollBack(xmlRegExecCtxtPtr exec) {
|
|
if (exec->status != XML_REGEXP_OK)
|
|
return;
|
|
if (exec->nbRollbacks <= 0) {
|
|
exec->status = XML_REGEXP_NOT_FOUND;
|
|
return;
|
|
}
|
|
exec->nbRollbacks--;
|
|
exec->state = exec->rollbacks[exec->nbRollbacks].state;
|
|
exec->index = exec->rollbacks[exec->nbRollbacks].index;
|
|
exec->transno = exec->rollbacks[exec->nbRollbacks].nextbranch;
|
|
if (exec->comp->nbCounters > 0) {
|
|
if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
|
|
exec->status = XML_REGEXP_INTERNAL_ERROR;
|
|
return;
|
|
}
|
|
if (exec->counts) {
|
|
memcpy(exec->counts, exec->rollbacks[exec->nbRollbacks].counts,
|
|
exec->comp->nbCounters * sizeof(int));
|
|
}
|
|
}
|
|
}
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Verifier, running an input against a compiled regexp *
|
|
* *
|
|
************************************************************************/
|
|
|
|
static int
|
|
xmlFARegExec(xmlRegexpPtr comp, const xmlChar *content) {
|
|
xmlRegExecCtxt execval;
|
|
xmlRegExecCtxtPtr exec = &execval;
|
|
int ret, codepoint = 0, len, deter;
|
|
|
|
exec->inputString = content;
|
|
exec->index = 0;
|
|
exec->nbPush = 0;
|
|
exec->determinist = 1;
|
|
exec->maxRollbacks = 0;
|
|
exec->nbRollbacks = 0;
|
|
exec->rollbacks = NULL;
|
|
exec->status = XML_REGEXP_OK;
|
|
exec->comp = comp;
|
|
exec->state = comp->states[0];
|
|
exec->transno = 0;
|
|
exec->transcount = 0;
|
|
exec->inputStack = NULL;
|
|
exec->inputStackMax = 0;
|
|
if (comp->nbCounters > 0) {
|
|
exec->counts = (int *) xmlMalloc(comp->nbCounters * sizeof(int));
|
|
if (exec->counts == NULL) {
|
|
return(XML_REGEXP_OUT_OF_MEMORY);
|
|
}
|
|
memset(exec->counts, 0, comp->nbCounters * sizeof(int));
|
|
} else
|
|
exec->counts = NULL;
|
|
while ((exec->status == XML_REGEXP_OK) && (exec->state != NULL) &&
|
|
((exec->inputString[exec->index] != 0) ||
|
|
((exec->state != NULL) &&
|
|
(exec->state->type != XML_REGEXP_FINAL_STATE)))) {
|
|
xmlRegTransPtr trans;
|
|
xmlRegAtomPtr atom;
|
|
|
|
/*
|
|
* If end of input on non-terminal state, rollback, however we may
|
|
* still have epsilon like transition for counted transitions
|
|
* on counters, in that case don't break too early. Additionally,
|
|
* if we are working on a range like "AB{0,2}", where B is not present,
|
|
* we don't want to break.
|
|
*/
|
|
len = 1;
|
|
if ((exec->inputString[exec->index] == 0) && (exec->counts == NULL)) {
|
|
/*
|
|
* if there is a transition, we must check if
|
|
* atom allows minOccurs of 0
|
|
*/
|
|
if (exec->transno < exec->state->nbTrans) {
|
|
trans = &exec->state->trans[exec->transno];
|
|
if (trans->to >=0) {
|
|
atom = trans->atom;
|
|
if (!((atom->min == 0) && (atom->max > 0)))
|
|
goto rollback;
|
|
}
|
|
} else
|
|
goto rollback;
|
|
}
|
|
|
|
exec->transcount = 0;
|
|
for (;exec->transno < exec->state->nbTrans;exec->transno++) {
|
|
trans = &exec->state->trans[exec->transno];
|
|
if (trans->to < 0)
|
|
continue;
|
|
atom = trans->atom;
|
|
ret = 0;
|
|
deter = 1;
|
|
if (trans->count >= 0) {
|
|
int count;
|
|
xmlRegCounterPtr counter;
|
|
|
|
if (exec->counts == NULL) {
|
|
exec->status = XML_REGEXP_INTERNAL_ERROR;
|
|
goto error;
|
|
}
|
|
/*
|
|
* A counted transition.
|
|
*/
|
|
|
|
count = exec->counts[trans->count];
|
|
counter = &exec->comp->counters[trans->count];
|
|
ret = ((count >= counter->min) && (count <= counter->max));
|
|
if ((ret) && (counter->min != counter->max))
|
|
deter = 0;
|
|
} else if (atom == NULL) {
|
|
exec->status = XML_REGEXP_INTERNAL_ERROR;
|
|
break;
|
|
} else if (exec->inputString[exec->index] != 0) {
|
|
len = 4;
|
|
codepoint = xmlGetUTF8Char(&exec->inputString[exec->index],
|
|
&len);
|
|
if (codepoint < 0) {
|
|
exec->status = XML_REGEXP_INVALID_UTF8;
|
|
goto error;
|
|
}
|
|
ret = xmlRegCheckCharacter(atom, codepoint);
|
|
if ((ret == 1) && (atom->min >= 0) && (atom->max > 0)) {
|
|
xmlRegStatePtr to = comp->states[trans->to];
|
|
|
|
/*
|
|
* this is a multiple input sequence
|
|
* If there is a counter associated increment it now.
|
|
* do not increment if the counter is already over the
|
|
* maximum limit in which case get to next transition
|
|
*/
|
|
if (trans->counter >= 0) {
|
|
xmlRegCounterPtr counter;
|
|
|
|
if ((exec->counts == NULL) ||
|
|
(exec->comp == NULL) ||
|
|
(exec->comp->counters == NULL)) {
|
|
exec->status = XML_REGEXP_INTERNAL_ERROR;
|
|
goto error;
|
|
}
|
|
counter = &exec->comp->counters[trans->counter];
|
|
if (exec->counts[trans->counter] >= counter->max)
|
|
continue; /* for loop on transitions */
|
|
}
|
|
/* Save before incrementing */
|
|
if (exec->state->nbTrans > exec->transno + 1) {
|
|
xmlFARegExecSave(exec);
|
|
if (exec->status != XML_REGEXP_OK)
|
|
goto error;
|
|
}
|
|
if (trans->counter >= 0) {
|
|
exec->counts[trans->counter]++;
|
|
}
|
|
exec->transcount = 1;
|
|
do {
|
|
/*
|
|
* Try to progress as much as possible on the input
|
|
*/
|
|
if (exec->transcount == atom->max) {
|
|
break;
|
|
}
|
|
exec->index += len;
|
|
/*
|
|
* End of input: stop here
|
|
*/
|
|
if (exec->inputString[exec->index] == 0) {
|
|
exec->index -= len;
|
|
break;
|
|
}
|
|
if (exec->transcount >= atom->min) {
|
|
int transno = exec->transno;
|
|
xmlRegStatePtr state = exec->state;
|
|
|
|
/*
|
|
* The transition is acceptable save it
|
|
*/
|
|
exec->transno = -1; /* trick */
|
|
exec->state = to;
|
|
xmlFARegExecSave(exec);
|
|
if (exec->status != XML_REGEXP_OK)
|
|
goto error;
|
|
exec->transno = transno;
|
|
exec->state = state;
|
|
}
|
|
len = 4;
|
|
codepoint = xmlGetUTF8Char(
|
|
&exec->inputString[exec->index], &len);
|
|
if (codepoint < 0) {
|
|
exec->status = XML_REGEXP_INVALID_UTF8;
|
|
goto error;
|
|
}
|
|
ret = xmlRegCheckCharacter(atom, codepoint);
|
|
exec->transcount++;
|
|
} while (ret == 1);
|
|
if (exec->transcount < atom->min)
|
|
ret = 0;
|
|
|
|
/*
|
|
* If the last check failed but one transition was found
|
|
* possible, rollback
|
|
*/
|
|
if (ret < 0)
|
|
ret = 0;
|
|
if (ret == 0) {
|
|
goto rollback;
|
|
}
|
|
if (trans->counter >= 0) {
|
|
if (exec->counts == NULL) {
|
|
exec->status = XML_REGEXP_INTERNAL_ERROR;
|
|
goto error;
|
|
}
|
|
exec->counts[trans->counter]--;
|
|
}
|
|
} else if ((ret == 0) && (atom->min == 0) && (atom->max > 0)) {
|
|
/*
|
|
* we don't match on the codepoint, but minOccurs of 0
|
|
* says that's ok. Setting len to 0 inhibits stepping
|
|
* over the codepoint.
|
|
*/
|
|
exec->transcount = 1;
|
|
len = 0;
|
|
ret = 1;
|
|
}
|
|
} else if ((atom->min == 0) && (atom->max > 0)) {
|
|
/* another spot to match when minOccurs is 0 */
|
|
exec->transcount = 1;
|
|
len = 0;
|
|
ret = 1;
|
|
}
|
|
if (ret == 1) {
|
|
if ((trans->nd == 1) ||
|
|
((trans->count >= 0) && (deter == 0) &&
|
|
(exec->state->nbTrans > exec->transno + 1))) {
|
|
xmlFARegExecSave(exec);
|
|
if (exec->status != XML_REGEXP_OK)
|
|
goto error;
|
|
}
|
|
if (trans->counter >= 0) {
|
|
xmlRegCounterPtr counter;
|
|
|
|
/* make sure we don't go over the counter maximum value */
|
|
if ((exec->counts == NULL) ||
|
|
(exec->comp == NULL) ||
|
|
(exec->comp->counters == NULL)) {
|
|
exec->status = XML_REGEXP_INTERNAL_ERROR;
|
|
goto error;
|
|
}
|
|
counter = &exec->comp->counters[trans->counter];
|
|
if (exec->counts[trans->counter] >= counter->max)
|
|
continue; /* for loop on transitions */
|
|
exec->counts[trans->counter]++;
|
|
}
|
|
if ((trans->count >= 0) &&
|
|
(trans->count < REGEXP_ALL_COUNTER)) {
|
|
if (exec->counts == NULL) {
|
|
exec->status = XML_REGEXP_INTERNAL_ERROR;
|
|
goto error;
|
|
}
|
|
exec->counts[trans->count] = 0;
|
|
}
|
|
exec->state = comp->states[trans->to];
|
|
exec->transno = 0;
|
|
if (trans->atom != NULL) {
|
|
exec->index += len;
|
|
}
|
|
goto progress;
|
|
} else if (ret < 0) {
|
|
exec->status = XML_REGEXP_INTERNAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
if ((exec->transno != 0) || (exec->state->nbTrans == 0)) {
|
|
rollback:
|
|
/*
|
|
* Failed to find a way out
|
|
*/
|
|
exec->determinist = 0;
|
|
xmlFARegExecRollBack(exec);
|
|
}
|
|
progress:
|
|
continue;
|
|
}
|
|
error:
|
|
if (exec->rollbacks != NULL) {
|
|
if (exec->counts != NULL) {
|
|
int i;
|
|
|
|
for (i = 0;i < exec->maxRollbacks;i++)
|
|
if (exec->rollbacks[i].counts != NULL)
|
|
xmlFree(exec->rollbacks[i].counts);
|
|
}
|
|
xmlFree(exec->rollbacks);
|
|
}
|
|
if (exec->state == NULL)
|
|
return(XML_REGEXP_INTERNAL_ERROR);
|
|
if (exec->counts != NULL)
|
|
xmlFree(exec->counts);
|
|
if (exec->status == XML_REGEXP_OK)
|
|
return(1);
|
|
if (exec->status == XML_REGEXP_NOT_FOUND)
|
|
return(0);
|
|
return(exec->status);
|
|
}
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Progressive interface to the verifier one atom at a time *
|
|
* *
|
|
************************************************************************/
|
|
|
|
/**
|
|
* Build a context used for progressive evaluation of a regexp.
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param comp a precompiled regular expression
|
|
* @param callback a callback function used for handling progresses in the
|
|
* automata matching phase
|
|
* @param data the context data associated to the callback in this context
|
|
* @returns the new context
|
|
*/
|
|
xmlRegExecCtxt *
|
|
xmlRegNewExecCtxt(xmlRegexp *comp, xmlRegExecCallbacks callback, void *data) {
|
|
xmlRegExecCtxtPtr exec;
|
|
|
|
if (comp == NULL)
|
|
return(NULL);
|
|
if ((comp->compact == NULL) && (comp->states == NULL))
|
|
return(NULL);
|
|
exec = (xmlRegExecCtxtPtr) xmlMalloc(sizeof(xmlRegExecCtxt));
|
|
if (exec == NULL)
|
|
return(NULL);
|
|
memset(exec, 0, sizeof(xmlRegExecCtxt));
|
|
exec->inputString = NULL;
|
|
exec->index = 0;
|
|
exec->determinist = 1;
|
|
exec->maxRollbacks = 0;
|
|
exec->nbRollbacks = 0;
|
|
exec->rollbacks = NULL;
|
|
exec->status = XML_REGEXP_OK;
|
|
exec->comp = comp;
|
|
if (comp->compact == NULL)
|
|
exec->state = comp->states[0];
|
|
exec->transno = 0;
|
|
exec->transcount = 0;
|
|
exec->callback = callback;
|
|
exec->data = data;
|
|
if (comp->nbCounters > 0) {
|
|
/*
|
|
* For error handling, exec->counts is allocated twice the size
|
|
* the second half is used to store the data in case of rollback
|
|
*/
|
|
exec->counts = (int *) xmlMalloc(comp->nbCounters * sizeof(int)
|
|
* 2);
|
|
if (exec->counts == NULL) {
|
|
xmlFree(exec);
|
|
return(NULL);
|
|
}
|
|
memset(exec->counts, 0, comp->nbCounters * sizeof(int) * 2);
|
|
exec->errCounts = &exec->counts[comp->nbCounters];
|
|
} else {
|
|
exec->counts = NULL;
|
|
exec->errCounts = NULL;
|
|
}
|
|
exec->inputStackMax = 0;
|
|
exec->inputStackNr = 0;
|
|
exec->inputStack = NULL;
|
|
exec->errStateNo = -1;
|
|
exec->errString = NULL;
|
|
exec->nbPush = 0;
|
|
return(exec);
|
|
}
|
|
|
|
/**
|
|
* Free the structures associated to a regular expression evaluation context.
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param exec a regular expression evaluation context
|
|
*/
|
|
void
|
|
xmlRegFreeExecCtxt(xmlRegExecCtxt *exec) {
|
|
if (exec == NULL)
|
|
return;
|
|
|
|
if (exec->rollbacks != NULL) {
|
|
if (exec->counts != NULL) {
|
|
int i;
|
|
|
|
for (i = 0;i < exec->maxRollbacks;i++)
|
|
if (exec->rollbacks[i].counts != NULL)
|
|
xmlFree(exec->rollbacks[i].counts);
|
|
}
|
|
xmlFree(exec->rollbacks);
|
|
}
|
|
if (exec->counts != NULL)
|
|
xmlFree(exec->counts);
|
|
if (exec->inputStack != NULL) {
|
|
int i;
|
|
|
|
for (i = 0;i < exec->inputStackNr;i++) {
|
|
if (exec->inputStack[i].value != NULL)
|
|
xmlFree(exec->inputStack[i].value);
|
|
}
|
|
xmlFree(exec->inputStack);
|
|
}
|
|
if (exec->errString != NULL)
|
|
xmlFree(exec->errString);
|
|
xmlFree(exec);
|
|
}
|
|
|
|
static int
|
|
xmlRegExecSetErrString(xmlRegExecCtxtPtr exec, const xmlChar *value) {
|
|
if (exec->errString != NULL)
|
|
xmlFree(exec->errString);
|
|
if (value == NULL) {
|
|
exec->errString = NULL;
|
|
} else {
|
|
exec->errString = xmlStrdup(value);
|
|
if (exec->errString == NULL) {
|
|
exec->status = XML_REGEXP_OUT_OF_MEMORY;
|
|
return(-1);
|
|
}
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
xmlFARegExecSaveInputString(xmlRegExecCtxtPtr exec, const xmlChar *value,
|
|
void *data) {
|
|
if (exec->inputStackNr + 1 >= exec->inputStackMax) {
|
|
xmlRegInputTokenPtr tmp;
|
|
int newSize;
|
|
|
|
newSize = xmlGrowCapacity(exec->inputStackMax, sizeof(tmp[0]),
|
|
4, XML_MAX_ITEMS);
|
|
if (newSize < 0) {
|
|
exec->status = XML_REGEXP_OUT_OF_MEMORY;
|
|
return;
|
|
}
|
|
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
|
|
if (newSize < 2)
|
|
newSize = 2;
|
|
#endif
|
|
tmp = xmlRealloc(exec->inputStack, newSize * sizeof(tmp[0]));
|
|
if (tmp == NULL) {
|
|
exec->status = XML_REGEXP_OUT_OF_MEMORY;
|
|
return;
|
|
}
|
|
exec->inputStack = tmp;
|
|
exec->inputStackMax = newSize;
|
|
}
|
|
if (value == NULL) {
|
|
exec->inputStack[exec->inputStackNr].value = NULL;
|
|
} else {
|
|
exec->inputStack[exec->inputStackNr].value = xmlStrdup(value);
|
|
if (exec->inputStack[exec->inputStackNr].value == NULL) {
|
|
exec->status = XML_REGEXP_OUT_OF_MEMORY;
|
|
return;
|
|
}
|
|
}
|
|
exec->inputStack[exec->inputStackNr].data = data;
|
|
exec->inputStackNr++;
|
|
exec->inputStack[exec->inputStackNr].value = NULL;
|
|
exec->inputStack[exec->inputStackNr].data = NULL;
|
|
}
|
|
|
|
/**
|
|
* Checks if both strings are equal or have the same content. "*"
|
|
* can be used as a wildcard in `valStr`; "|" is used as a separator of
|
|
* substrings in both `expStr` and `valStr`.
|
|
*
|
|
* @param expStr the string to be evaluated
|
|
* @param valStr the validation string
|
|
* @returns 1 if the comparison is satisfied and the number of substrings
|
|
* is equal, 0 otherwise.
|
|
*/
|
|
|
|
static int
|
|
xmlRegStrEqualWildcard(const xmlChar *expStr, const xmlChar *valStr) {
|
|
if (expStr == valStr) return(1);
|
|
if (expStr == NULL) return(0);
|
|
if (valStr == NULL) return(0);
|
|
do {
|
|
/*
|
|
* Eval if we have a wildcard for the current item.
|
|
*/
|
|
if (*expStr != *valStr) {
|
|
/* if one of them starts with a wildcard make valStr be it */
|
|
if (*valStr == '*') {
|
|
const xmlChar *tmp;
|
|
|
|
tmp = valStr;
|
|
valStr = expStr;
|
|
expStr = tmp;
|
|
}
|
|
if ((*valStr != 0) && (*expStr != 0) && (*expStr++ == '*')) {
|
|
do {
|
|
if (*valStr == XML_REG_STRING_SEPARATOR)
|
|
break;
|
|
valStr++;
|
|
} while (*valStr != 0);
|
|
continue;
|
|
} else
|
|
return(0);
|
|
}
|
|
expStr++;
|
|
valStr++;
|
|
} while (*valStr != 0);
|
|
if (*expStr != 0)
|
|
return (0);
|
|
else
|
|
return (1);
|
|
}
|
|
|
|
/**
|
|
* Push one input token in the execution context
|
|
*
|
|
* @param exec a regexp execution context
|
|
* @param comp the precompiled exec with a compact table
|
|
* @param value a string token input
|
|
* @param data data associated to the token to reuse in callbacks
|
|
* @returns 1 if the regexp reached a final state, 0 if non-final, and
|
|
* a negative value in case of error.
|
|
*/
|
|
static int
|
|
xmlRegCompactPushString(xmlRegExecCtxtPtr exec,
|
|
xmlRegexpPtr comp,
|
|
const xmlChar *value,
|
|
void *data) {
|
|
int state = exec->index;
|
|
int i, target;
|
|
|
|
if ((comp == NULL) || (comp->compact == NULL) || (comp->stringMap == NULL))
|
|
return(-1);
|
|
|
|
if (value == NULL) {
|
|
/*
|
|
* are we at a final state ?
|
|
*/
|
|
if (comp->compact[state * (comp->nbstrings + 1)] ==
|
|
XML_REGEXP_FINAL_STATE)
|
|
return(1);
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Examine all outside transitions from current state
|
|
*/
|
|
for (i = 0;i < comp->nbstrings;i++) {
|
|
target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
|
|
if ((target > 0) && (target <= comp->nbstates)) {
|
|
target--; /* to avoid 0 */
|
|
if (xmlRegStrEqualWildcard(comp->stringMap[i], value)) {
|
|
exec->index = target;
|
|
if ((exec->callback != NULL) && (comp->transdata != NULL)) {
|
|
exec->callback(exec->data, value,
|
|
comp->transdata[state * comp->nbstrings + i], data);
|
|
}
|
|
if (comp->compact[target * (comp->nbstrings + 1)] ==
|
|
XML_REGEXP_SINK_STATE)
|
|
goto error;
|
|
|
|
if (comp->compact[target * (comp->nbstrings + 1)] ==
|
|
XML_REGEXP_FINAL_STATE)
|
|
return(1);
|
|
return(0);
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Failed to find an exit transition out from current state for the
|
|
* current token
|
|
*/
|
|
error:
|
|
exec->errStateNo = state;
|
|
exec->status = XML_REGEXP_NOT_FOUND;
|
|
xmlRegExecSetErrString(exec, value);
|
|
return(exec->status);
|
|
}
|
|
|
|
/**
|
|
* Push one input token in the execution context
|
|
*
|
|
* @param exec a regexp execution context or NULL to indicate the end
|
|
* @param value a string token input
|
|
* @param data data associated to the token to reuse in callbacks
|
|
* @param compound value was assembled from 2 strings
|
|
* @returns 1 if the regexp reached a final state, 0 if non-final, and
|
|
* a negative value in case of error.
|
|
*/
|
|
static int
|
|
xmlRegExecPushStringInternal(xmlRegExecCtxtPtr exec, const xmlChar *value,
|
|
void *data, int compound) {
|
|
xmlRegTransPtr trans;
|
|
xmlRegAtomPtr atom;
|
|
int ret;
|
|
int final = 0;
|
|
int progress = 1;
|
|
|
|
if (exec == NULL)
|
|
return(-1);
|
|
if (exec->comp == NULL)
|
|
return(-1);
|
|
if (exec->status != XML_REGEXP_OK)
|
|
return(exec->status);
|
|
|
|
if (exec->comp->compact != NULL)
|
|
return(xmlRegCompactPushString(exec, exec->comp, value, data));
|
|
|
|
if (value == NULL) {
|
|
if (exec->state->type == XML_REGEXP_FINAL_STATE)
|
|
return(1);
|
|
final = 1;
|
|
}
|
|
|
|
/*
|
|
* If we have an active rollback stack push the new value there
|
|
* and get back to where we were left
|
|
*/
|
|
if ((value != NULL) && (exec->inputStackNr > 0)) {
|
|
xmlFARegExecSaveInputString(exec, value, data);
|
|
value = exec->inputStack[exec->index].value;
|
|
data = exec->inputStack[exec->index].data;
|
|
}
|
|
|
|
while ((exec->status == XML_REGEXP_OK) &&
|
|
((value != NULL) ||
|
|
((final == 1) &&
|
|
(exec->state->type != XML_REGEXP_FINAL_STATE)))) {
|
|
|
|
/*
|
|
* End of input on non-terminal state, rollback, however we may
|
|
* still have epsilon like transition for counted transitions
|
|
* on counters, in that case don't break too early.
|
|
*/
|
|
if ((value == NULL) && (exec->counts == NULL))
|
|
goto rollback;
|
|
|
|
exec->transcount = 0;
|
|
for (;exec->transno < exec->state->nbTrans;exec->transno++) {
|
|
trans = &exec->state->trans[exec->transno];
|
|
if (trans->to < 0)
|
|
continue;
|
|
atom = trans->atom;
|
|
ret = 0;
|
|
if (trans->count == REGEXP_ALL_LAX_COUNTER) {
|
|
int i;
|
|
int count;
|
|
xmlRegTransPtr t;
|
|
xmlRegCounterPtr counter;
|
|
|
|
ret = 0;
|
|
|
|
/*
|
|
* Check all counted transitions from the current state
|
|
*/
|
|
if ((value == NULL) && (final)) {
|
|
ret = 1;
|
|
} else if (value != NULL) {
|
|
for (i = 0;i < exec->state->nbTrans;i++) {
|
|
t = &exec->state->trans[i];
|
|
if ((t->counter < 0) || (t == trans))
|
|
continue;
|
|
counter = &exec->comp->counters[t->counter];
|
|
count = exec->counts[t->counter];
|
|
if ((count < counter->max) &&
|
|
(t->atom != NULL) &&
|
|
(xmlStrEqual(value, t->atom->valuep))) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
if ((count >= counter->min) &&
|
|
(count < counter->max) &&
|
|
(t->atom != NULL) &&
|
|
(xmlStrEqual(value, t->atom->valuep))) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} else if (trans->count == REGEXP_ALL_COUNTER) {
|
|
int i;
|
|
int count;
|
|
xmlRegTransPtr t;
|
|
xmlRegCounterPtr counter;
|
|
|
|
ret = 1;
|
|
|
|
/*
|
|
* Check all counted transitions from the current state
|
|
*/
|
|
for (i = 0;i < exec->state->nbTrans;i++) {
|
|
t = &exec->state->trans[i];
|
|
if ((t->counter < 0) || (t == trans))
|
|
continue;
|
|
counter = &exec->comp->counters[t->counter];
|
|
count = exec->counts[t->counter];
|
|
if ((count < counter->min) || (count > counter->max)) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
} else if (trans->count >= 0) {
|
|
int count;
|
|
xmlRegCounterPtr counter;
|
|
|
|
/*
|
|
* A counted transition.
|
|
*/
|
|
|
|
count = exec->counts[trans->count];
|
|
counter = &exec->comp->counters[trans->count];
|
|
ret = ((count >= counter->min) && (count <= counter->max));
|
|
} else if (atom == NULL) {
|
|
exec->status = XML_REGEXP_INTERNAL_ERROR;
|
|
break;
|
|
} else if (value != NULL) {
|
|
ret = xmlRegStrEqualWildcard(atom->valuep, value);
|
|
if (atom->neg) {
|
|
ret = !ret;
|
|
if (!compound)
|
|
ret = 0;
|
|
}
|
|
if ((ret == 1) && (trans->counter >= 0)) {
|
|
xmlRegCounterPtr counter;
|
|
int count;
|
|
|
|
count = exec->counts[trans->counter];
|
|
counter = &exec->comp->counters[trans->counter];
|
|
if (count >= counter->max)
|
|
ret = 0;
|
|
}
|
|
|
|
if ((ret == 1) && (atom->min > 0) && (atom->max > 0)) {
|
|
xmlRegStatePtr to = exec->comp->states[trans->to];
|
|
|
|
/*
|
|
* this is a multiple input sequence
|
|
*/
|
|
if (exec->state->nbTrans > exec->transno + 1) {
|
|
if (exec->inputStackNr <= 0) {
|
|
xmlFARegExecSaveInputString(exec, value, data);
|
|
}
|
|
xmlFARegExecSave(exec);
|
|
}
|
|
exec->transcount = 1;
|
|
do {
|
|
/*
|
|
* Try to progress as much as possible on the input
|
|
*/
|
|
if (exec->transcount == atom->max) {
|
|
break;
|
|
}
|
|
exec->index++;
|
|
value = exec->inputStack[exec->index].value;
|
|
data = exec->inputStack[exec->index].data;
|
|
|
|
/*
|
|
* End of input: stop here
|
|
*/
|
|
if (value == NULL) {
|
|
exec->index --;
|
|
break;
|
|
}
|
|
if (exec->transcount >= atom->min) {
|
|
int transno = exec->transno;
|
|
xmlRegStatePtr state = exec->state;
|
|
|
|
/*
|
|
* The transition is acceptable save it
|
|
*/
|
|
exec->transno = -1; /* trick */
|
|
exec->state = to;
|
|
if (exec->inputStackNr <= 0) {
|
|
xmlFARegExecSaveInputString(exec, value, data);
|
|
}
|
|
xmlFARegExecSave(exec);
|
|
exec->transno = transno;
|
|
exec->state = state;
|
|
}
|
|
ret = xmlStrEqual(value, atom->valuep);
|
|
exec->transcount++;
|
|
} while (ret == 1);
|
|
if (exec->transcount < atom->min)
|
|
ret = 0;
|
|
|
|
/*
|
|
* If the last check failed but one transition was found
|
|
* possible, rollback
|
|
*/
|
|
if (ret < 0)
|
|
ret = 0;
|
|
if (ret == 0) {
|
|
goto rollback;
|
|
}
|
|
}
|
|
}
|
|
if (ret == 1) {
|
|
if ((exec->callback != NULL) && (atom != NULL) &&
|
|
(data != NULL)) {
|
|
exec->callback(exec->data, atom->valuep,
|
|
atom->data, data);
|
|
}
|
|
if (exec->state->nbTrans > exec->transno + 1) {
|
|
if (exec->inputStackNr <= 0) {
|
|
xmlFARegExecSaveInputString(exec, value, data);
|
|
}
|
|
xmlFARegExecSave(exec);
|
|
}
|
|
if (trans->counter >= 0) {
|
|
exec->counts[trans->counter]++;
|
|
}
|
|
if ((trans->count >= 0) &&
|
|
(trans->count < REGEXP_ALL_COUNTER)) {
|
|
exec->counts[trans->count] = 0;
|
|
}
|
|
if ((exec->comp->states[trans->to] != NULL) &&
|
|
(exec->comp->states[trans->to]->type ==
|
|
XML_REGEXP_SINK_STATE)) {
|
|
/*
|
|
* entering a sink state, save the current state as error
|
|
* state.
|
|
*/
|
|
if (xmlRegExecSetErrString(exec, value) < 0)
|
|
break;
|
|
exec->errState = exec->state;
|
|
memcpy(exec->errCounts, exec->counts,
|
|
exec->comp->nbCounters * sizeof(int));
|
|
}
|
|
exec->state = exec->comp->states[trans->to];
|
|
exec->transno = 0;
|
|
if (trans->atom != NULL) {
|
|
if (exec->inputStack != NULL) {
|
|
exec->index++;
|
|
if (exec->index < exec->inputStackNr) {
|
|
value = exec->inputStack[exec->index].value;
|
|
data = exec->inputStack[exec->index].data;
|
|
} else {
|
|
value = NULL;
|
|
data = NULL;
|
|
}
|
|
} else {
|
|
value = NULL;
|
|
data = NULL;
|
|
}
|
|
}
|
|
goto progress;
|
|
} else if (ret < 0) {
|
|
exec->status = XML_REGEXP_INTERNAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
if ((exec->transno != 0) || (exec->state->nbTrans == 0)) {
|
|
rollback:
|
|
/*
|
|
* if we didn't yet rollback on the current input
|
|
* store the current state as the error state.
|
|
*/
|
|
if ((progress) && (exec->state != NULL) &&
|
|
(exec->state->type != XML_REGEXP_SINK_STATE)) {
|
|
progress = 0;
|
|
if (xmlRegExecSetErrString(exec, value) < 0)
|
|
break;
|
|
exec->errState = exec->state;
|
|
if (exec->comp->nbCounters)
|
|
memcpy(exec->errCounts, exec->counts,
|
|
exec->comp->nbCounters * sizeof(int));
|
|
}
|
|
|
|
/*
|
|
* Failed to find a way out
|
|
*/
|
|
exec->determinist = 0;
|
|
xmlFARegExecRollBack(exec);
|
|
if ((exec->inputStack != NULL ) &&
|
|
(exec->status == XML_REGEXP_OK)) {
|
|
value = exec->inputStack[exec->index].value;
|
|
data = exec->inputStack[exec->index].data;
|
|
}
|
|
}
|
|
continue;
|
|
progress:
|
|
progress = 1;
|
|
}
|
|
if (exec->status == XML_REGEXP_OK) {
|
|
return(exec->state->type == XML_REGEXP_FINAL_STATE);
|
|
}
|
|
return(exec->status);
|
|
}
|
|
|
|
/**
|
|
* Push one input token in the execution context
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param exec a regexp execution context or NULL to indicate the end
|
|
* @param value a string token input
|
|
* @param data data associated to the token to reuse in callbacks
|
|
* @returns 1 if the regexp reached a final state, 0 if non-final, and
|
|
* a negative value in case of error.
|
|
*/
|
|
int
|
|
xmlRegExecPushString(xmlRegExecCtxt *exec, const xmlChar *value,
|
|
void *data) {
|
|
return(xmlRegExecPushStringInternal(exec, value, data, 0));
|
|
}
|
|
|
|
/**
|
|
* Push one input token in the execution context
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param exec a regexp execution context or NULL to indicate the end
|
|
* @param value the first string token input
|
|
* @param value2 the second string token input
|
|
* @param data data associated to the token to reuse in callbacks
|
|
* @returns 1 if the regexp reached a final state, 0 if non-final, and
|
|
* a negative value in case of error.
|
|
*/
|
|
int
|
|
xmlRegExecPushString2(xmlRegExecCtxt *exec, const xmlChar *value,
|
|
const xmlChar *value2, void *data) {
|
|
xmlChar buf[150];
|
|
int lenn, lenp, ret;
|
|
xmlChar *str;
|
|
|
|
if (exec == NULL)
|
|
return(-1);
|
|
if (exec->comp == NULL)
|
|
return(-1);
|
|
if (exec->status != XML_REGEXP_OK)
|
|
return(exec->status);
|
|
|
|
if (value2 == NULL)
|
|
return(xmlRegExecPushString(exec, value, data));
|
|
|
|
lenn = strlen((char *) value2);
|
|
lenp = strlen((char *) value);
|
|
|
|
if (150 < lenn + lenp + 2) {
|
|
str = xmlMalloc(lenn + lenp + 2);
|
|
if (str == NULL) {
|
|
exec->status = XML_REGEXP_OUT_OF_MEMORY;
|
|
return(-1);
|
|
}
|
|
} else {
|
|
str = buf;
|
|
}
|
|
memcpy(&str[0], value, lenp);
|
|
str[lenp] = XML_REG_STRING_SEPARATOR;
|
|
memcpy(&str[lenp + 1], value2, lenn);
|
|
str[lenn + lenp + 1] = 0;
|
|
|
|
if (exec->comp->compact != NULL)
|
|
ret = xmlRegCompactPushString(exec, exec->comp, str, data);
|
|
else
|
|
ret = xmlRegExecPushStringInternal(exec, str, data, 1);
|
|
|
|
if (str != buf)
|
|
xmlFree(str);
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* Extract information from the regexp execution. Internal routine to
|
|
* implement #xmlRegExecNextValues and #xmlRegExecErrInfo
|
|
*
|
|
* @param exec a regexp execution context
|
|
* @param err error extraction or normal one
|
|
* @param nbval pointer to the number of accepted values IN/OUT
|
|
* @param nbneg return number of negative transitions
|
|
* @param values pointer to the array of acceptable values
|
|
* @param terminal return value if this was a terminal state
|
|
* @returns 0 in case of success or -1 in case of error.
|
|
*/
|
|
static int
|
|
xmlRegExecGetValues(xmlRegExecCtxtPtr exec, int err,
|
|
int *nbval, int *nbneg,
|
|
xmlChar **values, int *terminal) {
|
|
int maxval;
|
|
int nb = 0;
|
|
|
|
if ((exec == NULL) || (nbval == NULL) || (nbneg == NULL) ||
|
|
(values == NULL) || (*nbval <= 0))
|
|
return(-1);
|
|
|
|
maxval = *nbval;
|
|
*nbval = 0;
|
|
*nbneg = 0;
|
|
if ((exec->comp != NULL) && (exec->comp->compact != NULL)) {
|
|
xmlRegexpPtr comp;
|
|
int target, i, state;
|
|
|
|
comp = exec->comp;
|
|
|
|
if (err) {
|
|
if (exec->errStateNo == -1) return(-1);
|
|
state = exec->errStateNo;
|
|
} else {
|
|
state = exec->index;
|
|
}
|
|
if (terminal != NULL) {
|
|
if (comp->compact[state * (comp->nbstrings + 1)] ==
|
|
XML_REGEXP_FINAL_STATE)
|
|
*terminal = 1;
|
|
else
|
|
*terminal = 0;
|
|
}
|
|
for (i = 0;(i < comp->nbstrings) && (nb < maxval);i++) {
|
|
target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
|
|
if ((target > 0) && (target <= comp->nbstates) &&
|
|
(comp->compact[(target - 1) * (comp->nbstrings + 1)] !=
|
|
XML_REGEXP_SINK_STATE)) {
|
|
values[nb++] = comp->stringMap[i];
|
|
(*nbval)++;
|
|
}
|
|
}
|
|
for (i = 0;(i < comp->nbstrings) && (nb < maxval);i++) {
|
|
target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
|
|
if ((target > 0) && (target <= comp->nbstates) &&
|
|
(comp->compact[(target - 1) * (comp->nbstrings + 1)] ==
|
|
XML_REGEXP_SINK_STATE)) {
|
|
values[nb++] = comp->stringMap[i];
|
|
(*nbneg)++;
|
|
}
|
|
}
|
|
} else {
|
|
int transno;
|
|
xmlRegTransPtr trans;
|
|
xmlRegAtomPtr atom;
|
|
xmlRegStatePtr state;
|
|
|
|
if (terminal != NULL) {
|
|
if (exec->state->type == XML_REGEXP_FINAL_STATE)
|
|
*terminal = 1;
|
|
else
|
|
*terminal = 0;
|
|
}
|
|
|
|
if (err) {
|
|
if (exec->errState == NULL) return(-1);
|
|
state = exec->errState;
|
|
} else {
|
|
if (exec->state == NULL) return(-1);
|
|
state = exec->state;
|
|
}
|
|
for (transno = 0;
|
|
(transno < state->nbTrans) && (nb < maxval);
|
|
transno++) {
|
|
trans = &state->trans[transno];
|
|
if (trans->to < 0)
|
|
continue;
|
|
atom = trans->atom;
|
|
if ((atom == NULL) || (atom->valuep == NULL))
|
|
continue;
|
|
if (trans->count == REGEXP_ALL_LAX_COUNTER) {
|
|
/* this should not be reached but ... */
|
|
} else if (trans->count == REGEXP_ALL_COUNTER) {
|
|
/* this should not be reached but ... */
|
|
} else if (trans->counter >= 0) {
|
|
xmlRegCounterPtr counter = NULL;
|
|
int count;
|
|
|
|
if (err)
|
|
count = exec->errCounts[trans->counter];
|
|
else
|
|
count = exec->counts[trans->counter];
|
|
if (exec->comp != NULL)
|
|
counter = &exec->comp->counters[trans->counter];
|
|
if ((counter == NULL) || (count < counter->max)) {
|
|
if (atom->neg)
|
|
values[nb++] = (xmlChar *) atom->valuep2;
|
|
else
|
|
values[nb++] = (xmlChar *) atom->valuep;
|
|
(*nbval)++;
|
|
}
|
|
} else {
|
|
if ((exec->comp != NULL) && (exec->comp->states[trans->to] != NULL) &&
|
|
(exec->comp->states[trans->to]->type !=
|
|
XML_REGEXP_SINK_STATE)) {
|
|
if (atom->neg)
|
|
values[nb++] = (xmlChar *) atom->valuep2;
|
|
else
|
|
values[nb++] = (xmlChar *) atom->valuep;
|
|
(*nbval)++;
|
|
}
|
|
}
|
|
}
|
|
for (transno = 0;
|
|
(transno < state->nbTrans) && (nb < maxval);
|
|
transno++) {
|
|
trans = &state->trans[transno];
|
|
if (trans->to < 0)
|
|
continue;
|
|
atom = trans->atom;
|
|
if ((atom == NULL) || (atom->valuep == NULL))
|
|
continue;
|
|
if (trans->count == REGEXP_ALL_LAX_COUNTER) {
|
|
continue;
|
|
} else if (trans->count == REGEXP_ALL_COUNTER) {
|
|
continue;
|
|
} else if (trans->counter >= 0) {
|
|
continue;
|
|
} else {
|
|
if ((exec->comp->states[trans->to] != NULL) &&
|
|
(exec->comp->states[trans->to]->type ==
|
|
XML_REGEXP_SINK_STATE)) {
|
|
if (atom->neg)
|
|
values[nb++] = (xmlChar *) atom->valuep2;
|
|
else
|
|
values[nb++] = (xmlChar *) atom->valuep;
|
|
(*nbneg)++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/**
|
|
* Extract information from the regexp execution.
|
|
* The parameter `values` must point to an array of `nbval` string pointers
|
|
* on return nbval will contain the number of possible strings in that
|
|
* state and the `values` array will be updated with them. The string values
|
|
* returned will be freed with the `exec` context and don't need to be
|
|
* deallocated.
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param exec a regexp execution context
|
|
* @param nbval pointer to the number of accepted values IN/OUT
|
|
* @param nbneg return number of negative transitions
|
|
* @param values pointer to the array of acceptable values
|
|
* @param terminal return value if this was a terminal state
|
|
* @returns 0 in case of success or -1 in case of error.
|
|
*/
|
|
int
|
|
xmlRegExecNextValues(xmlRegExecCtxt *exec, int *nbval, int *nbneg,
|
|
xmlChar **values, int *terminal) {
|
|
return(xmlRegExecGetValues(exec, 0, nbval, nbneg, values, terminal));
|
|
}
|
|
|
|
/**
|
|
* Extract error information from the regexp execution. The parameter
|
|
* `string` will be updated with the value pushed and not accepted,
|
|
* the parameter `values` must point to an array of `nbval` string pointers
|
|
* on return nbval will contain the number of possible strings in that
|
|
* state and the `values` array will be updated with them. The string values
|
|
* returned will be freed with the `exec` context and don't need to be
|
|
* deallocated.
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param exec a regexp execution context generating an error
|
|
* @param string return value for the error string
|
|
* @param nbval pointer to the number of accepted values IN/OUT
|
|
* @param nbneg return number of negative transitions
|
|
* @param values pointer to the array of acceptable values
|
|
* @param terminal return value if this was a terminal state
|
|
* @returns 0 in case of success or -1 in case of error.
|
|
*/
|
|
int
|
|
xmlRegExecErrInfo(xmlRegExecCtxt *exec, const xmlChar **string,
|
|
int *nbval, int *nbneg, xmlChar **values, int *terminal) {
|
|
if (exec == NULL)
|
|
return(-1);
|
|
if (string != NULL) {
|
|
if (exec->status != XML_REGEXP_OK)
|
|
*string = exec->errString;
|
|
else
|
|
*string = NULL;
|
|
}
|
|
return(xmlRegExecGetValues(exec, 1, nbval, nbneg, values, terminal));
|
|
}
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Parser for the Schemas Datatype Regular Expressions *
|
|
* http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#regexs *
|
|
* *
|
|
************************************************************************/
|
|
|
|
/**
|
|
* [10] Char ::= [^.\?*+()|\#x5B\#x5D]
|
|
*
|
|
* @param ctxt a regexp parser context
|
|
*/
|
|
static int
|
|
xmlFAIsChar(xmlRegParserCtxtPtr ctxt) {
|
|
int cur;
|
|
int len;
|
|
|
|
len = 4;
|
|
cur = xmlGetUTF8Char(ctxt->cur, &len);
|
|
if (cur < 0) {
|
|
ERROR("Invalid UTF-8");
|
|
return(0);
|
|
}
|
|
if ((cur == '.') || (cur == '\\') || (cur == '?') ||
|
|
(cur == '*') || (cur == '+') || (cur == '(') ||
|
|
(cur == ')') || (cur == '|') || (cur == 0x5B) ||
|
|
(cur == 0x5D) || (cur == 0))
|
|
return(-1);
|
|
return(cur);
|
|
}
|
|
|
|
/**
|
|
* [27] charProp ::= IsCategory | IsBlock
|
|
* [28] IsCategory ::= Letters | Marks | Numbers | Punctuation |
|
|
* Separators | Symbols | Others
|
|
* [29] Letters ::= 'L' [ultmo]?
|
|
* [30] Marks ::= 'M' [nce]?
|
|
* [31] Numbers ::= 'N' [dlo]?
|
|
* [32] Punctuation ::= 'P' [cdseifo]?
|
|
* [33] Separators ::= 'Z' [slp]?
|
|
* [34] Symbols ::= 'S' [mcko]?
|
|
* [35] Others ::= 'C' [cfon]?
|
|
* [36] IsBlock ::= 'Is' [a-zA-Z0-9\#x2D]+
|
|
*
|
|
* @param ctxt a regexp parser context
|
|
*/
|
|
static void
|
|
xmlFAParseCharProp(xmlRegParserCtxtPtr ctxt) {
|
|
int cur;
|
|
xmlRegAtomType type = (xmlRegAtomType) 0;
|
|
xmlChar *blockName = NULL;
|
|
|
|
cur = CUR;
|
|
if (cur == 'L') {
|
|
NEXT;
|
|
cur = CUR;
|
|
if (cur == 'u') {
|
|
NEXT;
|
|
type = XML_REGEXP_LETTER_UPPERCASE;
|
|
} else if (cur == 'l') {
|
|
NEXT;
|
|
type = XML_REGEXP_LETTER_LOWERCASE;
|
|
} else if (cur == 't') {
|
|
NEXT;
|
|
type = XML_REGEXP_LETTER_TITLECASE;
|
|
} else if (cur == 'm') {
|
|
NEXT;
|
|
type = XML_REGEXP_LETTER_MODIFIER;
|
|
} else if (cur == 'o') {
|
|
NEXT;
|
|
type = XML_REGEXP_LETTER_OTHERS;
|
|
} else {
|
|
type = XML_REGEXP_LETTER;
|
|
}
|
|
} else if (cur == 'M') {
|
|
NEXT;
|
|
cur = CUR;
|
|
if (cur == 'n') {
|
|
NEXT;
|
|
/* nonspacing */
|
|
type = XML_REGEXP_MARK_NONSPACING;
|
|
} else if (cur == 'c') {
|
|
NEXT;
|
|
/* spacing combining */
|
|
type = XML_REGEXP_MARK_SPACECOMBINING;
|
|
} else if (cur == 'e') {
|
|
NEXT;
|
|
/* enclosing */
|
|
type = XML_REGEXP_MARK_ENCLOSING;
|
|
} else {
|
|
/* all marks */
|
|
type = XML_REGEXP_MARK;
|
|
}
|
|
} else if (cur == 'N') {
|
|
NEXT;
|
|
cur = CUR;
|
|
if (cur == 'd') {
|
|
NEXT;
|
|
/* digital */
|
|
type = XML_REGEXP_NUMBER_DECIMAL;
|
|
} else if (cur == 'l') {
|
|
NEXT;
|
|
/* letter */
|
|
type = XML_REGEXP_NUMBER_LETTER;
|
|
} else if (cur == 'o') {
|
|
NEXT;
|
|
/* other */
|
|
type = XML_REGEXP_NUMBER_OTHERS;
|
|
} else {
|
|
/* all numbers */
|
|
type = XML_REGEXP_NUMBER;
|
|
}
|
|
} else if (cur == 'P') {
|
|
NEXT;
|
|
cur = CUR;
|
|
if (cur == 'c') {
|
|
NEXT;
|
|
/* connector */
|
|
type = XML_REGEXP_PUNCT_CONNECTOR;
|
|
} else if (cur == 'd') {
|
|
NEXT;
|
|
/* dash */
|
|
type = XML_REGEXP_PUNCT_DASH;
|
|
} else if (cur == 's') {
|
|
NEXT;
|
|
/* open */
|
|
type = XML_REGEXP_PUNCT_OPEN;
|
|
} else if (cur == 'e') {
|
|
NEXT;
|
|
/* close */
|
|
type = XML_REGEXP_PUNCT_CLOSE;
|
|
} else if (cur == 'i') {
|
|
NEXT;
|
|
/* initial quote */
|
|
type = XML_REGEXP_PUNCT_INITQUOTE;
|
|
} else if (cur == 'f') {
|
|
NEXT;
|
|
/* final quote */
|
|
type = XML_REGEXP_PUNCT_FINQUOTE;
|
|
} else if (cur == 'o') {
|
|
NEXT;
|
|
/* other */
|
|
type = XML_REGEXP_PUNCT_OTHERS;
|
|
} else {
|
|
/* all punctuation */
|
|
type = XML_REGEXP_PUNCT;
|
|
}
|
|
} else if (cur == 'Z') {
|
|
NEXT;
|
|
cur = CUR;
|
|
if (cur == 's') {
|
|
NEXT;
|
|
/* space */
|
|
type = XML_REGEXP_SEPAR_SPACE;
|
|
} else if (cur == 'l') {
|
|
NEXT;
|
|
/* line */
|
|
type = XML_REGEXP_SEPAR_LINE;
|
|
} else if (cur == 'p') {
|
|
NEXT;
|
|
/* paragraph */
|
|
type = XML_REGEXP_SEPAR_PARA;
|
|
} else {
|
|
/* all separators */
|
|
type = XML_REGEXP_SEPAR;
|
|
}
|
|
} else if (cur == 'S') {
|
|
NEXT;
|
|
cur = CUR;
|
|
if (cur == 'm') {
|
|
NEXT;
|
|
type = XML_REGEXP_SYMBOL_MATH;
|
|
/* math */
|
|
} else if (cur == 'c') {
|
|
NEXT;
|
|
type = XML_REGEXP_SYMBOL_CURRENCY;
|
|
/* currency */
|
|
} else if (cur == 'k') {
|
|
NEXT;
|
|
type = XML_REGEXP_SYMBOL_MODIFIER;
|
|
/* modifiers */
|
|
} else if (cur == 'o') {
|
|
NEXT;
|
|
type = XML_REGEXP_SYMBOL_OTHERS;
|
|
/* other */
|
|
} else {
|
|
/* all symbols */
|
|
type = XML_REGEXP_SYMBOL;
|
|
}
|
|
} else if (cur == 'C') {
|
|
NEXT;
|
|
cur = CUR;
|
|
if (cur == 'c') {
|
|
NEXT;
|
|
/* control */
|
|
type = XML_REGEXP_OTHER_CONTROL;
|
|
} else if (cur == 'f') {
|
|
NEXT;
|
|
/* format */
|
|
type = XML_REGEXP_OTHER_FORMAT;
|
|
} else if (cur == 'o') {
|
|
NEXT;
|
|
/* private use */
|
|
type = XML_REGEXP_OTHER_PRIVATE;
|
|
} else if (cur == 'n') {
|
|
NEXT;
|
|
/* not assigned */
|
|
type = XML_REGEXP_OTHER_NA;
|
|
} else {
|
|
/* all others */
|
|
type = XML_REGEXP_OTHER;
|
|
}
|
|
} else if (cur == 'I') {
|
|
const xmlChar *start;
|
|
NEXT;
|
|
cur = CUR;
|
|
if (cur != 's') {
|
|
ERROR("IsXXXX expected");
|
|
return;
|
|
}
|
|
NEXT;
|
|
start = ctxt->cur;
|
|
cur = CUR;
|
|
if (((cur >= 'a') && (cur <= 'z')) ||
|
|
((cur >= 'A') && (cur <= 'Z')) ||
|
|
((cur >= '0') && (cur <= '9')) ||
|
|
(cur == 0x2D)) {
|
|
NEXT;
|
|
cur = CUR;
|
|
while (((cur >= 'a') && (cur <= 'z')) ||
|
|
((cur >= 'A') && (cur <= 'Z')) ||
|
|
((cur >= '0') && (cur <= '9')) ||
|
|
(cur == 0x2D)) {
|
|
NEXT;
|
|
cur = CUR;
|
|
}
|
|
}
|
|
type = XML_REGEXP_BLOCK_NAME;
|
|
blockName = xmlStrndup(start, ctxt->cur - start);
|
|
if (blockName == NULL)
|
|
xmlRegexpErrMemory(ctxt);
|
|
} else {
|
|
ERROR("Unknown char property");
|
|
return;
|
|
}
|
|
if (ctxt->atom == NULL) {
|
|
ctxt->atom = xmlRegNewAtom(ctxt, type);
|
|
if (ctxt->atom == NULL) {
|
|
xmlFree(blockName);
|
|
return;
|
|
}
|
|
ctxt->atom->valuep = blockName;
|
|
} else if (ctxt->atom->type == XML_REGEXP_RANGES) {
|
|
if (xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
|
|
type, 0, 0, blockName) == NULL) {
|
|
xmlFree(blockName);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int parse_escaped_codeunit(xmlRegParserCtxtPtr ctxt)
|
|
{
|
|
int val = 0, i, cur;
|
|
for (i = 0; i < 4; i++) {
|
|
NEXT;
|
|
val *= 16;
|
|
cur = CUR;
|
|
if (cur >= '0' && cur <= '9') {
|
|
val += cur - '0';
|
|
} else if (cur >= 'A' && cur <= 'F') {
|
|
val += cur - 'A' + 10;
|
|
} else if (cur >= 'a' && cur <= 'f') {
|
|
val += cur - 'a' + 10;
|
|
} else {
|
|
ERROR("Expecting hex digit");
|
|
return -1;
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static int parse_escaped_codepoint(xmlRegParserCtxtPtr ctxt)
|
|
{
|
|
int val = parse_escaped_codeunit(ctxt);
|
|
if (0xD800 <= val && val <= 0xDBFF) {
|
|
NEXT;
|
|
if (CUR == '\\') {
|
|
NEXT;
|
|
if (CUR == 'u') {
|
|
int low = parse_escaped_codeunit(ctxt);
|
|
if (0xDC00 <= low && low <= 0xDFFF) {
|
|
return (val - 0xD800) * 0x400 + (low - 0xDC00) + 0x10000;
|
|
}
|
|
}
|
|
}
|
|
ERROR("Invalid low surrogate pair code unit");
|
|
val = -1;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/**
|
|
* ```
|
|
* [23] charClassEsc ::= ( SingleCharEsc | MultiCharEsc | catEsc | complEsc )
|
|
* [24] SingleCharEsc ::= '\' [nrt\|.?*+(){}\#x2D\#x5B\#x5D\#x5E]
|
|
* [25] catEsc ::= '\p{' charProp '}'
|
|
* [26] complEsc ::= '\P{' charProp '}'
|
|
* [37] MultiCharEsc ::= '.' | ('\' [sSiIcCdDwW])
|
|
* ```
|
|
*
|
|
* @param ctxt a regexp parser context
|
|
*/
|
|
static void
|
|
xmlFAParseCharClassEsc(xmlRegParserCtxtPtr ctxt) {
|
|
int cur;
|
|
|
|
if (CUR == '.') {
|
|
if (ctxt->atom == NULL) {
|
|
ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_ANYCHAR);
|
|
} else if (ctxt->atom->type == XML_REGEXP_RANGES) {
|
|
xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
|
|
XML_REGEXP_ANYCHAR, 0, 0, NULL);
|
|
}
|
|
NEXT;
|
|
return;
|
|
}
|
|
if (CUR != '\\') {
|
|
ERROR("Escaped sequence: expecting \\");
|
|
return;
|
|
}
|
|
NEXT;
|
|
cur = CUR;
|
|
if (cur == 'p') {
|
|
NEXT;
|
|
if (CUR != '{') {
|
|
ERROR("Expecting '{'");
|
|
return;
|
|
}
|
|
NEXT;
|
|
xmlFAParseCharProp(ctxt);
|
|
if (CUR != '}') {
|
|
ERROR("Expecting '}'");
|
|
return;
|
|
}
|
|
NEXT;
|
|
} else if (cur == 'P') {
|
|
NEXT;
|
|
if (CUR != '{') {
|
|
ERROR("Expecting '{'");
|
|
return;
|
|
}
|
|
NEXT;
|
|
xmlFAParseCharProp(ctxt);
|
|
if (ctxt->atom != NULL)
|
|
ctxt->atom->neg = 1;
|
|
if (CUR != '}') {
|
|
ERROR("Expecting '}'");
|
|
return;
|
|
}
|
|
NEXT;
|
|
} else if ((cur == 'n') || (cur == 'r') || (cur == 't') || (cur == '\\') ||
|
|
(cur == '|') || (cur == '.') || (cur == '?') || (cur == '*') ||
|
|
(cur == '+') || (cur == '(') || (cur == ')') || (cur == '{') ||
|
|
(cur == '}') || (cur == 0x2D) || (cur == 0x5B) || (cur == 0x5D) ||
|
|
(cur == 0x5E) ||
|
|
|
|
/* Non-standard escape sequences:
|
|
* Java 1.8|.NET Core 3.1|MSXML 6 */
|
|
(cur == '!') || /* + | + | + */
|
|
(cur == '"') || /* + | + | + */
|
|
(cur == '#') || /* + | + | + */
|
|
(cur == '$') || /* + | + | + */
|
|
(cur == '%') || /* + | + | + */
|
|
(cur == ',') || /* + | + | + */
|
|
(cur == '/') || /* + | + | + */
|
|
(cur == ':') || /* + | + | + */
|
|
(cur == ';') || /* + | + | + */
|
|
(cur == '=') || /* + | + | + */
|
|
(cur == '>') || /* | + | + */
|
|
(cur == '@') || /* + | + | + */
|
|
(cur == '`') || /* + | + | + */
|
|
(cur == '~') || /* + | + | + */
|
|
(cur == 'u')) { /* | + | + */
|
|
if (ctxt->atom == NULL) {
|
|
ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_CHARVAL);
|
|
if (ctxt->atom != NULL) {
|
|
switch (cur) {
|
|
case 'n':
|
|
ctxt->atom->codepoint = '\n';
|
|
break;
|
|
case 'r':
|
|
ctxt->atom->codepoint = '\r';
|
|
break;
|
|
case 't':
|
|
ctxt->atom->codepoint = '\t';
|
|
break;
|
|
case 'u':
|
|
cur = parse_escaped_codepoint(ctxt);
|
|
if (cur < 0) {
|
|
return;
|
|
}
|
|
ctxt->atom->codepoint = cur;
|
|
break;
|
|
default:
|
|
ctxt->atom->codepoint = cur;
|
|
}
|
|
}
|
|
} else if (ctxt->atom->type == XML_REGEXP_RANGES) {
|
|
switch (cur) {
|
|
case 'n':
|
|
cur = '\n';
|
|
break;
|
|
case 'r':
|
|
cur = '\r';
|
|
break;
|
|
case 't':
|
|
cur = '\t';
|
|
break;
|
|
}
|
|
xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
|
|
XML_REGEXP_CHARVAL, cur, cur, NULL);
|
|
}
|
|
NEXT;
|
|
} else if ((cur == 's') || (cur == 'S') || (cur == 'i') || (cur == 'I') ||
|
|
(cur == 'c') || (cur == 'C') || (cur == 'd') || (cur == 'D') ||
|
|
(cur == 'w') || (cur == 'W')) {
|
|
xmlRegAtomType type = XML_REGEXP_ANYSPACE;
|
|
|
|
switch (cur) {
|
|
case 's':
|
|
type = XML_REGEXP_ANYSPACE;
|
|
break;
|
|
case 'S':
|
|
type = XML_REGEXP_NOTSPACE;
|
|
break;
|
|
case 'i':
|
|
type = XML_REGEXP_INITNAME;
|
|
break;
|
|
case 'I':
|
|
type = XML_REGEXP_NOTINITNAME;
|
|
break;
|
|
case 'c':
|
|
type = XML_REGEXP_NAMECHAR;
|
|
break;
|
|
case 'C':
|
|
type = XML_REGEXP_NOTNAMECHAR;
|
|
break;
|
|
case 'd':
|
|
type = XML_REGEXP_DECIMAL;
|
|
break;
|
|
case 'D':
|
|
type = XML_REGEXP_NOTDECIMAL;
|
|
break;
|
|
case 'w':
|
|
type = XML_REGEXP_REALCHAR;
|
|
break;
|
|
case 'W':
|
|
type = XML_REGEXP_NOTREALCHAR;
|
|
break;
|
|
}
|
|
NEXT;
|
|
if (ctxt->atom == NULL) {
|
|
ctxt->atom = xmlRegNewAtom(ctxt, type);
|
|
} else if (ctxt->atom->type == XML_REGEXP_RANGES) {
|
|
xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
|
|
type, 0, 0, NULL);
|
|
}
|
|
} else {
|
|
ERROR("Wrong escape sequence, misuse of character '\\'");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ```
|
|
* [17] charRange ::= seRange | XmlCharRef | XmlCharIncDash
|
|
* [18] seRange ::= charOrEsc '-' charOrEsc
|
|
* [20] charOrEsc ::= XmlChar | SingleCharEsc
|
|
* [21] XmlChar ::= [^\\#x2D\#x5B\#x5D]
|
|
* [22] XmlCharIncDash ::= [^\\#x5B\#x5D]
|
|
* ```
|
|
*
|
|
* @param ctxt a regexp parser context
|
|
*/
|
|
static void
|
|
xmlFAParseCharRange(xmlRegParserCtxtPtr ctxt) {
|
|
int cur, len;
|
|
int start = -1;
|
|
int end = -1;
|
|
|
|
if (CUR == '\0') {
|
|
ERROR("Expecting ']'");
|
|
return;
|
|
}
|
|
|
|
cur = CUR;
|
|
if (cur == '\\') {
|
|
NEXT;
|
|
cur = CUR;
|
|
switch (cur) {
|
|
case 'n': start = 0xA; break;
|
|
case 'r': start = 0xD; break;
|
|
case 't': start = 0x9; break;
|
|
case '\\': case '|': case '.': case '-': case '^': case '?':
|
|
case '*': case '+': case '{': case '}': case '(': case ')':
|
|
case '[': case ']':
|
|
start = cur; break;
|
|
default:
|
|
ERROR("Invalid escape value");
|
|
return;
|
|
}
|
|
end = start;
|
|
len = 1;
|
|
} else if ((cur != 0x5B) && (cur != 0x5D)) {
|
|
len = 4;
|
|
end = start = xmlGetUTF8Char(ctxt->cur, &len);
|
|
if (start < 0) {
|
|
ERROR("Invalid UTF-8");
|
|
return;
|
|
}
|
|
} else {
|
|
ERROR("Expecting a char range");
|
|
return;
|
|
}
|
|
/*
|
|
* Since we are "inside" a range, we can assume ctxt->cur is past
|
|
* the start of ctxt->string, and PREV should be safe
|
|
*/
|
|
if ((start == '-') && (NXT(1) != ']') && (PREV != '[') && (PREV != '^')) {
|
|
NEXTL(len);
|
|
return;
|
|
}
|
|
NEXTL(len);
|
|
cur = CUR;
|
|
if ((cur != '-') || (NXT(1) == '[') || (NXT(1) == ']')) {
|
|
xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
|
|
XML_REGEXP_CHARVAL, start, end, NULL);
|
|
return;
|
|
}
|
|
NEXT;
|
|
cur = CUR;
|
|
if (cur == '\\') {
|
|
NEXT;
|
|
cur = CUR;
|
|
switch (cur) {
|
|
case 'n': end = 0xA; break;
|
|
case 'r': end = 0xD; break;
|
|
case 't': end = 0x9; break;
|
|
case '\\': case '|': case '.': case '-': case '^': case '?':
|
|
case '*': case '+': case '{': case '}': case '(': case ')':
|
|
case '[': case ']':
|
|
end = cur; break;
|
|
default:
|
|
ERROR("Invalid escape value");
|
|
return;
|
|
}
|
|
len = 1;
|
|
} else if ((cur != '\0') && (cur != 0x5B) && (cur != 0x5D)) {
|
|
len = 4;
|
|
end = xmlGetUTF8Char(ctxt->cur, &len);
|
|
if (end < 0) {
|
|
ERROR("Invalid UTF-8");
|
|
return;
|
|
}
|
|
} else {
|
|
ERROR("Expecting the end of a char range");
|
|
return;
|
|
}
|
|
|
|
/* TODO check that the values are acceptable character ranges for XML */
|
|
if (end < start) {
|
|
ERROR("End of range is before start of range");
|
|
} else {
|
|
NEXTL(len);
|
|
xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
|
|
XML_REGEXP_CHARVAL, start, end, NULL);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* [14] posCharGroup ::= ( charRange | charClassEsc )+
|
|
*
|
|
* @param ctxt a regexp parser context
|
|
*/
|
|
static void
|
|
xmlFAParsePosCharGroup(xmlRegParserCtxtPtr ctxt) {
|
|
do {
|
|
if (CUR == '\\') {
|
|
xmlFAParseCharClassEsc(ctxt);
|
|
} else {
|
|
xmlFAParseCharRange(ctxt);
|
|
}
|
|
} while ((CUR != ']') && (CUR != '-') &&
|
|
(CUR != 0) && (ctxt->error == 0));
|
|
}
|
|
|
|
/**
|
|
* [13] charGroup ::= posCharGroup | negCharGroup | charClassSub
|
|
* [15] negCharGroup ::= '^' posCharGroup
|
|
* [16] charClassSub ::= ( posCharGroup | negCharGroup ) '-' charClassExpr
|
|
* [12] charClassExpr ::= '[' charGroup ']'
|
|
*
|
|
* @param ctxt a regexp parser context
|
|
*/
|
|
static void
|
|
xmlFAParseCharGroup(xmlRegParserCtxtPtr ctxt) {
|
|
int neg = ctxt->neg;
|
|
|
|
if (CUR == '^') {
|
|
NEXT;
|
|
ctxt->neg = !ctxt->neg;
|
|
xmlFAParsePosCharGroup(ctxt);
|
|
ctxt->neg = neg;
|
|
}
|
|
while ((CUR != ']') && (ctxt->error == 0)) {
|
|
if ((CUR == '-') && (NXT(1) == '[')) {
|
|
NEXT; /* eat the '-' */
|
|
NEXT; /* eat the '[' */
|
|
ctxt->neg = 2;
|
|
xmlFAParseCharGroup(ctxt);
|
|
ctxt->neg = neg;
|
|
if (CUR == ']') {
|
|
NEXT;
|
|
} else {
|
|
ERROR("charClassExpr: ']' expected");
|
|
}
|
|
break;
|
|
} else {
|
|
xmlFAParsePosCharGroup(ctxt);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* [11] charClass ::= charClassEsc | charClassExpr
|
|
* [12] charClassExpr ::= '[' charGroup ']'
|
|
*
|
|
* @param ctxt a regexp parser context
|
|
*/
|
|
static void
|
|
xmlFAParseCharClass(xmlRegParserCtxtPtr ctxt) {
|
|
if (CUR == '[') {
|
|
NEXT;
|
|
ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_RANGES);
|
|
if (ctxt->atom == NULL)
|
|
return;
|
|
xmlFAParseCharGroup(ctxt);
|
|
if (CUR == ']') {
|
|
NEXT;
|
|
} else {
|
|
ERROR("xmlFAParseCharClass: ']' expected");
|
|
}
|
|
} else {
|
|
xmlFAParseCharClassEsc(ctxt);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* [8] QuantExact ::= [0-9]+
|
|
*
|
|
* @param ctxt a regexp parser context
|
|
* @returns 0 if success or -1 in case of error
|
|
*/
|
|
static int
|
|
xmlFAParseQuantExact(xmlRegParserCtxtPtr ctxt) {
|
|
int ret = 0;
|
|
int ok = 0;
|
|
int overflow = 0;
|
|
|
|
while ((CUR >= '0') && (CUR <= '9')) {
|
|
if (ret > INT_MAX / 10) {
|
|
overflow = 1;
|
|
} else {
|
|
int digit = CUR - '0';
|
|
|
|
ret *= 10;
|
|
if (ret > INT_MAX - digit)
|
|
overflow = 1;
|
|
else
|
|
ret += digit;
|
|
}
|
|
ok = 1;
|
|
NEXT;
|
|
}
|
|
if ((ok != 1) || (overflow == 1)) {
|
|
return(-1);
|
|
}
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* [4] quantifier ::= [?*+] | ( '{' quantity '}' )
|
|
* [5] quantity ::= quantRange | quantMin | QuantExact
|
|
* [6] quantRange ::= QuantExact ',' QuantExact
|
|
* [7] quantMin ::= QuantExact ','
|
|
* [8] QuantExact ::= [0-9]+
|
|
*
|
|
* @param ctxt a regexp parser context
|
|
*/
|
|
static int
|
|
xmlFAParseQuantifier(xmlRegParserCtxtPtr ctxt) {
|
|
int cur;
|
|
|
|
cur = CUR;
|
|
if ((cur == '?') || (cur == '*') || (cur == '+')) {
|
|
if (ctxt->atom != NULL) {
|
|
if (cur == '?')
|
|
ctxt->atom->quant = XML_REGEXP_QUANT_OPT;
|
|
else if (cur == '*')
|
|
ctxt->atom->quant = XML_REGEXP_QUANT_MULT;
|
|
else if (cur == '+')
|
|
ctxt->atom->quant = XML_REGEXP_QUANT_PLUS;
|
|
}
|
|
NEXT;
|
|
return(1);
|
|
}
|
|
if (cur == '{') {
|
|
int min = 0, max = 0;
|
|
|
|
NEXT;
|
|
cur = xmlFAParseQuantExact(ctxt);
|
|
if (cur >= 0)
|
|
min = cur;
|
|
else {
|
|
ERROR("Improper quantifier");
|
|
}
|
|
if (CUR == ',') {
|
|
NEXT;
|
|
if (CUR == '}')
|
|
max = INT_MAX;
|
|
else {
|
|
cur = xmlFAParseQuantExact(ctxt);
|
|
if (cur >= 0)
|
|
max = cur;
|
|
else {
|
|
ERROR("Improper quantifier");
|
|
}
|
|
}
|
|
}
|
|
if (CUR == '}') {
|
|
NEXT;
|
|
} else {
|
|
ERROR("Unterminated quantifier");
|
|
}
|
|
if (max == 0)
|
|
max = min;
|
|
if (ctxt->atom != NULL) {
|
|
ctxt->atom->quant = XML_REGEXP_QUANT_RANGE;
|
|
ctxt->atom->min = min;
|
|
ctxt->atom->max = max;
|
|
}
|
|
return(1);
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/**
|
|
* [9] atom ::= Char | charClass | ( '(' regExp ')' )
|
|
*
|
|
* @param ctxt a regexp parser context
|
|
*/
|
|
static int
|
|
xmlFAParseAtom(xmlRegParserCtxtPtr ctxt) {
|
|
int codepoint, len;
|
|
|
|
codepoint = xmlFAIsChar(ctxt);
|
|
if (codepoint > 0) {
|
|
ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_CHARVAL);
|
|
if (ctxt->atom == NULL)
|
|
return(-1);
|
|
len = 4;
|
|
codepoint = xmlGetUTF8Char(ctxt->cur, &len);
|
|
if (codepoint < 0) {
|
|
ERROR("Invalid UTF-8");
|
|
return(-1);
|
|
}
|
|
ctxt->atom->codepoint = codepoint;
|
|
NEXTL(len);
|
|
return(1);
|
|
} else if (CUR == '|') {
|
|
return(0);
|
|
} else if (CUR == 0) {
|
|
return(0);
|
|
} else if (CUR == ')') {
|
|
return(0);
|
|
} else if (CUR == '(') {
|
|
xmlRegStatePtr start, oldend, start0;
|
|
|
|
NEXT;
|
|
if (ctxt->depth >= 50) {
|
|
ERROR("xmlFAParseAtom: maximum nesting depth exceeded");
|
|
return(-1);
|
|
}
|
|
/*
|
|
* this extra Epsilon transition is needed if we count with 0 allowed
|
|
* unfortunately this can't be known at that point
|
|
*/
|
|
xmlFAGenerateEpsilonTransition(ctxt, ctxt->state, NULL);
|
|
start0 = ctxt->state;
|
|
xmlFAGenerateEpsilonTransition(ctxt, ctxt->state, NULL);
|
|
start = ctxt->state;
|
|
oldend = ctxt->end;
|
|
ctxt->end = NULL;
|
|
ctxt->atom = NULL;
|
|
ctxt->depth++;
|
|
xmlFAParseRegExp(ctxt, 0);
|
|
ctxt->depth--;
|
|
if (CUR == ')') {
|
|
NEXT;
|
|
} else {
|
|
ERROR("xmlFAParseAtom: expecting ')'");
|
|
}
|
|
ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_SUBREG);
|
|
if (ctxt->atom == NULL)
|
|
return(-1);
|
|
ctxt->atom->start = start;
|
|
ctxt->atom->start0 = start0;
|
|
ctxt->atom->stop = ctxt->state;
|
|
ctxt->end = oldend;
|
|
return(1);
|
|
} else if ((CUR == '[') || (CUR == '\\') || (CUR == '.')) {
|
|
xmlFAParseCharClass(ctxt);
|
|
return(1);
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/**
|
|
* [3] piece ::= atom quantifier?
|
|
*
|
|
* @param ctxt a regexp parser context
|
|
*/
|
|
static int
|
|
xmlFAParsePiece(xmlRegParserCtxtPtr ctxt) {
|
|
int ret;
|
|
|
|
ctxt->atom = NULL;
|
|
ret = xmlFAParseAtom(ctxt);
|
|
if (ret == 0)
|
|
return(0);
|
|
if (ctxt->atom == NULL) {
|
|
ERROR("internal: no atom generated");
|
|
}
|
|
xmlFAParseQuantifier(ctxt);
|
|
return(1);
|
|
}
|
|
|
|
/**
|
|
* `to` is used to optimize by removing duplicate path in automata
|
|
* in expressions like (a|b)(c|d)
|
|
*
|
|
* [2] branch ::= piece*
|
|
*
|
|
* @param ctxt a regexp parser context
|
|
* @param to optional target to the end of the branch
|
|
*/
|
|
static int
|
|
xmlFAParseBranch(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr to) {
|
|
xmlRegStatePtr previous;
|
|
int ret;
|
|
|
|
previous = ctxt->state;
|
|
ret = xmlFAParsePiece(ctxt);
|
|
if (ret == 0) {
|
|
/* Empty branch */
|
|
xmlFAGenerateEpsilonTransition(ctxt, previous, to);
|
|
} else {
|
|
if (xmlFAGenerateTransitions(ctxt, previous,
|
|
(CUR=='|' || CUR==')' || CUR==0) ? to : NULL,
|
|
ctxt->atom) < 0) {
|
|
xmlRegFreeAtom(ctxt->atom);
|
|
ctxt->atom = NULL;
|
|
return(-1);
|
|
}
|
|
previous = ctxt->state;
|
|
ctxt->atom = NULL;
|
|
}
|
|
while ((ret != 0) && (ctxt->error == 0)) {
|
|
ret = xmlFAParsePiece(ctxt);
|
|
if (ret != 0) {
|
|
if (xmlFAGenerateTransitions(ctxt, previous,
|
|
(CUR=='|' || CUR==')' || CUR==0) ? to : NULL,
|
|
ctxt->atom) < 0) {
|
|
xmlRegFreeAtom(ctxt->atom);
|
|
ctxt->atom = NULL;
|
|
return(-1);
|
|
}
|
|
previous = ctxt->state;
|
|
ctxt->atom = NULL;
|
|
}
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/**
|
|
* [1] regExp ::= branch ( '|' branch )*
|
|
*
|
|
* @param ctxt a regexp parser context
|
|
* @param top is this the top-level expression ?
|
|
*/
|
|
static void
|
|
xmlFAParseRegExp(xmlRegParserCtxtPtr ctxt, int top) {
|
|
xmlRegStatePtr start, end;
|
|
|
|
/* if not top start should have been generated by an epsilon trans */
|
|
start = ctxt->state;
|
|
ctxt->end = NULL;
|
|
xmlFAParseBranch(ctxt, NULL);
|
|
if (top) {
|
|
ctxt->state->type = XML_REGEXP_FINAL_STATE;
|
|
}
|
|
if (CUR != '|') {
|
|
ctxt->end = ctxt->state;
|
|
return;
|
|
}
|
|
end = ctxt->state;
|
|
while ((CUR == '|') && (ctxt->error == 0)) {
|
|
NEXT;
|
|
ctxt->state = start;
|
|
ctxt->end = NULL;
|
|
xmlFAParseBranch(ctxt, end);
|
|
}
|
|
if (!top) {
|
|
ctxt->state = end;
|
|
ctxt->end = end;
|
|
}
|
|
}
|
|
|
|
/************************************************************************
|
|
* *
|
|
* The basic API *
|
|
* *
|
|
************************************************************************/
|
|
|
|
/**
|
|
* No-op since 2.14.0.
|
|
*
|
|
* @deprecated Don't use.
|
|
*
|
|
* @param output the file for the output debug
|
|
* @param regexp the compiled regexp
|
|
*/
|
|
void
|
|
xmlRegexpPrint(FILE *output ATTRIBUTE_UNUSED,
|
|
xmlRegexp *regexp ATTRIBUTE_UNUSED) {
|
|
}
|
|
|
|
/**
|
|
* Parses an XML Schemas regular expression.
|
|
*
|
|
* Parses a regular expression conforming to XML Schemas Part 2 Datatype
|
|
* Appendix F and builds an automata suitable for testing strings against
|
|
* that regular expression.
|
|
*
|
|
* @param regexp a regular expression string
|
|
* @returns the compiled expression or NULL in case of error
|
|
*/
|
|
xmlRegexp *
|
|
xmlRegexpCompile(const xmlChar *regexp) {
|
|
xmlRegexpPtr ret = NULL;
|
|
xmlRegParserCtxtPtr ctxt;
|
|
|
|
if (regexp == NULL)
|
|
return(NULL);
|
|
|
|
ctxt = xmlRegNewParserCtxt(regexp);
|
|
if (ctxt == NULL)
|
|
return(NULL);
|
|
|
|
/* initialize the parser */
|
|
ctxt->state = xmlRegStatePush(ctxt);
|
|
if (ctxt->state == NULL)
|
|
goto error;
|
|
ctxt->start = ctxt->state;
|
|
ctxt->end = NULL;
|
|
|
|
/* parse the expression building an automata */
|
|
xmlFAParseRegExp(ctxt, 1);
|
|
if (CUR != 0) {
|
|
ERROR("xmlFAParseRegExp: extra characters");
|
|
}
|
|
if (ctxt->error != 0)
|
|
goto error;
|
|
ctxt->end = ctxt->state;
|
|
ctxt->start->type = XML_REGEXP_START_STATE;
|
|
ctxt->end->type = XML_REGEXP_FINAL_STATE;
|
|
|
|
/* remove the Epsilon except for counted transitions */
|
|
xmlFAEliminateEpsilonTransitions(ctxt);
|
|
|
|
|
|
if (ctxt->error != 0)
|
|
goto error;
|
|
ret = xmlRegEpxFromParse(ctxt);
|
|
|
|
error:
|
|
xmlRegFreeParserCtxt(ctxt);
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* Check if the regular expression matches a string.
|
|
*
|
|
* @param comp the compiled regular expression
|
|
* @param content the value to check against the regular expression
|
|
* @returns 1 if it matches, 0 if not and a negative value in case of error
|
|
*/
|
|
int
|
|
xmlRegexpExec(xmlRegexp *comp, const xmlChar *content) {
|
|
if ((comp == NULL) || (content == NULL))
|
|
return(-1);
|
|
return(xmlFARegExec(comp, content));
|
|
}
|
|
|
|
/**
|
|
* Check if the regular expression is deterministic.
|
|
*
|
|
* DTD and XML Schemas require a deterministic content model,
|
|
* so the automaton compiled from the regex must be a DFA.
|
|
*
|
|
* The runtime of this function is quadratic in the number of
|
|
* outgoing edges, causing serious worst-case performance issues.
|
|
*
|
|
* @deprecated: Internal function, don't use.
|
|
*
|
|
* @param comp the compiled regular expression
|
|
* @returns 1 if it yes, 0 if not and a negative value in case
|
|
* of error
|
|
*/
|
|
int
|
|
xmlRegexpIsDeterminist(xmlRegexp *comp) {
|
|
xmlAutomataPtr am;
|
|
int ret;
|
|
|
|
if (comp == NULL)
|
|
return(-1);
|
|
if (comp->determinist != -1)
|
|
return(comp->determinist);
|
|
|
|
am = xmlNewAutomata();
|
|
if (am == NULL)
|
|
return(-1);
|
|
if (am->states != NULL) {
|
|
int i;
|
|
|
|
for (i = 0;i < am->nbStates;i++)
|
|
xmlRegFreeState(am->states[i]);
|
|
xmlFree(am->states);
|
|
}
|
|
am->nbAtoms = comp->nbAtoms;
|
|
am->atoms = comp->atoms;
|
|
am->nbStates = comp->nbStates;
|
|
am->states = comp->states;
|
|
am->determinist = -1;
|
|
am->flags = comp->flags;
|
|
ret = xmlFAComputesDeterminism(am);
|
|
am->atoms = NULL;
|
|
am->states = NULL;
|
|
xmlFreeAutomata(am);
|
|
comp->determinist = ret;
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* Free a regexp.
|
|
*
|
|
* @param regexp the regexp
|
|
*/
|
|
void
|
|
xmlRegFreeRegexp(xmlRegexp *regexp) {
|
|
int i;
|
|
if (regexp == NULL)
|
|
return;
|
|
|
|
if (regexp->string != NULL)
|
|
xmlFree(regexp->string);
|
|
if (regexp->states != NULL) {
|
|
for (i = 0;i < regexp->nbStates;i++)
|
|
xmlRegFreeState(regexp->states[i]);
|
|
xmlFree(regexp->states);
|
|
}
|
|
if (regexp->atoms != NULL) {
|
|
for (i = 0;i < regexp->nbAtoms;i++)
|
|
xmlRegFreeAtom(regexp->atoms[i]);
|
|
xmlFree(regexp->atoms);
|
|
}
|
|
if (regexp->counters != NULL)
|
|
xmlFree(regexp->counters);
|
|
if (regexp->compact != NULL)
|
|
xmlFree(regexp->compact);
|
|
if (regexp->transdata != NULL)
|
|
xmlFree(regexp->transdata);
|
|
if (regexp->stringMap != NULL) {
|
|
for (i = 0; i < regexp->nbstrings;i++)
|
|
xmlFree(regexp->stringMap[i]);
|
|
xmlFree(regexp->stringMap);
|
|
}
|
|
|
|
xmlFree(regexp);
|
|
}
|
|
|
|
/************************************************************************
|
|
* *
|
|
* The Automata interface *
|
|
* *
|
|
************************************************************************/
|
|
|
|
/**
|
|
* Create a new automata
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @returns the new object or NULL in case of failure
|
|
*/
|
|
xmlAutomata *
|
|
xmlNewAutomata(void) {
|
|
xmlAutomataPtr ctxt;
|
|
|
|
ctxt = xmlRegNewParserCtxt(NULL);
|
|
if (ctxt == NULL)
|
|
return(NULL);
|
|
|
|
/* initialize the parser */
|
|
ctxt->state = xmlRegStatePush(ctxt);
|
|
if (ctxt->state == NULL) {
|
|
xmlFreeAutomata(ctxt);
|
|
return(NULL);
|
|
}
|
|
ctxt->start = ctxt->state;
|
|
ctxt->end = NULL;
|
|
|
|
ctxt->start->type = XML_REGEXP_START_STATE;
|
|
ctxt->flags = 0;
|
|
|
|
return(ctxt);
|
|
}
|
|
|
|
/**
|
|
* Free an automata
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param am an automata
|
|
*/
|
|
void
|
|
xmlFreeAutomata(xmlAutomata *am) {
|
|
if (am == NULL)
|
|
return;
|
|
xmlRegFreeParserCtxt(am);
|
|
}
|
|
|
|
/**
|
|
* Set some flags on the automata
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param am an automata
|
|
* @param flags a set of internal flags
|
|
*/
|
|
void
|
|
xmlAutomataSetFlags(xmlAutomata *am, int flags) {
|
|
if (am == NULL)
|
|
return;
|
|
am->flags |= flags;
|
|
}
|
|
|
|
/**
|
|
* Initial state lookup
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param am an automata
|
|
* @returns the initial state of the automata
|
|
*/
|
|
xmlAutomataState *
|
|
xmlAutomataGetInitState(xmlAutomata *am) {
|
|
if (am == NULL)
|
|
return(NULL);
|
|
return(am->start);
|
|
}
|
|
|
|
/**
|
|
* Makes that state a final state
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param am an automata
|
|
* @param state a state in this automata
|
|
* @returns 0 or -1 in case of error
|
|
*/
|
|
int
|
|
xmlAutomataSetFinalState(xmlAutomata *am, xmlAutomataState *state) {
|
|
if ((am == NULL) || (state == NULL))
|
|
return(-1);
|
|
state->type = XML_REGEXP_FINAL_STATE;
|
|
return(0);
|
|
}
|
|
|
|
/**
|
|
* Add a transition.
|
|
*
|
|
* If `to` is NULL, this creates first a new target state in the automata
|
|
* and then adds a transition from the `from` state to the target state
|
|
* activated by the value of `token`
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param am an automata
|
|
* @param from the starting point of the transition
|
|
* @param to the target point of the transition or NULL
|
|
* @param token the input string associated to that transition
|
|
* @param data data passed to the callback function if the transition is activated
|
|
* @returns the target state or NULL in case of error
|
|
*/
|
|
xmlAutomataState *
|
|
xmlAutomataNewTransition(xmlAutomata *am, xmlAutomataState *from,
|
|
xmlAutomataState *to, const xmlChar *token,
|
|
void *data) {
|
|
xmlRegAtomPtr atom;
|
|
|
|
if ((am == NULL) || (from == NULL) || (token == NULL))
|
|
return(NULL);
|
|
atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
|
|
if (atom == NULL)
|
|
return(NULL);
|
|
atom->data = data;
|
|
atom->valuep = xmlStrdup(token);
|
|
if (atom->valuep == NULL) {
|
|
xmlRegFreeAtom(atom);
|
|
xmlRegexpErrMemory(am);
|
|
return(NULL);
|
|
}
|
|
|
|
if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
|
|
xmlRegFreeAtom(atom);
|
|
return(NULL);
|
|
}
|
|
if (to == NULL)
|
|
return(am->state);
|
|
return(to);
|
|
}
|
|
|
|
/**
|
|
* If `to` is NULL, this creates first a new target state in the automata
|
|
* and then adds a transition from the `from` state to the target state
|
|
* activated by the value of `token`
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param am an automata
|
|
* @param from the starting point of the transition
|
|
* @param to the target point of the transition or NULL
|
|
* @param token the first input string associated to that transition
|
|
* @param token2 the second input string associated to that transition
|
|
* @param data data passed to the callback function if the transition is activated
|
|
* @returns the target state or NULL in case of error
|
|
*/
|
|
xmlAutomataState *
|
|
xmlAutomataNewTransition2(xmlAutomata *am, xmlAutomataState *from,
|
|
xmlAutomataState *to, const xmlChar *token,
|
|
const xmlChar *token2, void *data) {
|
|
xmlRegAtomPtr atom;
|
|
|
|
if ((am == NULL) || (from == NULL) || (token == NULL))
|
|
return(NULL);
|
|
atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
|
|
if (atom == NULL)
|
|
return(NULL);
|
|
atom->data = data;
|
|
if ((token2 == NULL) || (*token2 == 0)) {
|
|
atom->valuep = xmlStrdup(token);
|
|
} else {
|
|
int lenn, lenp;
|
|
xmlChar *str;
|
|
|
|
lenn = strlen((char *) token2);
|
|
lenp = strlen((char *) token);
|
|
|
|
str = xmlMalloc(lenn + lenp + 2);
|
|
if (str == NULL) {
|
|
xmlRegFreeAtom(atom);
|
|
return(NULL);
|
|
}
|
|
memcpy(&str[0], token, lenp);
|
|
str[lenp] = '|';
|
|
memcpy(&str[lenp + 1], token2, lenn);
|
|
str[lenn + lenp + 1] = 0;
|
|
|
|
atom->valuep = str;
|
|
}
|
|
|
|
if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
|
|
xmlRegFreeAtom(atom);
|
|
return(NULL);
|
|
}
|
|
if (to == NULL)
|
|
return(am->state);
|
|
return(to);
|
|
}
|
|
|
|
/**
|
|
* If `to` is NULL, this creates first a new target state in the automata
|
|
* and then adds a transition from the `from` state to the target state
|
|
* activated by any value except (`token`,`token2`)
|
|
* Note that if `token2` is not NULL, then (X, NULL) won't match to follow
|
|
* the semantic of XSD \#\#other
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param am an automata
|
|
* @param from the starting point of the transition
|
|
* @param to the target point of the transition or NULL
|
|
* @param token the first input string associated to that transition
|
|
* @param token2 the second input string associated to that transition
|
|
* @param data data passed to the callback function if the transition is activated
|
|
* @returns the target state or NULL in case of error
|
|
*/
|
|
xmlAutomataState *
|
|
xmlAutomataNewNegTrans(xmlAutomata *am, xmlAutomataState *from,
|
|
xmlAutomataState *to, const xmlChar *token,
|
|
const xmlChar *token2, void *data) {
|
|
xmlRegAtomPtr atom;
|
|
xmlChar err_msg[200];
|
|
|
|
if ((am == NULL) || (from == NULL) || (token == NULL))
|
|
return(NULL);
|
|
atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
|
|
if (atom == NULL)
|
|
return(NULL);
|
|
atom->data = data;
|
|
atom->neg = 1;
|
|
if ((token2 == NULL) || (*token2 == 0)) {
|
|
atom->valuep = xmlStrdup(token);
|
|
} else {
|
|
int lenn, lenp;
|
|
xmlChar *str;
|
|
|
|
lenn = strlen((char *) token2);
|
|
lenp = strlen((char *) token);
|
|
|
|
str = xmlMalloc(lenn + lenp + 2);
|
|
if (str == NULL) {
|
|
xmlRegFreeAtom(atom);
|
|
return(NULL);
|
|
}
|
|
memcpy(&str[0], token, lenp);
|
|
str[lenp] = '|';
|
|
memcpy(&str[lenp + 1], token2, lenn);
|
|
str[lenn + lenp + 1] = 0;
|
|
|
|
atom->valuep = str;
|
|
}
|
|
snprintf((char *) err_msg, 199, "not %s", (const char *) atom->valuep);
|
|
err_msg[199] = 0;
|
|
atom->valuep2 = xmlStrdup(err_msg);
|
|
|
|
if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
|
|
xmlRegFreeAtom(atom);
|
|
return(NULL);
|
|
}
|
|
am->negs++;
|
|
if (to == NULL)
|
|
return(am->state);
|
|
return(to);
|
|
}
|
|
|
|
/**
|
|
* If `to` is NULL, this creates first a new target state in the automata
|
|
* and then adds a transition from the `from` state to the target state
|
|
* activated by a succession of input of value `token` and `token2` and
|
|
* whose number is between `min` and `max`
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param am an automata
|
|
* @param from the starting point of the transition
|
|
* @param to the target point of the transition or NULL
|
|
* @param token the input string associated to that transition
|
|
* @param token2 the second input string associated to that transition
|
|
* @param min the minimum successive occurrences of token
|
|
* @param max the maximum successive occurrences of token
|
|
* @param data data associated to the transition
|
|
* @returns the target state or NULL in case of error
|
|
*/
|
|
xmlAutomataState *
|
|
xmlAutomataNewCountTrans2(xmlAutomata *am, xmlAutomataState *from,
|
|
xmlAutomataState *to, const xmlChar *token,
|
|
const xmlChar *token2,
|
|
int min, int max, void *data) {
|
|
xmlRegAtomPtr atom;
|
|
int counter;
|
|
|
|
if ((am == NULL) || (from == NULL) || (token == NULL))
|
|
return(NULL);
|
|
if (min < 0)
|
|
return(NULL);
|
|
if ((max < min) || (max < 1))
|
|
return(NULL);
|
|
atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
|
|
if (atom == NULL)
|
|
return(NULL);
|
|
if ((token2 == NULL) || (*token2 == 0)) {
|
|
atom->valuep = xmlStrdup(token);
|
|
if (atom->valuep == NULL)
|
|
goto error;
|
|
} else {
|
|
int lenn, lenp;
|
|
xmlChar *str;
|
|
|
|
lenn = strlen((char *) token2);
|
|
lenp = strlen((char *) token);
|
|
|
|
str = xmlMalloc(lenn + lenp + 2);
|
|
if (str == NULL)
|
|
goto error;
|
|
memcpy(&str[0], token, lenp);
|
|
str[lenp] = '|';
|
|
memcpy(&str[lenp + 1], token2, lenn);
|
|
str[lenn + lenp + 1] = 0;
|
|
|
|
atom->valuep = str;
|
|
}
|
|
atom->data = data;
|
|
if (min == 0)
|
|
atom->min = 1;
|
|
else
|
|
atom->min = min;
|
|
atom->max = max;
|
|
|
|
/*
|
|
* associate a counter to the transition.
|
|
*/
|
|
counter = xmlRegGetCounter(am);
|
|
if (counter < 0)
|
|
goto error;
|
|
am->counters[counter].min = min;
|
|
am->counters[counter].max = max;
|
|
|
|
/* xmlFAGenerateTransitions(am, from, to, atom); */
|
|
if (to == NULL) {
|
|
to = xmlRegStatePush(am);
|
|
if (to == NULL)
|
|
goto error;
|
|
}
|
|
xmlRegStateAddTrans(am, from, atom, to, counter, -1);
|
|
if (xmlRegAtomPush(am, atom) < 0)
|
|
goto error;
|
|
am->state = to;
|
|
|
|
if (to == NULL)
|
|
to = am->state;
|
|
if (to == NULL)
|
|
return(NULL);
|
|
if (min == 0)
|
|
xmlFAGenerateEpsilonTransition(am, from, to);
|
|
return(to);
|
|
|
|
error:
|
|
xmlRegFreeAtom(atom);
|
|
return(NULL);
|
|
}
|
|
|
|
/**
|
|
* If `to` is NULL, this creates first a new target state in the automata
|
|
* and then adds a transition from the `from` state to the target state
|
|
* activated by a succession of input of value `token` and whose number
|
|
* is between `min` and `max`
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param am an automata
|
|
* @param from the starting point of the transition
|
|
* @param to the target point of the transition or NULL
|
|
* @param token the input string associated to that transition
|
|
* @param min the minimum successive occurrences of token
|
|
* @param max the maximum successive occurrences of token
|
|
* @param data data associated to the transition
|
|
* @returns the target state or NULL in case of error
|
|
*/
|
|
xmlAutomataState *
|
|
xmlAutomataNewCountTrans(xmlAutomata *am, xmlAutomataState *from,
|
|
xmlAutomataState *to, const xmlChar *token,
|
|
int min, int max, void *data) {
|
|
xmlRegAtomPtr atom;
|
|
int counter;
|
|
|
|
if ((am == NULL) || (from == NULL) || (token == NULL))
|
|
return(NULL);
|
|
if (min < 0)
|
|
return(NULL);
|
|
if ((max < min) || (max < 1))
|
|
return(NULL);
|
|
atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
|
|
if (atom == NULL)
|
|
return(NULL);
|
|
atom->valuep = xmlStrdup(token);
|
|
if (atom->valuep == NULL)
|
|
goto error;
|
|
atom->data = data;
|
|
if (min == 0)
|
|
atom->min = 1;
|
|
else
|
|
atom->min = min;
|
|
atom->max = max;
|
|
|
|
/*
|
|
* associate a counter to the transition.
|
|
*/
|
|
counter = xmlRegGetCounter(am);
|
|
if (counter < 0)
|
|
goto error;
|
|
am->counters[counter].min = min;
|
|
am->counters[counter].max = max;
|
|
|
|
/* xmlFAGenerateTransitions(am, from, to, atom); */
|
|
if (to == NULL) {
|
|
to = xmlRegStatePush(am);
|
|
if (to == NULL)
|
|
goto error;
|
|
}
|
|
xmlRegStateAddTrans(am, from, atom, to, counter, -1);
|
|
if (xmlRegAtomPush(am, atom) < 0)
|
|
goto error;
|
|
am->state = to;
|
|
|
|
if (to == NULL)
|
|
to = am->state;
|
|
if (to == NULL)
|
|
return(NULL);
|
|
if (min == 0)
|
|
xmlFAGenerateEpsilonTransition(am, from, to);
|
|
return(to);
|
|
|
|
error:
|
|
xmlRegFreeAtom(atom);
|
|
return(NULL);
|
|
}
|
|
|
|
/**
|
|
* If `to` is NULL, this creates first a new target state in the automata
|
|
* and then adds a transition from the `from` state to the target state
|
|
* activated by a succession of input of value `token` and `token2` and whose
|
|
* number is between `min` and `max`, moreover that transition can only be
|
|
* crossed once.
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param am an automata
|
|
* @param from the starting point of the transition
|
|
* @param to the target point of the transition or NULL
|
|
* @param token the input string associated to that transition
|
|
* @param token2 the second input string associated to that transition
|
|
* @param min the minimum successive occurrences of token
|
|
* @param max the maximum successive occurrences of token
|
|
* @param data data associated to the transition
|
|
* @returns the target state or NULL in case of error
|
|
*/
|
|
xmlAutomataState *
|
|
xmlAutomataNewOnceTrans2(xmlAutomata *am, xmlAutomataState *from,
|
|
xmlAutomataState *to, const xmlChar *token,
|
|
const xmlChar *token2,
|
|
int min, int max, void *data) {
|
|
xmlRegAtomPtr atom;
|
|
int counter;
|
|
|
|
if ((am == NULL) || (from == NULL) || (token == NULL))
|
|
return(NULL);
|
|
if (min < 1)
|
|
return(NULL);
|
|
if (max < min)
|
|
return(NULL);
|
|
atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
|
|
if (atom == NULL)
|
|
return(NULL);
|
|
if ((token2 == NULL) || (*token2 == 0)) {
|
|
atom->valuep = xmlStrdup(token);
|
|
if (atom->valuep == NULL)
|
|
goto error;
|
|
} else {
|
|
int lenn, lenp;
|
|
xmlChar *str;
|
|
|
|
lenn = strlen((char *) token2);
|
|
lenp = strlen((char *) token);
|
|
|
|
str = xmlMalloc(lenn + lenp + 2);
|
|
if (str == NULL)
|
|
goto error;
|
|
memcpy(&str[0], token, lenp);
|
|
str[lenp] = '|';
|
|
memcpy(&str[lenp + 1], token2, lenn);
|
|
str[lenn + lenp + 1] = 0;
|
|
|
|
atom->valuep = str;
|
|
}
|
|
atom->data = data;
|
|
atom->quant = XML_REGEXP_QUANT_ONCEONLY;
|
|
atom->min = min;
|
|
atom->max = max;
|
|
/*
|
|
* associate a counter to the transition.
|
|
*/
|
|
counter = xmlRegGetCounter(am);
|
|
if (counter < 0)
|
|
goto error;
|
|
am->counters[counter].min = 1;
|
|
am->counters[counter].max = 1;
|
|
|
|
/* xmlFAGenerateTransitions(am, from, to, atom); */
|
|
if (to == NULL) {
|
|
to = xmlRegStatePush(am);
|
|
if (to == NULL)
|
|
goto error;
|
|
}
|
|
xmlRegStateAddTrans(am, from, atom, to, counter, -1);
|
|
if (xmlRegAtomPush(am, atom) < 0)
|
|
goto error;
|
|
am->state = to;
|
|
return(to);
|
|
|
|
error:
|
|
xmlRegFreeAtom(atom);
|
|
return(NULL);
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* If `to` is NULL, this creates first a new target state in the automata
|
|
* and then adds a transition from the `from` state to the target state
|
|
* activated by a succession of input of value `token` and whose number
|
|
* is between `min` and `max`, moreover that transition can only be crossed
|
|
* once.
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param am an automata
|
|
* @param from the starting point of the transition
|
|
* @param to the target point of the transition or NULL
|
|
* @param token the input string associated to that transition
|
|
* @param min the minimum successive occurrences of token
|
|
* @param max the maximum successive occurrences of token
|
|
* @param data data associated to the transition
|
|
* @returns the target state or NULL in case of error
|
|
*/
|
|
xmlAutomataState *
|
|
xmlAutomataNewOnceTrans(xmlAutomata *am, xmlAutomataState *from,
|
|
xmlAutomataState *to, const xmlChar *token,
|
|
int min, int max, void *data) {
|
|
xmlRegAtomPtr atom;
|
|
int counter;
|
|
|
|
if ((am == NULL) || (from == NULL) || (token == NULL))
|
|
return(NULL);
|
|
if (min < 1)
|
|
return(NULL);
|
|
if (max < min)
|
|
return(NULL);
|
|
atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
|
|
if (atom == NULL)
|
|
return(NULL);
|
|
atom->valuep = xmlStrdup(token);
|
|
atom->data = data;
|
|
atom->quant = XML_REGEXP_QUANT_ONCEONLY;
|
|
atom->min = min;
|
|
atom->max = max;
|
|
/*
|
|
* associate a counter to the transition.
|
|
*/
|
|
counter = xmlRegGetCounter(am);
|
|
if (counter < 0)
|
|
goto error;
|
|
am->counters[counter].min = 1;
|
|
am->counters[counter].max = 1;
|
|
|
|
/* xmlFAGenerateTransitions(am, from, to, atom); */
|
|
if (to == NULL) {
|
|
to = xmlRegStatePush(am);
|
|
if (to == NULL)
|
|
goto error;
|
|
}
|
|
xmlRegStateAddTrans(am, from, atom, to, counter, -1);
|
|
if (xmlRegAtomPush(am, atom) < 0)
|
|
goto error;
|
|
am->state = to;
|
|
return(to);
|
|
|
|
error:
|
|
xmlRegFreeAtom(atom);
|
|
return(NULL);
|
|
}
|
|
|
|
/**
|
|
* Create a new disconnected state in the automata
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param am an automata
|
|
* @returns the new state or NULL in case of error
|
|
*/
|
|
xmlAutomataState *
|
|
xmlAutomataNewState(xmlAutomata *am) {
|
|
if (am == NULL)
|
|
return(NULL);
|
|
return(xmlRegStatePush(am));
|
|
}
|
|
|
|
/**
|
|
* If `to` is NULL, this creates first a new target state in the automata
|
|
* and then adds an epsilon transition from the `from` state to the
|
|
* target state
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param am an automata
|
|
* @param from the starting point of the transition
|
|
* @param to the target point of the transition or NULL
|
|
* @returns the target state or NULL in case of error
|
|
*/
|
|
xmlAutomataState *
|
|
xmlAutomataNewEpsilon(xmlAutomata *am, xmlAutomataState *from,
|
|
xmlAutomataState *to) {
|
|
if ((am == NULL) || (from == NULL))
|
|
return(NULL);
|
|
xmlFAGenerateEpsilonTransition(am, from, to);
|
|
if (to == NULL)
|
|
return(am->state);
|
|
return(to);
|
|
}
|
|
|
|
/**
|
|
* If `to` is NULL, this creates first a new target state in the automata
|
|
* and then adds a an ALL transition from the `from` state to the
|
|
* target state. That transition is an epsilon transition allowed only when
|
|
* all transitions from the `from` node have been activated.
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param am an automata
|
|
* @param from the starting point of the transition
|
|
* @param to the target point of the transition or NULL
|
|
* @param lax allow to transition if not all all transitions have been activated
|
|
* @returns the target state or NULL in case of error
|
|
*/
|
|
xmlAutomataState *
|
|
xmlAutomataNewAllTrans(xmlAutomata *am, xmlAutomataState *from,
|
|
xmlAutomataState *to, int lax) {
|
|
if ((am == NULL) || (from == NULL))
|
|
return(NULL);
|
|
xmlFAGenerateAllTransition(am, from, to, lax);
|
|
if (to == NULL)
|
|
return(am->state);
|
|
return(to);
|
|
}
|
|
|
|
/**
|
|
* Create a new counter
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param am an automata
|
|
* @param min the minimal value on the counter
|
|
* @param max the maximal value on the counter
|
|
* @returns the counter number or -1 in case of error
|
|
*/
|
|
int
|
|
xmlAutomataNewCounter(xmlAutomata *am, int min, int max) {
|
|
int ret;
|
|
|
|
if (am == NULL)
|
|
return(-1);
|
|
|
|
ret = xmlRegGetCounter(am);
|
|
if (ret < 0)
|
|
return(-1);
|
|
am->counters[ret].min = min;
|
|
am->counters[ret].max = max;
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* If `to` is NULL, this creates first a new target state in the automata
|
|
* and then adds an epsilon transition from the `from` state to the target state
|
|
* which will increment the counter provided
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param am an automata
|
|
* @param from the starting point of the transition
|
|
* @param to the target point of the transition or NULL
|
|
* @param counter the counter associated to that transition
|
|
* @returns the target state or NULL in case of error
|
|
*/
|
|
xmlAutomataState *
|
|
xmlAutomataNewCountedTrans(xmlAutomata *am, xmlAutomataState *from,
|
|
xmlAutomataState *to, int counter) {
|
|
if ((am == NULL) || (from == NULL) || (counter < 0))
|
|
return(NULL);
|
|
xmlFAGenerateCountedEpsilonTransition(am, from, to, counter);
|
|
if (to == NULL)
|
|
return(am->state);
|
|
return(to);
|
|
}
|
|
|
|
/**
|
|
* If `to` is NULL, this creates first a new target state in the automata
|
|
* and then adds an epsilon transition from the `from` state to the target state
|
|
* which will be allowed only if the counter is within the right range.
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param am an automata
|
|
* @param from the starting point of the transition
|
|
* @param to the target point of the transition or NULL
|
|
* @param counter the counter associated to that transition
|
|
* @returns the target state or NULL in case of error
|
|
*/
|
|
xmlAutomataState *
|
|
xmlAutomataNewCounterTrans(xmlAutomata *am, xmlAutomataState *from,
|
|
xmlAutomataState *to, int counter) {
|
|
if ((am == NULL) || (from == NULL) || (counter < 0))
|
|
return(NULL);
|
|
xmlFAGenerateCountedTransition(am, from, to, counter);
|
|
if (to == NULL)
|
|
return(am->state);
|
|
return(to);
|
|
}
|
|
|
|
/**
|
|
* Compile the automata into a Reg Exp ready for being executed.
|
|
* The automata should be free after this point.
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param am an automata
|
|
* @returns the compiled regexp or NULL in case of error
|
|
*/
|
|
xmlRegexp *
|
|
xmlAutomataCompile(xmlAutomata *am) {
|
|
xmlRegexpPtr ret;
|
|
|
|
if ((am == NULL) || (am->error != 0)) return(NULL);
|
|
xmlFAEliminateEpsilonTransitions(am);
|
|
if (am->error != 0)
|
|
return(NULL);
|
|
/* xmlFAComputesDeterminism(am); */
|
|
ret = xmlRegEpxFromParse(am);
|
|
|
|
return(ret);
|
|
}
|
|
|
|
/**
|
|
* Checks if an automata is determinist.
|
|
*
|
|
* @deprecated Internal function, don't use.
|
|
*
|
|
* @param am an automata
|
|
* @returns 1 if true, 0 if not, and -1 in case of error
|
|
*/
|
|
int
|
|
xmlAutomataIsDeterminist(xmlAutomata *am) {
|
|
int ret;
|
|
|
|
if (am == NULL)
|
|
return(-1);
|
|
|
|
ret = xmlFAComputesDeterminism(am);
|
|
return(ret);
|
|
}
|
|
|
|
#endif /* LIBXML_REGEXP_ENABLED */
|