1
0
mirror of https://gitlab.gnome.org/GNOME/libxml2.git synced 2025-10-21 14:53:44 +03:00
Files
libxml2/xmlregexp.c
Nick Wellnhofer 5e7c72cd5c doc: Misc fixes
2025-06-03 01:27:12 +02:00

6332 lines
170 KiB
C

/*
* regexp.c: generic and extensible Regular Expression engine
*
* Basically designed with the purpose of compiling regexps for
* the variety of validation/schemas mechanisms now available in
* XML related specifications these include:
* - XML-1.0 DTD validation
* - XML Schemas structure part 1
* - XML Schemas Datatypes part 2 especially Appendix F
* - RELAX-NG/TREX i.e. the counter proposal
*
* See Copyright for the status of this software.
*
* Author: Daniel Veillard
*/
#define IN_LIBXML
#include "libxml.h"
#ifdef LIBXML_REGEXP_ENABLED
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <libxml/tree.h>
#include <libxml/parserInternals.h>
#include <libxml/xmlregexp.h>
#include <libxml/xmlautomata.h>
#include "private/error.h"
#include "private/memory.h"
#include "private/regexp.h"
#ifndef SIZE_MAX
#define SIZE_MAX ((size_t) -1)
#endif
/* #define DEBUG_REGEXP */
#define MAX_PUSH 10000000
#ifdef ERROR
#undef ERROR
#endif
#define ERROR(str) \
ctxt->error = XML_REGEXP_COMPILE_ERROR; \
xmlRegexpErrCompile(ctxt, str);
#define NEXT ctxt->cur++
#define CUR (*(ctxt->cur))
#define NXT(index) (ctxt->cur[index])
#define NEXTL(l) ctxt->cur += l;
#define XML_REG_STRING_SEPARATOR '|'
/*
* Need PREV to check on a '-' within a Character Group. May only be used
* when it's guaranteed that cur is not at the beginning of ctxt->string!
*/
#define PREV (ctxt->cur[-1])
/************************************************************************
* *
* Unicode support *
* *
************************************************************************/
typedef struct {
const char *rangename;
const xmlChRangeGroup group;
} xmlUnicodeRange;
#include "codegen/unicode.inc"
/**
* binary table lookup for user-supplied name
*
* @param sptr a table of xmlUnicodeRange structs
* @param numentries number of table entries
* @param tname name to be found
* @returns pointer to range function if found, otherwise NULL
*/
static const xmlChRangeGroup *
xmlUnicodeLookup(const xmlUnicodeRange *sptr, int numentries,
const char *tname) {
int low, high, mid, cmp;
if (tname == NULL) return(NULL);
low = 0;
high = numentries - 1;
while (low <= high) {
mid = (low + high) / 2;
cmp = strcmp(tname, sptr[mid].rangename);
if (cmp == 0)
return (&sptr[mid].group);
if (cmp < 0)
high = mid - 1;
else
low = mid + 1;
}
return (NULL);
}
/**
* Check whether the character is part of the UCS Block
*
* @param code UCS code point
* @param block UCS block name
* @returns 1 if true, 0 if false and -1 on unknown block
*/
static int
xmlUCSIsBlock(int code, const char *block) {
const xmlChRangeGroup *group;
group = xmlUnicodeLookup(xmlUnicodeBlocks,
sizeof(xmlUnicodeBlocks) / sizeof(xmlUnicodeBlocks[0]), block);
if (group == NULL)
return (-1);
return (xmlCharInRange(code, group));
}
/************************************************************************
* *
* Datatypes and structures *
* *
************************************************************************/
/*
* Note: the order of the enums below is significant, do not shuffle
*/
typedef enum {
XML_REGEXP_EPSILON = 1,
XML_REGEXP_CHARVAL,
XML_REGEXP_RANGES,
XML_REGEXP_SUBREG, /* used for () sub regexps */
XML_REGEXP_STRING,
XML_REGEXP_ANYCHAR, /* . */
XML_REGEXP_ANYSPACE, /* \s */
XML_REGEXP_NOTSPACE, /* \S */
XML_REGEXP_INITNAME, /* \l */
XML_REGEXP_NOTINITNAME, /* \L */
XML_REGEXP_NAMECHAR, /* \c */
XML_REGEXP_NOTNAMECHAR, /* \C */
XML_REGEXP_DECIMAL, /* \d */
XML_REGEXP_NOTDECIMAL, /* \D */
XML_REGEXP_REALCHAR, /* \w */
XML_REGEXP_NOTREALCHAR, /* \W */
XML_REGEXP_LETTER = 100,
XML_REGEXP_LETTER_UPPERCASE,
XML_REGEXP_LETTER_LOWERCASE,
XML_REGEXP_LETTER_TITLECASE,
XML_REGEXP_LETTER_MODIFIER,
XML_REGEXP_LETTER_OTHERS,
XML_REGEXP_MARK,
XML_REGEXP_MARK_NONSPACING,
XML_REGEXP_MARK_SPACECOMBINING,
XML_REGEXP_MARK_ENCLOSING,
XML_REGEXP_NUMBER,
XML_REGEXP_NUMBER_DECIMAL,
XML_REGEXP_NUMBER_LETTER,
XML_REGEXP_NUMBER_OTHERS,
XML_REGEXP_PUNCT,
XML_REGEXP_PUNCT_CONNECTOR,
XML_REGEXP_PUNCT_DASH,
XML_REGEXP_PUNCT_OPEN,
XML_REGEXP_PUNCT_CLOSE,
XML_REGEXP_PUNCT_INITQUOTE,
XML_REGEXP_PUNCT_FINQUOTE,
XML_REGEXP_PUNCT_OTHERS,
XML_REGEXP_SEPAR,
XML_REGEXP_SEPAR_SPACE,
XML_REGEXP_SEPAR_LINE,
XML_REGEXP_SEPAR_PARA,
XML_REGEXP_SYMBOL,
XML_REGEXP_SYMBOL_MATH,
XML_REGEXP_SYMBOL_CURRENCY,
XML_REGEXP_SYMBOL_MODIFIER,
XML_REGEXP_SYMBOL_OTHERS,
XML_REGEXP_OTHER,
XML_REGEXP_OTHER_CONTROL,
XML_REGEXP_OTHER_FORMAT,
XML_REGEXP_OTHER_PRIVATE,
XML_REGEXP_OTHER_NA,
XML_REGEXP_BLOCK_NAME
} xmlRegAtomType;
typedef enum {
XML_REGEXP_QUANT_EPSILON = 1,
XML_REGEXP_QUANT_ONCE,
XML_REGEXP_QUANT_OPT,
XML_REGEXP_QUANT_MULT,
XML_REGEXP_QUANT_PLUS,
XML_REGEXP_QUANT_ONCEONLY,
XML_REGEXP_QUANT_ALL,
XML_REGEXP_QUANT_RANGE
} xmlRegQuantType;
typedef enum {
XML_REGEXP_START_STATE = 1,
XML_REGEXP_FINAL_STATE,
XML_REGEXP_TRANS_STATE,
XML_REGEXP_SINK_STATE,
XML_REGEXP_UNREACH_STATE
} xmlRegStateType;
typedef enum {
XML_REGEXP_MARK_NORMAL = 0,
XML_REGEXP_MARK_START,
XML_REGEXP_MARK_VISITED
} xmlRegMarkedType;
typedef struct _xmlRegRange xmlRegRange;
typedef xmlRegRange *xmlRegRangePtr;
struct _xmlRegRange {
int neg; /* 0 normal, 1 not, 2 exclude */
xmlRegAtomType type;
int start;
int end;
xmlChar *blockName;
};
typedef struct _xmlRegAtom xmlRegAtom;
typedef xmlRegAtom *xmlRegAtomPtr;
typedef struct _xmlAutomataState xmlRegState;
typedef xmlRegState *xmlRegStatePtr;
struct _xmlRegAtom {
int no;
xmlRegAtomType type;
xmlRegQuantType quant;
int min;
int max;
void *valuep;
void *valuep2;
int neg;
int codepoint;
xmlRegStatePtr start;
xmlRegStatePtr start0;
xmlRegStatePtr stop;
int maxRanges;
int nbRanges;
xmlRegRangePtr *ranges;
void *data;
};
typedef struct _xmlRegCounter xmlRegCounter;
typedef xmlRegCounter *xmlRegCounterPtr;
struct _xmlRegCounter {
int min;
int max;
};
typedef struct _xmlRegTrans xmlRegTrans;
typedef xmlRegTrans *xmlRegTransPtr;
struct _xmlRegTrans {
xmlRegAtomPtr atom;
int to;
int counter;
int count;
int nd;
};
struct _xmlAutomataState {
xmlRegStateType type;
xmlRegMarkedType mark;
xmlRegMarkedType markd;
xmlRegMarkedType reached;
int no;
int maxTrans;
int nbTrans;
xmlRegTrans *trans;
/* knowing states pointing to us can speed things up */
int maxTransTo;
int nbTransTo;
int *transTo;
};
typedef struct _xmlAutomata xmlRegParserCtxt;
typedef xmlRegParserCtxt *xmlRegParserCtxtPtr;
#define AM_AUTOMATA_RNG 1
struct _xmlAutomata {
xmlChar *string;
xmlChar *cur;
int error;
int neg;
xmlRegStatePtr start;
xmlRegStatePtr end;
xmlRegStatePtr state;
xmlRegAtomPtr atom;
int maxAtoms;
int nbAtoms;
xmlRegAtomPtr *atoms;
int maxStates;
int nbStates;
xmlRegStatePtr *states;
int maxCounters;
int nbCounters;
xmlRegCounter *counters;
int determinist;
int negs;
int flags;
int depth;
};
struct _xmlRegexp {
xmlChar *string;
int nbStates;
xmlRegStatePtr *states;
int nbAtoms;
xmlRegAtomPtr *atoms;
int nbCounters;
xmlRegCounter *counters;
int determinist;
int flags;
/*
* That's the compact form for determinists automatas
*/
int nbstates;
int *compact;
void **transdata;
int nbstrings;
xmlChar **stringMap;
};
typedef struct _xmlRegExecRollback xmlRegExecRollback;
typedef xmlRegExecRollback *xmlRegExecRollbackPtr;
struct _xmlRegExecRollback {
xmlRegStatePtr state;/* the current state */
int index; /* the index in the input stack */
int nextbranch; /* the next transition to explore in that state */
int *counts; /* save the automata state if it has some */
};
typedef struct _xmlRegInputToken xmlRegInputToken;
typedef xmlRegInputToken *xmlRegInputTokenPtr;
struct _xmlRegInputToken {
xmlChar *value;
void *data;
};
struct _xmlRegExecCtxt {
int status; /* execution status != 0 indicate an error */
int determinist; /* did we find an indeterministic behaviour */
xmlRegexpPtr comp; /* the compiled regexp */
xmlRegExecCallbacks callback;
void *data;
xmlRegStatePtr state;/* the current state */
int transno; /* the current transition on that state */
int transcount; /* the number of chars in char counted transitions */
/*
* A stack of rollback states
*/
int maxRollbacks;
int nbRollbacks;
xmlRegExecRollback *rollbacks;
/*
* The state of the automata if any
*/
int *counts;
/*
* The input stack
*/
int inputStackMax;
int inputStackNr;
int index;
int *charStack;
const xmlChar *inputString; /* when operating on characters */
xmlRegInputTokenPtr inputStack;/* when operating on strings */
/*
* error handling
*/
int errStateNo; /* the error state number */
xmlRegStatePtr errState; /* the error state */
xmlChar *errString; /* the string raising the error */
int *errCounts; /* counters at the error state */
int nbPush;
};
#define REGEXP_ALL_COUNTER 0x123456
#define REGEXP_ALL_LAX_COUNTER 0x123457
static void xmlFAParseRegExp(xmlRegParserCtxtPtr ctxt, int top);
static void xmlRegFreeState(xmlRegStatePtr state);
static void xmlRegFreeAtom(xmlRegAtomPtr atom);
static int xmlRegStrEqualWildcard(const xmlChar *expStr, const xmlChar *valStr);
static int xmlRegCheckCharacter(xmlRegAtomPtr atom, int codepoint);
static int xmlRegCheckCharacterRange(xmlRegAtomType type, int codepoint,
int neg, int start, int end, const xmlChar *blockName);
/************************************************************************
* *
* Regexp memory error handler *
* *
************************************************************************/
/**
* Handle an out of memory condition
*
* @param ctxt regexp parser context
*/
static void
xmlRegexpErrMemory(xmlRegParserCtxtPtr ctxt)
{
if (ctxt != NULL)
ctxt->error = XML_ERR_NO_MEMORY;
xmlRaiseMemoryError(NULL, NULL, NULL, XML_FROM_REGEXP, NULL);
}
/**
* Handle a compilation failure
*
* @param ctxt regexp parser context
* @param extra extra information
*/
static void
xmlRegexpErrCompile(xmlRegParserCtxtPtr ctxt, const char *extra)
{
const char *regexp = NULL;
int idx = 0;
int res;
if (ctxt != NULL) {
regexp = (const char *) ctxt->string;
idx = ctxt->cur - ctxt->string;
ctxt->error = XML_REGEXP_COMPILE_ERROR;
}
res = xmlRaiseError(NULL, NULL, NULL, NULL, NULL, XML_FROM_REGEXP,
XML_REGEXP_COMPILE_ERROR, XML_ERR_FATAL,
NULL, 0, extra, regexp, NULL, idx, 0,
"failed to compile: %s\n", extra);
if (res < 0)
xmlRegexpErrMemory(ctxt);
}
/************************************************************************
* *
* Allocation/Deallocation *
* *
************************************************************************/
static int xmlFAComputesDeterminism(xmlRegParserCtxtPtr ctxt);
/**
* Allocate a two-dimensional array and set all elements to zero.
*
* @param dim1 size of first dimension
* @param dim2 size of second dimension
* @param elemSize size of element
* @returns the new array or NULL in case of error.
*/
static void*
xmlRegCalloc2(size_t dim1, size_t dim2, size_t elemSize) {
size_t totalSize;
void *ret;
/* Check for overflow */
if ((dim2 == 0) || (elemSize == 0) ||
(dim1 > SIZE_MAX / dim2 / elemSize))
return (NULL);
totalSize = dim1 * dim2 * elemSize;
ret = xmlMalloc(totalSize);
if (ret != NULL)
memset(ret, 0, totalSize);
return (ret);
}
/**
* Allocate a new regexp and fill it with the result from the parser
*
* @param ctxt the parser context used to build it
* @returns the new regexp or NULL in case of error
*/
static xmlRegexpPtr
xmlRegEpxFromParse(xmlRegParserCtxtPtr ctxt) {
xmlRegexpPtr ret;
ret = (xmlRegexpPtr) xmlMalloc(sizeof(xmlRegexp));
if (ret == NULL) {
xmlRegexpErrMemory(ctxt);
return(NULL);
}
memset(ret, 0, sizeof(xmlRegexp));
ret->string = ctxt->string;
ret->nbStates = ctxt->nbStates;
ret->states = ctxt->states;
ret->nbAtoms = ctxt->nbAtoms;
ret->atoms = ctxt->atoms;
ret->nbCounters = ctxt->nbCounters;
ret->counters = ctxt->counters;
ret->determinist = ctxt->determinist;
ret->flags = ctxt->flags;
if (ret->determinist == -1) {
if (xmlRegexpIsDeterminist(ret) < 0) {
xmlRegexpErrMemory(ctxt);
xmlFree(ret);
return(NULL);
}
}
if ((ret->determinist != 0) &&
(ret->nbCounters == 0) &&
(ctxt->negs == 0) &&
(ret->atoms != NULL) &&
(ret->atoms[0] != NULL) &&
(ret->atoms[0]->type == XML_REGEXP_STRING)) {
int i, j, nbstates = 0, nbatoms = 0;
int *stateRemap;
int *stringRemap;
int *transitions;
void **transdata;
xmlChar **stringMap;
xmlChar *value;
/*
* Switch to a compact representation
* 1/ counting the effective number of states left
* 2/ counting the unique number of atoms, and check that
* they are all of the string type
* 3/ build a table state x atom for the transitions
*/
stateRemap = xmlMalloc(ret->nbStates * sizeof(int));
if (stateRemap == NULL) {
xmlRegexpErrMemory(ctxt);
xmlFree(ret);
return(NULL);
}
for (i = 0;i < ret->nbStates;i++) {
if (ret->states[i] != NULL) {
stateRemap[i] = nbstates;
nbstates++;
} else {
stateRemap[i] = -1;
}
}
stringMap = xmlMalloc(ret->nbAtoms * sizeof(char *));
if (stringMap == NULL) {
xmlRegexpErrMemory(ctxt);
xmlFree(stateRemap);
xmlFree(ret);
return(NULL);
}
stringRemap = xmlMalloc(ret->nbAtoms * sizeof(int));
if (stringRemap == NULL) {
xmlRegexpErrMemory(ctxt);
xmlFree(stringMap);
xmlFree(stateRemap);
xmlFree(ret);
return(NULL);
}
for (i = 0;i < ret->nbAtoms;i++) {
if ((ret->atoms[i]->type == XML_REGEXP_STRING) &&
(ret->atoms[i]->quant == XML_REGEXP_QUANT_ONCE)) {
value = ret->atoms[i]->valuep;
for (j = 0;j < nbatoms;j++) {
if (xmlStrEqual(stringMap[j], value)) {
stringRemap[i] = j;
break;
}
}
if (j >= nbatoms) {
stringRemap[i] = nbatoms;
stringMap[nbatoms] = xmlStrdup(value);
if (stringMap[nbatoms] == NULL) {
for (i = 0;i < nbatoms;i++)
xmlFree(stringMap[i]);
xmlFree(stringRemap);
xmlFree(stringMap);
xmlFree(stateRemap);
xmlFree(ret);
return(NULL);
}
nbatoms++;
}
} else {
xmlFree(stateRemap);
xmlFree(stringRemap);
for (i = 0;i < nbatoms;i++)
xmlFree(stringMap[i]);
xmlFree(stringMap);
xmlFree(ret);
return(NULL);
}
}
transitions = (int *) xmlRegCalloc2(nbstates + 1, nbatoms + 1,
sizeof(int));
if (transitions == NULL) {
xmlFree(stateRemap);
xmlFree(stringRemap);
for (i = 0;i < nbatoms;i++)
xmlFree(stringMap[i]);
xmlFree(stringMap);
xmlFree(ret);
return(NULL);
}
/*
* Allocate the transition table. The first entry for each
* state corresponds to the state type.
*/
transdata = NULL;
for (i = 0;i < ret->nbStates;i++) {
int stateno, atomno, targetno, prev;
xmlRegStatePtr state;
xmlRegTransPtr trans;
stateno = stateRemap[i];
if (stateno == -1)
continue;
state = ret->states[i];
transitions[stateno * (nbatoms + 1)] = state->type;
for (j = 0;j < state->nbTrans;j++) {
trans = &(state->trans[j]);
if ((trans->to < 0) || (trans->atom == NULL))
continue;
atomno = stringRemap[trans->atom->no];
if ((trans->atom->data != NULL) && (transdata == NULL)) {
transdata = (void **) xmlRegCalloc2(nbstates, nbatoms,
sizeof(void *));
if (transdata == NULL) {
xmlRegexpErrMemory(ctxt);
break;
}
}
targetno = stateRemap[trans->to];
/*
* if the same atom can generate transitions to 2 different
* states then it means the automata is not deterministic and
* the compact form can't be used !
*/
prev = transitions[stateno * (nbatoms + 1) + atomno + 1];
if (prev != 0) {
if (prev != targetno + 1) {
ret->determinist = 0;
if (transdata != NULL)
xmlFree(transdata);
xmlFree(transitions);
xmlFree(stateRemap);
xmlFree(stringRemap);
for (i = 0;i < nbatoms;i++)
xmlFree(stringMap[i]);
xmlFree(stringMap);
goto not_determ;
}
} else {
transitions[stateno * (nbatoms + 1) + atomno + 1] =
targetno + 1; /* to avoid 0 */
if (transdata != NULL)
transdata[stateno * nbatoms + atomno] =
trans->atom->data;
}
}
}
ret->determinist = 1;
/*
* Cleanup of the old data
*/
if (ret->states != NULL) {
for (i = 0;i < ret->nbStates;i++)
xmlRegFreeState(ret->states[i]);
xmlFree(ret->states);
}
ret->states = NULL;
ret->nbStates = 0;
if (ret->atoms != NULL) {
for (i = 0;i < ret->nbAtoms;i++)
xmlRegFreeAtom(ret->atoms[i]);
xmlFree(ret->atoms);
}
ret->atoms = NULL;
ret->nbAtoms = 0;
ret->compact = transitions;
ret->transdata = transdata;
ret->stringMap = stringMap;
ret->nbstrings = nbatoms;
ret->nbstates = nbstates;
xmlFree(stateRemap);
xmlFree(stringRemap);
}
not_determ:
ctxt->string = NULL;
ctxt->nbStates = 0;
ctxt->states = NULL;
ctxt->nbAtoms = 0;
ctxt->atoms = NULL;
ctxt->nbCounters = 0;
ctxt->counters = NULL;
return(ret);
}
/**
* Allocate a new regexp parser context
*
* @param string the string to parse
* @returns the new context or NULL in case of error
*/
static xmlRegParserCtxtPtr
xmlRegNewParserCtxt(const xmlChar *string) {
xmlRegParserCtxtPtr ret;
ret = (xmlRegParserCtxtPtr) xmlMalloc(sizeof(xmlRegParserCtxt));
if (ret == NULL)
return(NULL);
memset(ret, 0, sizeof(xmlRegParserCtxt));
if (string != NULL) {
ret->string = xmlStrdup(string);
if (ret->string == NULL) {
xmlFree(ret);
return(NULL);
}
}
ret->cur = ret->string;
ret->neg = 0;
ret->negs = 0;
ret->error = 0;
ret->determinist = -1;
return(ret);
}
/**
* Allocate a new regexp range
*
* @param ctxt the regexp parser context
* @param neg is that negative
* @param type the type of range
* @param start the start codepoint
* @param end the end codepoint
* @returns the new range or NULL in case of error
*/
static xmlRegRangePtr
xmlRegNewRange(xmlRegParserCtxtPtr ctxt,
int neg, xmlRegAtomType type, int start, int end) {
xmlRegRangePtr ret;
ret = (xmlRegRangePtr) xmlMalloc(sizeof(xmlRegRange));
if (ret == NULL) {
xmlRegexpErrMemory(ctxt);
return(NULL);
}
ret->neg = neg;
ret->type = type;
ret->start = start;
ret->end = end;
return(ret);
}
/**
* Free a regexp range
*
* @param range the regexp range
*/
static void
xmlRegFreeRange(xmlRegRangePtr range) {
if (range == NULL)
return;
if (range->blockName != NULL)
xmlFree(range->blockName);
xmlFree(range);
}
/**
* Copy a regexp range
*
* @param ctxt regexp parser context
* @param range the regexp range
* @returns the new copy or NULL in case of error.
*/
static xmlRegRangePtr
xmlRegCopyRange(xmlRegParserCtxtPtr ctxt, xmlRegRangePtr range) {
xmlRegRangePtr ret;
if (range == NULL)
return(NULL);
ret = xmlRegNewRange(ctxt, range->neg, range->type, range->start,
range->end);
if (ret == NULL)
return(NULL);
if (range->blockName != NULL) {
ret->blockName = xmlStrdup(range->blockName);
if (ret->blockName == NULL) {
xmlRegexpErrMemory(ctxt);
xmlRegFreeRange(ret);
return(NULL);
}
}
return(ret);
}
/**
* Allocate a new atom
*
* @param ctxt the regexp parser context
* @param type the type of atom
* @returns the new atom or NULL in case of error
*/
static xmlRegAtomPtr
xmlRegNewAtom(xmlRegParserCtxtPtr ctxt, xmlRegAtomType type) {
xmlRegAtomPtr ret;
ret = (xmlRegAtomPtr) xmlMalloc(sizeof(xmlRegAtom));
if (ret == NULL) {
xmlRegexpErrMemory(ctxt);
return(NULL);
}
memset(ret, 0, sizeof(xmlRegAtom));
ret->type = type;
ret->quant = XML_REGEXP_QUANT_ONCE;
ret->min = 0;
ret->max = 0;
return(ret);
}
/**
* Free a regexp atom
*
* @param atom the regexp atom
*/
static void
xmlRegFreeAtom(xmlRegAtomPtr atom) {
int i;
if (atom == NULL)
return;
for (i = 0;i < atom->nbRanges;i++)
xmlRegFreeRange(atom->ranges[i]);
if (atom->ranges != NULL)
xmlFree(atom->ranges);
if ((atom->type == XML_REGEXP_STRING) && (atom->valuep != NULL))
xmlFree(atom->valuep);
if ((atom->type == XML_REGEXP_STRING) && (atom->valuep2 != NULL))
xmlFree(atom->valuep2);
if ((atom->type == XML_REGEXP_BLOCK_NAME) && (atom->valuep != NULL))
xmlFree(atom->valuep);
xmlFree(atom);
}
/**
* Allocate a new regexp range
*
* @param ctxt the regexp parser context
* @param atom the original atom
* @returns the new atom or NULL in case of error
*/
static xmlRegAtomPtr
xmlRegCopyAtom(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom) {
xmlRegAtomPtr ret;
ret = (xmlRegAtomPtr) xmlMalloc(sizeof(xmlRegAtom));
if (ret == NULL) {
xmlRegexpErrMemory(ctxt);
return(NULL);
}
memset(ret, 0, sizeof(xmlRegAtom));
ret->type = atom->type;
ret->quant = atom->quant;
ret->min = atom->min;
ret->max = atom->max;
if (atom->nbRanges > 0) {
int i;
ret->ranges = (xmlRegRangePtr *) xmlMalloc(sizeof(xmlRegRangePtr) *
atom->nbRanges);
if (ret->ranges == NULL) {
xmlRegexpErrMemory(ctxt);
goto error;
}
for (i = 0;i < atom->nbRanges;i++) {
ret->ranges[i] = xmlRegCopyRange(ctxt, atom->ranges[i]);
if (ret->ranges[i] == NULL)
goto error;
ret->nbRanges = i + 1;
}
}
return(ret);
error:
xmlRegFreeAtom(ret);
return(NULL);
}
static xmlRegStatePtr
xmlRegNewState(xmlRegParserCtxtPtr ctxt) {
xmlRegStatePtr ret;
ret = (xmlRegStatePtr) xmlMalloc(sizeof(xmlRegState));
if (ret == NULL) {
xmlRegexpErrMemory(ctxt);
return(NULL);
}
memset(ret, 0, sizeof(xmlRegState));
ret->type = XML_REGEXP_TRANS_STATE;
ret->mark = XML_REGEXP_MARK_NORMAL;
return(ret);
}
/**
* Free a regexp state
*
* @param state the regexp state
*/
static void
xmlRegFreeState(xmlRegStatePtr state) {
if (state == NULL)
return;
if (state->trans != NULL)
xmlFree(state->trans);
if (state->transTo != NULL)
xmlFree(state->transTo);
xmlFree(state);
}
/**
* Free a regexp parser context
*
* @param ctxt the regexp parser context
*/
static void
xmlRegFreeParserCtxt(xmlRegParserCtxtPtr ctxt) {
int i;
if (ctxt == NULL)
return;
if (ctxt->string != NULL)
xmlFree(ctxt->string);
if (ctxt->states != NULL) {
for (i = 0;i < ctxt->nbStates;i++)
xmlRegFreeState(ctxt->states[i]);
xmlFree(ctxt->states);
}
if (ctxt->atoms != NULL) {
for (i = 0;i < ctxt->nbAtoms;i++)
xmlRegFreeAtom(ctxt->atoms[i]);
xmlFree(ctxt->atoms);
}
if (ctxt->counters != NULL)
xmlFree(ctxt->counters);
xmlFree(ctxt);
}
/************************************************************************
* *
* Display of Data structures *
* *
************************************************************************/
#ifdef DEBUG_REGEXP
static void
xmlRegPrintAtomType(FILE *output, xmlRegAtomType type) {
switch (type) {
case XML_REGEXP_EPSILON:
fprintf(output, "epsilon "); break;
case XML_REGEXP_CHARVAL:
fprintf(output, "charval "); break;
case XML_REGEXP_RANGES:
fprintf(output, "ranges "); break;
case XML_REGEXP_SUBREG:
fprintf(output, "subexpr "); break;
case XML_REGEXP_STRING:
fprintf(output, "string "); break;
case XML_REGEXP_ANYCHAR:
fprintf(output, "anychar "); break;
case XML_REGEXP_ANYSPACE:
fprintf(output, "anyspace "); break;
case XML_REGEXP_NOTSPACE:
fprintf(output, "notspace "); break;
case XML_REGEXP_INITNAME:
fprintf(output, "initname "); break;
case XML_REGEXP_NOTINITNAME:
fprintf(output, "notinitname "); break;
case XML_REGEXP_NAMECHAR:
fprintf(output, "namechar "); break;
case XML_REGEXP_NOTNAMECHAR:
fprintf(output, "notnamechar "); break;
case XML_REGEXP_DECIMAL:
fprintf(output, "decimal "); break;
case XML_REGEXP_NOTDECIMAL:
fprintf(output, "notdecimal "); break;
case XML_REGEXP_REALCHAR:
fprintf(output, "realchar "); break;
case XML_REGEXP_NOTREALCHAR:
fprintf(output, "notrealchar "); break;
case XML_REGEXP_LETTER:
fprintf(output, "LETTER "); break;
case XML_REGEXP_LETTER_UPPERCASE:
fprintf(output, "LETTER_UPPERCASE "); break;
case XML_REGEXP_LETTER_LOWERCASE:
fprintf(output, "LETTER_LOWERCASE "); break;
case XML_REGEXP_LETTER_TITLECASE:
fprintf(output, "LETTER_TITLECASE "); break;
case XML_REGEXP_LETTER_MODIFIER:
fprintf(output, "LETTER_MODIFIER "); break;
case XML_REGEXP_LETTER_OTHERS:
fprintf(output, "LETTER_OTHERS "); break;
case XML_REGEXP_MARK:
fprintf(output, "MARK "); break;
case XML_REGEXP_MARK_NONSPACING:
fprintf(output, "MARK_NONSPACING "); break;
case XML_REGEXP_MARK_SPACECOMBINING:
fprintf(output, "MARK_SPACECOMBINING "); break;
case XML_REGEXP_MARK_ENCLOSING:
fprintf(output, "MARK_ENCLOSING "); break;
case XML_REGEXP_NUMBER:
fprintf(output, "NUMBER "); break;
case XML_REGEXP_NUMBER_DECIMAL:
fprintf(output, "NUMBER_DECIMAL "); break;
case XML_REGEXP_NUMBER_LETTER:
fprintf(output, "NUMBER_LETTER "); break;
case XML_REGEXP_NUMBER_OTHERS:
fprintf(output, "NUMBER_OTHERS "); break;
case XML_REGEXP_PUNCT:
fprintf(output, "PUNCT "); break;
case XML_REGEXP_PUNCT_CONNECTOR:
fprintf(output, "PUNCT_CONNECTOR "); break;
case XML_REGEXP_PUNCT_DASH:
fprintf(output, "PUNCT_DASH "); break;
case XML_REGEXP_PUNCT_OPEN:
fprintf(output, "PUNCT_OPEN "); break;
case XML_REGEXP_PUNCT_CLOSE:
fprintf(output, "PUNCT_CLOSE "); break;
case XML_REGEXP_PUNCT_INITQUOTE:
fprintf(output, "PUNCT_INITQUOTE "); break;
case XML_REGEXP_PUNCT_FINQUOTE:
fprintf(output, "PUNCT_FINQUOTE "); break;
case XML_REGEXP_PUNCT_OTHERS:
fprintf(output, "PUNCT_OTHERS "); break;
case XML_REGEXP_SEPAR:
fprintf(output, "SEPAR "); break;
case XML_REGEXP_SEPAR_SPACE:
fprintf(output, "SEPAR_SPACE "); break;
case XML_REGEXP_SEPAR_LINE:
fprintf(output, "SEPAR_LINE "); break;
case XML_REGEXP_SEPAR_PARA:
fprintf(output, "SEPAR_PARA "); break;
case XML_REGEXP_SYMBOL:
fprintf(output, "SYMBOL "); break;
case XML_REGEXP_SYMBOL_MATH:
fprintf(output, "SYMBOL_MATH "); break;
case XML_REGEXP_SYMBOL_CURRENCY:
fprintf(output, "SYMBOL_CURRENCY "); break;
case XML_REGEXP_SYMBOL_MODIFIER:
fprintf(output, "SYMBOL_MODIFIER "); break;
case XML_REGEXP_SYMBOL_OTHERS:
fprintf(output, "SYMBOL_OTHERS "); break;
case XML_REGEXP_OTHER:
fprintf(output, "OTHER "); break;
case XML_REGEXP_OTHER_CONTROL:
fprintf(output, "OTHER_CONTROL "); break;
case XML_REGEXP_OTHER_FORMAT:
fprintf(output, "OTHER_FORMAT "); break;
case XML_REGEXP_OTHER_PRIVATE:
fprintf(output, "OTHER_PRIVATE "); break;
case XML_REGEXP_OTHER_NA:
fprintf(output, "OTHER_NA "); break;
case XML_REGEXP_BLOCK_NAME:
fprintf(output, "BLOCK "); break;
}
}
static void
xmlRegPrintQuantType(FILE *output, xmlRegQuantType type) {
switch (type) {
case XML_REGEXP_QUANT_EPSILON:
fprintf(output, "epsilon "); break;
case XML_REGEXP_QUANT_ONCE:
fprintf(output, "once "); break;
case XML_REGEXP_QUANT_OPT:
fprintf(output, "? "); break;
case XML_REGEXP_QUANT_MULT:
fprintf(output, "* "); break;
case XML_REGEXP_QUANT_PLUS:
fprintf(output, "+ "); break;
case XML_REGEXP_QUANT_RANGE:
fprintf(output, "range "); break;
case XML_REGEXP_QUANT_ONCEONLY:
fprintf(output, "onceonly "); break;
case XML_REGEXP_QUANT_ALL:
fprintf(output, "all "); break;
}
}
static void
xmlRegPrintRange(FILE *output, xmlRegRangePtr range) {
fprintf(output, " range: ");
if (range->neg)
fprintf(output, "negative ");
xmlRegPrintAtomType(output, range->type);
fprintf(output, "%c - %c\n", range->start, range->end);
}
static void
xmlRegPrintAtom(FILE *output, xmlRegAtomPtr atom) {
fprintf(output, " atom: ");
if (atom == NULL) {
fprintf(output, "NULL\n");
return;
}
if (atom->neg)
fprintf(output, "not ");
xmlRegPrintAtomType(output, atom->type);
xmlRegPrintQuantType(output, atom->quant);
if (atom->quant == XML_REGEXP_QUANT_RANGE)
fprintf(output, "%d-%d ", atom->min, atom->max);
if (atom->type == XML_REGEXP_STRING)
fprintf(output, "'%s' ", (char *) atom->valuep);
if (atom->type == XML_REGEXP_CHARVAL)
fprintf(output, "char %c\n", atom->codepoint);
else if (atom->type == XML_REGEXP_RANGES) {
int i;
fprintf(output, "%d entries\n", atom->nbRanges);
for (i = 0; i < atom->nbRanges;i++)
xmlRegPrintRange(output, atom->ranges[i]);
} else {
fprintf(output, "\n");
}
}
static void
xmlRegPrintAtomCompact(FILE* output, xmlRegexpPtr regexp, int atom)
{
if (output == NULL || regexp == NULL || atom < 0 ||
atom >= regexp->nbstrings) {
return;
}
fprintf(output, " atom: ");
xmlRegPrintAtomType(output, XML_REGEXP_STRING);
xmlRegPrintQuantType(output, XML_REGEXP_QUANT_ONCE);
fprintf(output, "'%s' ", (char *) regexp->stringMap[atom]);
fprintf(output, "\n");
}
static void
xmlRegPrintTrans(FILE *output, xmlRegTransPtr trans) {
fprintf(output, " trans: ");
if (trans == NULL) {
fprintf(output, "NULL\n");
return;
}
if (trans->to < 0) {
fprintf(output, "removed\n");
return;
}
if (trans->nd != 0) {
if (trans->nd == 2)
fprintf(output, "last not determinist, ");
else
fprintf(output, "not determinist, ");
}
if (trans->counter >= 0) {
fprintf(output, "counted %d, ", trans->counter);
}
if (trans->count == REGEXP_ALL_COUNTER) {
fprintf(output, "all transition, ");
} else if (trans->count >= 0) {
fprintf(output, "count based %d, ", trans->count);
}
if (trans->atom == NULL) {
fprintf(output, "epsilon to %d\n", trans->to);
return;
}
if (trans->atom->type == XML_REGEXP_CHARVAL)
fprintf(output, "char %c ", trans->atom->codepoint);
fprintf(output, "atom %d, to %d\n", trans->atom->no, trans->to);
}
static void
xmlRegPrintTransCompact(
FILE* output,
xmlRegexpPtr regexp,
int state,
int atom
)
{
int target;
if (output == NULL || regexp == NULL || regexp->compact == NULL ||
state < 0 || atom < 0) {
return;
}
target = regexp->compact[state * (regexp->nbstrings + 1) + atom + 1];
fprintf(output, " trans: ");
/* TODO maybe skip 'removed' transitions, because they actually never existed */
if (target < 0) {
fprintf(output, "removed\n");
return;
}
/* We will ignore most of the attributes used in xmlRegPrintTrans,
* since the compact form is much simpler and uses only a part of the
* features provided by the libxml2 regexp libary
* (no rollbacks, counters etc.) */
/* Compared to the standard representation, an automata written using the
* compact form will ALWAYS be deterministic!
* From xmlRegPrintTrans:
if (trans->nd != 0) {
...
* trans->nd will always be 0! */
/* In automata represented in compact form, the transitions will not use
* counters.
* From xmlRegPrintTrans:
if (trans->counter >= 0) {
...
* regexp->counters == NULL, so trans->counter < 0 */
/* In compact form, we won't use */
/* An automata in the compact representation will always use string
* atoms.
* From xmlRegPrintTrans:
if (trans->atom->type == XML_REGEXP_CHARVAL)
...
* trans->atom != NULL && trans->atom->type == XML_REGEXP_STRING */
fprintf(output, "atom %d, to %d\n", atom, target);
}
static void
xmlRegPrintState(FILE *output, xmlRegStatePtr state) {
int i;
fprintf(output, " state: ");
if (state == NULL) {
fprintf(output, "NULL\n");
return;
}
if (state->type == XML_REGEXP_START_STATE)
fprintf(output, "START ");
if (state->type == XML_REGEXP_FINAL_STATE)
fprintf(output, "FINAL ");
fprintf(output, "%d, %d transitions:\n", state->no, state->nbTrans);
for (i = 0;i < state->nbTrans; i++) {
xmlRegPrintTrans(output, &(state->trans[i]));
}
}
static void
xmlRegPrintStateCompact(FILE* output, xmlRegexpPtr regexp, int state)
{
int nbTrans = 0;
int i;
int target;
xmlRegStateType stateType;
if (output == NULL || regexp == NULL || regexp->compact == NULL ||
state < 0) {
return;
}
fprintf(output, " state: ");
stateType = regexp->compact[state * (regexp->nbstrings + 1)];
if (stateType == XML_REGEXP_START_STATE) {
fprintf(output, " START ");
}
if (stateType == XML_REGEXP_FINAL_STATE) {
fprintf(output, " FINAL ");
}
/* Print all atoms. */
for (i = 0; i < regexp->nbstrings; i++) {
xmlRegPrintAtomCompact(output, regexp, i);
}
/* Count all the transitions from the compact representation. */
for (i = 0; i < regexp->nbstrings; i++) {
target = regexp->compact[state * (regexp->nbstrings + 1) + i + 1];
if (target > 0 && target <= regexp->nbstates &&
regexp->compact[(target - 1) * (regexp->nbstrings + 1)] ==
XML_REGEXP_SINK_STATE) {
nbTrans++;
}
}
fprintf(output, "%d, %d transitions:\n", state, nbTrans);
/* Print all transitions */
for (i = 0; i < regexp->nbstrings; i++) {
xmlRegPrintTransCompact(output, regexp, state, i);
}
}
/*
* @param output an output stream
* @param regexp the regexp instance
*
* Print the compact representation of a regexp, in the same fashion as the
* public #xmlRegexpPrint function.
*/
static void
xmlRegPrintCompact(FILE* output, xmlRegexpPtr regexp)
{
int i;
if (output == NULL || regexp == NULL || regexp->compact == NULL) {
return;
}
fprintf(output, "'%s' ", regexp->string);
fprintf(output, "%d atoms:\n", regexp->nbstrings);
fprintf(output, "\n");
for (i = 0; i < regexp->nbstrings; i++) {
fprintf(output, " %02d ", i);
xmlRegPrintAtomCompact(output, regexp, i);
}
fprintf(output, "%d states:", regexp->nbstates);
fprintf(output, "\n");
for (i = 0; i < regexp->nbstates; i++) {
xmlRegPrintStateCompact(output, regexp, i);
}
fprintf(output, "%d counters:\n", 0);
}
static void
xmlRegexpPrintInternal(FILE *output, xmlRegexpPtr regexp) {
int i;
if (output == NULL)
return;
fprintf(output, " regexp: ");
if (regexp == NULL) {
fprintf(output, "NULL\n");
return;
}
if (regexp->compact) {
xmlRegPrintCompact(output, regexp);
return;
}
fprintf(output, "'%s' ", regexp->string);
fprintf(output, "\n");
fprintf(output, "%d atoms:\n", regexp->nbAtoms);
for (i = 0;i < regexp->nbAtoms; i++) {
fprintf(output, " %02d ", i);
xmlRegPrintAtom(output, regexp->atoms[i]);
}
fprintf(output, "%d states:", regexp->nbStates);
fprintf(output, "\n");
for (i = 0;i < regexp->nbStates; i++) {
xmlRegPrintState(output, regexp->states[i]);
}
fprintf(output, "%d counters:\n", regexp->nbCounters);
for (i = 0;i < regexp->nbCounters; i++) {
fprintf(output, " %d: min %d max %d\n", i, regexp->counters[i].min,
regexp->counters[i].max);
}
}
#endif /* DEBUG_REGEXP */
/************************************************************************
* *
* Finite Automata structures manipulations *
* *
************************************************************************/
static xmlRegRangePtr
xmlRegAtomAddRange(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom,
int neg, xmlRegAtomType type, int start, int end,
xmlChar *blockName) {
xmlRegRangePtr range;
if (atom == NULL) {
ERROR("add range: atom is NULL");
return(NULL);
}
if (atom->type != XML_REGEXP_RANGES) {
ERROR("add range: atom is not ranges");
return(NULL);
}
if (atom->nbRanges >= atom->maxRanges) {
xmlRegRangePtr *tmp;
int newSize;
newSize = xmlGrowCapacity(atom->maxRanges, sizeof(tmp[0]),
4, XML_MAX_ITEMS);
if (newSize < 0) {
xmlRegexpErrMemory(ctxt);
return(NULL);
}
tmp = xmlRealloc(atom->ranges, newSize * sizeof(tmp[0]));
if (tmp == NULL) {
xmlRegexpErrMemory(ctxt);
return(NULL);
}
atom->ranges = tmp;
atom->maxRanges = newSize;
}
range = xmlRegNewRange(ctxt, neg, type, start, end);
if (range == NULL)
return(NULL);
range->blockName = blockName;
atom->ranges[atom->nbRanges++] = range;
return(range);
}
static int
xmlRegGetCounter(xmlRegParserCtxtPtr ctxt) {
if (ctxt->nbCounters >= ctxt->maxCounters) {
xmlRegCounter *tmp;
int newSize;
newSize = xmlGrowCapacity(ctxt->maxCounters, sizeof(tmp[0]),
4, XML_MAX_ITEMS);
if (newSize < 0) {
xmlRegexpErrMemory(ctxt);
return(-1);
}
tmp = xmlRealloc(ctxt->counters, newSize * sizeof(tmp[0]));
if (tmp == NULL) {
xmlRegexpErrMemory(ctxt);
return(-1);
}
ctxt->counters = tmp;
ctxt->maxCounters = newSize;
}
ctxt->counters[ctxt->nbCounters].min = -1;
ctxt->counters[ctxt->nbCounters].max = -1;
return(ctxt->nbCounters++);
}
static int
xmlRegAtomPush(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom) {
if (atom == NULL) {
ERROR("atom push: atom is NULL");
return(-1);
}
if (ctxt->nbAtoms >= ctxt->maxAtoms) {
xmlRegAtomPtr *tmp;
int newSize;
newSize = xmlGrowCapacity(ctxt->maxAtoms, sizeof(tmp[0]),
4, XML_MAX_ITEMS);
if (newSize < 0) {
xmlRegexpErrMemory(ctxt);
return(-1);
}
tmp = xmlRealloc(ctxt->atoms, newSize * sizeof(tmp[0]));
if (tmp == NULL) {
xmlRegexpErrMemory(ctxt);
return(-1);
}
ctxt->atoms = tmp;
ctxt->maxAtoms = newSize;
}
atom->no = ctxt->nbAtoms;
ctxt->atoms[ctxt->nbAtoms++] = atom;
return(0);
}
static void
xmlRegStateAddTransTo(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr target,
int from) {
if (target->nbTransTo >= target->maxTransTo) {
int *tmp;
int newSize;
newSize = xmlGrowCapacity(target->maxTransTo, sizeof(tmp[0]),
8, XML_MAX_ITEMS);
if (newSize < 0) {
xmlRegexpErrMemory(ctxt);
return;
}
tmp = xmlRealloc(target->transTo, newSize * sizeof(tmp[0]));
if (tmp == NULL) {
xmlRegexpErrMemory(ctxt);
return;
}
target->transTo = tmp;
target->maxTransTo = newSize;
}
target->transTo[target->nbTransTo] = from;
target->nbTransTo++;
}
static void
xmlRegStateAddTrans(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state,
xmlRegAtomPtr atom, xmlRegStatePtr target,
int counter, int count) {
int nrtrans;
if (state == NULL) {
ERROR("add state: state is NULL");
return;
}
if (target == NULL) {
ERROR("add state: target is NULL");
return;
}
/*
* Other routines follow the philosophy 'When in doubt, add a transition'
* so we check here whether such a transition is already present and, if
* so, silently ignore this request.
*/
for (nrtrans = state->nbTrans - 1; nrtrans >= 0; nrtrans--) {
xmlRegTransPtr trans = &(state->trans[nrtrans]);
if ((trans->atom == atom) &&
(trans->to == target->no) &&
(trans->counter == counter) &&
(trans->count == count)) {
return;
}
}
if (state->nbTrans >= state->maxTrans) {
xmlRegTrans *tmp;
int newSize;
newSize = xmlGrowCapacity(state->maxTrans, sizeof(tmp[0]),
8, XML_MAX_ITEMS);
if (newSize < 0) {
xmlRegexpErrMemory(ctxt);
return;
}
tmp = xmlRealloc(state->trans, newSize * sizeof(tmp[0]));
if (tmp == NULL) {
xmlRegexpErrMemory(ctxt);
return;
}
state->trans = tmp;
state->maxTrans = newSize;
}
state->trans[state->nbTrans].atom = atom;
state->trans[state->nbTrans].to = target->no;
state->trans[state->nbTrans].counter = counter;
state->trans[state->nbTrans].count = count;
state->trans[state->nbTrans].nd = 0;
state->nbTrans++;
xmlRegStateAddTransTo(ctxt, target, state->no);
}
static xmlRegStatePtr
xmlRegStatePush(xmlRegParserCtxtPtr ctxt) {
xmlRegStatePtr state;
if (ctxt->nbStates >= ctxt->maxStates) {
xmlRegStatePtr *tmp;
int newSize;
newSize = xmlGrowCapacity(ctxt->maxStates, sizeof(tmp[0]),
4, XML_MAX_ITEMS);
if (newSize < 0) {
xmlRegexpErrMemory(ctxt);
return(NULL);
}
tmp = xmlRealloc(ctxt->states, newSize * sizeof(tmp[0]));
if (tmp == NULL) {
xmlRegexpErrMemory(ctxt);
return(NULL);
}
ctxt->states = tmp;
ctxt->maxStates = newSize;
}
state = xmlRegNewState(ctxt);
if (state == NULL)
return(NULL);
state->no = ctxt->nbStates;
ctxt->states[ctxt->nbStates++] = state;
return(state);
}
/**
* @param ctxt a regexp parser context
* @param from the from state
* @param to the target state or NULL for building a new one
* @param lax
*/
static int
xmlFAGenerateAllTransition(xmlRegParserCtxtPtr ctxt,
xmlRegStatePtr from, xmlRegStatePtr to,
int lax) {
if (to == NULL) {
to = xmlRegStatePush(ctxt);
if (to == NULL)
return(-1);
ctxt->state = to;
}
if (lax)
xmlRegStateAddTrans(ctxt, from, NULL, to, -1, REGEXP_ALL_LAX_COUNTER);
else
xmlRegStateAddTrans(ctxt, from, NULL, to, -1, REGEXP_ALL_COUNTER);
return(0);
}
/**
* @param ctxt a regexp parser context
* @param from the from state
* @param to the target state or NULL for building a new one
*/
static int
xmlFAGenerateEpsilonTransition(xmlRegParserCtxtPtr ctxt,
xmlRegStatePtr from, xmlRegStatePtr to) {
if (to == NULL) {
to = xmlRegStatePush(ctxt);
if (to == NULL)
return(-1);
ctxt->state = to;
}
xmlRegStateAddTrans(ctxt, from, NULL, to, -1, -1);
return(0);
}
/**
* @param ctxt a regexp parser context
* @param from the from state
* @param to the target state or NULL for building a new one
* @param counter the counter for that transition
*/
static int
xmlFAGenerateCountedEpsilonTransition(xmlRegParserCtxtPtr ctxt,
xmlRegStatePtr from, xmlRegStatePtr to, int counter) {
if (to == NULL) {
to = xmlRegStatePush(ctxt);
if (to == NULL)
return(-1);
ctxt->state = to;
}
xmlRegStateAddTrans(ctxt, from, NULL, to, counter, -1);
return(0);
}
/**
* @param ctxt a regexp parser context
* @param from the from state
* @param to the target state or NULL for building a new one
* @param counter the counter for that transition
*/
static int
xmlFAGenerateCountedTransition(xmlRegParserCtxtPtr ctxt,
xmlRegStatePtr from, xmlRegStatePtr to, int counter) {
if (to == NULL) {
to = xmlRegStatePush(ctxt);
if (to == NULL)
return(-1);
ctxt->state = to;
}
xmlRegStateAddTrans(ctxt, from, NULL, to, -1, counter);
return(0);
}
/**
* @param ctxt a regexp parser context
* @param from the from state
* @param to the target state or NULL for building a new one
* @param atom the atom generating the transition
* @returns 0 if success and -1 in case of error.
*/
static int
xmlFAGenerateTransitions(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr from,
xmlRegStatePtr to, xmlRegAtomPtr atom) {
xmlRegStatePtr end;
int nullable = 0;
if (atom == NULL) {
ERROR("generate transition: atom == NULL");
return(-1);
}
if (atom->type == XML_REGEXP_SUBREG) {
/*
* this is a subexpression handling one should not need to
* create a new node except for XML_REGEXP_QUANT_RANGE.
*/
if ((to != NULL) && (atom->stop != to) &&
(atom->quant != XML_REGEXP_QUANT_RANGE)) {
/*
* Generate an epsilon transition to link to the target
*/
xmlFAGenerateEpsilonTransition(ctxt, atom->stop, to);
#ifdef DV
} else if ((to == NULL) && (atom->quant != XML_REGEXP_QUANT_RANGE) &&
(atom->quant != XML_REGEXP_QUANT_ONCE)) {
to = xmlRegStatePush(ctxt, to);
if (to == NULL)
return(-1);
ctxt->state = to;
xmlFAGenerateEpsilonTransition(ctxt, atom->stop, to);
#endif
}
switch (atom->quant) {
case XML_REGEXP_QUANT_OPT:
atom->quant = XML_REGEXP_QUANT_ONCE;
/*
* transition done to the state after end of atom.
* 1. set transition from atom start to new state
* 2. set transition from atom end to this state.
*/
if (to == NULL) {
xmlFAGenerateEpsilonTransition(ctxt, atom->start, 0);
xmlFAGenerateEpsilonTransition(ctxt, atom->stop,
ctxt->state);
} else {
xmlFAGenerateEpsilonTransition(ctxt, atom->start, to);
}
break;
case XML_REGEXP_QUANT_MULT:
atom->quant = XML_REGEXP_QUANT_ONCE;
xmlFAGenerateEpsilonTransition(ctxt, atom->start, atom->stop);
xmlFAGenerateEpsilonTransition(ctxt, atom->stop, atom->start);
break;
case XML_REGEXP_QUANT_PLUS:
atom->quant = XML_REGEXP_QUANT_ONCE;
xmlFAGenerateEpsilonTransition(ctxt, atom->stop, atom->start);
break;
case XML_REGEXP_QUANT_RANGE: {
int counter;
xmlRegStatePtr inter, newstate;
/*
* create the final state now if needed
*/
if (to != NULL) {
newstate = to;
} else {
newstate = xmlRegStatePush(ctxt);
if (newstate == NULL)
return(-1);
}
/*
* The principle here is to use counted transition
* to avoid explosion in the number of states in the
* graph. This is clearly more complex but should not
* be exploitable at runtime.
*/
if ((atom->min == 0) && (atom->start0 == NULL)) {
xmlRegAtomPtr copy;
/*
* duplicate a transition based on atom to count next
* occurrences after 1. We cannot loop to atom->start
* directly because we need an epsilon transition to
* newstate.
*/
/* ???? For some reason it seems we never reach that
case, I suppose this got optimized out before when
building the automata */
copy = xmlRegCopyAtom(ctxt, atom);
if (copy == NULL)
return(-1);
copy->quant = XML_REGEXP_QUANT_ONCE;
copy->min = 0;
copy->max = 0;
if (xmlFAGenerateTransitions(ctxt, atom->start, NULL, copy)
< 0) {
xmlRegFreeAtom(copy);
return(-1);
}
inter = ctxt->state;
counter = xmlRegGetCounter(ctxt);
if (counter < 0)
return(-1);
ctxt->counters[counter].min = atom->min - 1;
ctxt->counters[counter].max = atom->max - 1;
/* count the number of times we see it again */
xmlFAGenerateCountedEpsilonTransition(ctxt, inter,
atom->stop, counter);
/* allow a way out based on the count */
xmlFAGenerateCountedTransition(ctxt, inter,
newstate, counter);
/* and also allow a direct exit for 0 */
xmlFAGenerateEpsilonTransition(ctxt, atom->start,
newstate);
} else {
/*
* either we need the atom at least once or there
* is an atom->start0 allowing to easily plug the
* epsilon transition.
*/
counter = xmlRegGetCounter(ctxt);
if (counter < 0)
return(-1);
ctxt->counters[counter].min = atom->min - 1;
ctxt->counters[counter].max = atom->max - 1;
/* allow a way out based on the count */
xmlFAGenerateCountedTransition(ctxt, atom->stop,
newstate, counter);
/* count the number of times we see it again */
xmlFAGenerateCountedEpsilonTransition(ctxt, atom->stop,
atom->start, counter);
/* and if needed allow a direct exit for 0 */
if (atom->min == 0)
xmlFAGenerateEpsilonTransition(ctxt, atom->start0,
newstate);
}
atom->min = 0;
atom->max = 0;
atom->quant = XML_REGEXP_QUANT_ONCE;
ctxt->state = newstate;
}
default:
break;
}
atom->start = NULL;
atom->start0 = NULL;
atom->stop = NULL;
if (xmlRegAtomPush(ctxt, atom) < 0)
return(-1);
return(0);
}
if ((atom->min == 0) && (atom->max == 0) &&
(atom->quant == XML_REGEXP_QUANT_RANGE)) {
/*
* we can discard the atom and generate an epsilon transition instead
*/
if (to == NULL) {
to = xmlRegStatePush(ctxt);
if (to == NULL)
return(-1);
}
xmlFAGenerateEpsilonTransition(ctxt, from, to);
ctxt->state = to;
xmlRegFreeAtom(atom);
return(0);
}
if (to == NULL) {
to = xmlRegStatePush(ctxt);
if (to == NULL)
return(-1);
}
end = to;
if ((atom->quant == XML_REGEXP_QUANT_MULT) ||
(atom->quant == XML_REGEXP_QUANT_PLUS)) {
/*
* Do not pollute the target state by adding transitions from
* it as it is likely to be the shared target of multiple branches.
* So isolate with an epsilon transition.
*/
xmlRegStatePtr tmp;
tmp = xmlRegStatePush(ctxt);
if (tmp == NULL)
return(-1);
xmlFAGenerateEpsilonTransition(ctxt, tmp, to);
to = tmp;
}
if ((atom->quant == XML_REGEXP_QUANT_RANGE) &&
(atom->min == 0) && (atom->max > 0)) {
nullable = 1;
atom->min = 1;
if (atom->max == 1)
atom->quant = XML_REGEXP_QUANT_OPT;
}
xmlRegStateAddTrans(ctxt, from, atom, to, -1, -1);
ctxt->state = end;
switch (atom->quant) {
case XML_REGEXP_QUANT_OPT:
atom->quant = XML_REGEXP_QUANT_ONCE;
xmlFAGenerateEpsilonTransition(ctxt, from, to);
break;
case XML_REGEXP_QUANT_MULT:
atom->quant = XML_REGEXP_QUANT_ONCE;
xmlFAGenerateEpsilonTransition(ctxt, from, to);
xmlRegStateAddTrans(ctxt, to, atom, to, -1, -1);
break;
case XML_REGEXP_QUANT_PLUS:
atom->quant = XML_REGEXP_QUANT_ONCE;
xmlRegStateAddTrans(ctxt, to, atom, to, -1, -1);
break;
case XML_REGEXP_QUANT_RANGE:
if (nullable)
xmlFAGenerateEpsilonTransition(ctxt, from, to);
break;
default:
break;
}
if (xmlRegAtomPush(ctxt, atom) < 0)
return(-1);
return(0);
}
/**
* @param ctxt a regexp parser context
* @param fromnr the from state
* @param tonr the to state
* @param counter should that transition be associated to a counted
*/
static void
xmlFAReduceEpsilonTransitions(xmlRegParserCtxtPtr ctxt, int fromnr,
int tonr, int counter) {
int transnr;
xmlRegStatePtr from;
xmlRegStatePtr to;
from = ctxt->states[fromnr];
if (from == NULL)
return;
to = ctxt->states[tonr];
if (to == NULL)
return;
if ((to->mark == XML_REGEXP_MARK_START) ||
(to->mark == XML_REGEXP_MARK_VISITED))
return;
to->mark = XML_REGEXP_MARK_VISITED;
if (to->type == XML_REGEXP_FINAL_STATE) {
from->type = XML_REGEXP_FINAL_STATE;
}
for (transnr = 0;transnr < to->nbTrans;transnr++) {
xmlRegTransPtr t1 = &to->trans[transnr];
int tcounter;
if (t1->to < 0)
continue;
if (t1->counter >= 0) {
/* assert(counter < 0); */
tcounter = t1->counter;
} else {
tcounter = counter;
}
if (t1->atom == NULL) {
/*
* Don't remove counted transitions
* Don't loop either
*/
if (t1->to != fromnr) {
if (t1->count >= 0) {
xmlRegStateAddTrans(ctxt, from, NULL, ctxt->states[t1->to],
-1, t1->count);
} else {
xmlFAReduceEpsilonTransitions(ctxt, fromnr, t1->to,
tcounter);
}
}
} else {
xmlRegStateAddTrans(ctxt, from, t1->atom,
ctxt->states[t1->to], tcounter, -1);
}
}
}
/**
* @param ctxt a regexp parser context
* @param tonr the to state
*/
static void
xmlFAFinishReduceEpsilonTransitions(xmlRegParserCtxtPtr ctxt, int tonr) {
int transnr;
xmlRegStatePtr to;
to = ctxt->states[tonr];
if (to == NULL)
return;
if ((to->mark == XML_REGEXP_MARK_START) ||
(to->mark == XML_REGEXP_MARK_NORMAL))
return;
to->mark = XML_REGEXP_MARK_NORMAL;
for (transnr = 0;transnr < to->nbTrans;transnr++) {
xmlRegTransPtr t1 = &to->trans[transnr];
if ((t1->to >= 0) && (t1->atom == NULL))
xmlFAFinishReduceEpsilonTransitions(ctxt, t1->to);
}
}
/**
* Eliminating general epsilon transitions can get costly in the general
* algorithm due to the large amount of generated new transitions and
* associated comparisons. However for simple epsilon transition used just
* to separate building blocks when generating the automata this can be
* reduced to state elimination:
* - if there exists an epsilon from X to Y
* - if there is no other transition from X
* then X and Y are semantically equivalent and X can be eliminated
* If X is the start state then make Y the start state, else replace the
* target of all transitions to X by transitions to Y.
*
* If X is a final state, skip it.
* Otherwise it would be necessary to manipulate counters for this case when
* eliminating state 2:
* State 1 has a transition with an atom to state 2.
* State 2 is final and has an epsilon transition to state 1.
*
* @param ctxt a regexp parser context
*/
static void
xmlFAEliminateSimpleEpsilonTransitions(xmlRegParserCtxtPtr ctxt) {
int statenr, i, j, newto;
xmlRegStatePtr state, tmp;
for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
state = ctxt->states[statenr];
if (state == NULL)
continue;
if (state->nbTrans != 1)
continue;
if (state->type == XML_REGEXP_UNREACH_STATE ||
state->type == XML_REGEXP_FINAL_STATE)
continue;
/* is the only transition out a basic transition */
if ((state->trans[0].atom == NULL) &&
(state->trans[0].to >= 0) &&
(state->trans[0].to != statenr) &&
(state->trans[0].counter < 0) &&
(state->trans[0].count < 0)) {
newto = state->trans[0].to;
if (state->type == XML_REGEXP_START_STATE) {
} else {
for (i = 0;i < state->nbTransTo;i++) {
tmp = ctxt->states[state->transTo[i]];
for (j = 0;j < tmp->nbTrans;j++) {
if (tmp->trans[j].to == statenr) {
tmp->trans[j].to = -1;
xmlRegStateAddTrans(ctxt, tmp, tmp->trans[j].atom,
ctxt->states[newto],
tmp->trans[j].counter,
tmp->trans[j].count);
}
}
}
if (state->type == XML_REGEXP_FINAL_STATE)
ctxt->states[newto]->type = XML_REGEXP_FINAL_STATE;
/* eliminate the transition completely */
state->nbTrans = 0;
state->type = XML_REGEXP_UNREACH_STATE;
}
}
}
}
/**
* @param ctxt a regexp parser context
*/
static void
xmlFAEliminateEpsilonTransitions(xmlRegParserCtxtPtr ctxt) {
int statenr, transnr;
xmlRegStatePtr state;
int has_epsilon;
if (ctxt->states == NULL) return;
/*
* Eliminate simple epsilon transition and the associated unreachable
* states.
*/
xmlFAEliminateSimpleEpsilonTransitions(ctxt);
for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
state = ctxt->states[statenr];
if ((state != NULL) && (state->type == XML_REGEXP_UNREACH_STATE)) {
xmlRegFreeState(state);
ctxt->states[statenr] = NULL;
}
}
has_epsilon = 0;
/*
* Build the completed transitions bypassing the epsilons
* Use a marking algorithm to avoid loops
* Mark sink states too.
* Process from the latest states backward to the start when
* there is long cascading epsilon chains this minimize the
* recursions and transition compares when adding the new ones
*/
for (statenr = ctxt->nbStates - 1;statenr >= 0;statenr--) {
state = ctxt->states[statenr];
if (state == NULL)
continue;
if ((state->nbTrans == 0) &&
(state->type != XML_REGEXP_FINAL_STATE)) {
state->type = XML_REGEXP_SINK_STATE;
}
for (transnr = 0;transnr < state->nbTrans;transnr++) {
if ((state->trans[transnr].atom == NULL) &&
(state->trans[transnr].to >= 0)) {
if (state->trans[transnr].to == statenr) {
state->trans[transnr].to = -1;
} else if (state->trans[transnr].count < 0) {
int newto = state->trans[transnr].to;
has_epsilon = 1;
state->trans[transnr].to = -2;
state->mark = XML_REGEXP_MARK_START;
xmlFAReduceEpsilonTransitions(ctxt, statenr,
newto, state->trans[transnr].counter);
xmlFAFinishReduceEpsilonTransitions(ctxt, newto);
state->mark = XML_REGEXP_MARK_NORMAL;
}
}
}
}
/*
* Eliminate the epsilon transitions
*/
if (has_epsilon) {
for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
state = ctxt->states[statenr];
if (state == NULL)
continue;
for (transnr = 0;transnr < state->nbTrans;transnr++) {
xmlRegTransPtr trans = &(state->trans[transnr]);
if ((trans->atom == NULL) &&
(trans->count < 0) &&
(trans->to >= 0)) {
trans->to = -1;
}
}
}
}
/*
* Use this pass to detect unreachable states too
*/
for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
state = ctxt->states[statenr];
if (state != NULL)
state->reached = XML_REGEXP_MARK_NORMAL;
}
state = ctxt->states[0];
if (state != NULL)
state->reached = XML_REGEXP_MARK_START;
while (state != NULL) {
xmlRegStatePtr target = NULL;
state->reached = XML_REGEXP_MARK_VISITED;
/*
* Mark all states reachable from the current reachable state
*/
for (transnr = 0;transnr < state->nbTrans;transnr++) {
if ((state->trans[transnr].to >= 0) &&
((state->trans[transnr].atom != NULL) ||
(state->trans[transnr].count >= 0))) {
int newto = state->trans[transnr].to;
if (ctxt->states[newto] == NULL)
continue;
if (ctxt->states[newto]->reached == XML_REGEXP_MARK_NORMAL) {
ctxt->states[newto]->reached = XML_REGEXP_MARK_START;
target = ctxt->states[newto];
}
}
}
/*
* find the next accessible state not explored
*/
if (target == NULL) {
for (statenr = 1;statenr < ctxt->nbStates;statenr++) {
state = ctxt->states[statenr];
if ((state != NULL) && (state->reached ==
XML_REGEXP_MARK_START)) {
target = state;
break;
}
}
}
state = target;
}
for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
state = ctxt->states[statenr];
if ((state != NULL) && (state->reached == XML_REGEXP_MARK_NORMAL)) {
xmlRegFreeState(state);
ctxt->states[statenr] = NULL;
}
}
}
static int
xmlFACompareRanges(xmlRegRangePtr range1, xmlRegRangePtr range2) {
int ret = 0;
if ((range1->type == XML_REGEXP_RANGES) ||
(range2->type == XML_REGEXP_RANGES) ||
(range2->type == XML_REGEXP_SUBREG) ||
(range1->type == XML_REGEXP_SUBREG) ||
(range1->type == XML_REGEXP_STRING) ||
(range2->type == XML_REGEXP_STRING))
return(-1);
/* put them in order */
if (range1->type > range2->type) {
xmlRegRangePtr tmp;
tmp = range1;
range1 = range2;
range2 = tmp;
}
if ((range1->type == XML_REGEXP_ANYCHAR) ||
(range2->type == XML_REGEXP_ANYCHAR)) {
ret = 1;
} else if ((range1->type == XML_REGEXP_EPSILON) ||
(range2->type == XML_REGEXP_EPSILON)) {
return(0);
} else if (range1->type == range2->type) {
if (range1->type != XML_REGEXP_CHARVAL)
ret = 1;
else if ((range1->end < range2->start) ||
(range2->end < range1->start))
ret = 0;
else
ret = 1;
} else if (range1->type == XML_REGEXP_CHARVAL) {
int codepoint;
int neg = 0;
/*
* just check all codepoints in the range for acceptance,
* this is usually way cheaper since done only once at
* compilation than testing over and over at runtime or
* pushing too many states when evaluating.
*/
if (((range1->neg == 0) && (range2->neg != 0)) ||
((range1->neg != 0) && (range2->neg == 0)))
neg = 1;
for (codepoint = range1->start;codepoint <= range1->end ;codepoint++) {
ret = xmlRegCheckCharacterRange(range2->type, codepoint,
0, range2->start, range2->end,
range2->blockName);
if (ret < 0)
return(-1);
if (((neg == 1) && (ret == 0)) ||
((neg == 0) && (ret == 1)))
return(1);
}
return(0);
} else if ((range1->type == XML_REGEXP_BLOCK_NAME) ||
(range2->type == XML_REGEXP_BLOCK_NAME)) {
if (range1->type == range2->type) {
ret = xmlStrEqual(range1->blockName, range2->blockName);
} else {
/*
* comparing a block range with anything else is way
* too costly, and maintaining the table is like too much
* memory too, so let's force the automata to save state
* here.
*/
return(1);
}
} else if ((range1->type < XML_REGEXP_LETTER) ||
(range2->type < XML_REGEXP_LETTER)) {
if ((range1->type == XML_REGEXP_ANYSPACE) &&
(range2->type == XML_REGEXP_NOTSPACE))
ret = 0;
else if ((range1->type == XML_REGEXP_INITNAME) &&
(range2->type == XML_REGEXP_NOTINITNAME))
ret = 0;
else if ((range1->type == XML_REGEXP_NAMECHAR) &&
(range2->type == XML_REGEXP_NOTNAMECHAR))
ret = 0;
else if ((range1->type == XML_REGEXP_DECIMAL) &&
(range2->type == XML_REGEXP_NOTDECIMAL))
ret = 0;
else if ((range1->type == XML_REGEXP_REALCHAR) &&
(range2->type == XML_REGEXP_NOTREALCHAR))
ret = 0;
else {
/* same thing to limit complexity */
return(1);
}
} else {
ret = 0;
/* range1->type < range2->type here */
switch (range1->type) {
case XML_REGEXP_LETTER:
/* all disjoint except in the subgroups */
if ((range2->type == XML_REGEXP_LETTER_UPPERCASE) ||
(range2->type == XML_REGEXP_LETTER_LOWERCASE) ||
(range2->type == XML_REGEXP_LETTER_TITLECASE) ||
(range2->type == XML_REGEXP_LETTER_MODIFIER) ||
(range2->type == XML_REGEXP_LETTER_OTHERS))
ret = 1;
break;
case XML_REGEXP_MARK:
if ((range2->type == XML_REGEXP_MARK_NONSPACING) ||
(range2->type == XML_REGEXP_MARK_SPACECOMBINING) ||
(range2->type == XML_REGEXP_MARK_ENCLOSING))
ret = 1;
break;
case XML_REGEXP_NUMBER:
if ((range2->type == XML_REGEXP_NUMBER_DECIMAL) ||
(range2->type == XML_REGEXP_NUMBER_LETTER) ||
(range2->type == XML_REGEXP_NUMBER_OTHERS))
ret = 1;
break;
case XML_REGEXP_PUNCT:
if ((range2->type == XML_REGEXP_PUNCT_CONNECTOR) ||
(range2->type == XML_REGEXP_PUNCT_DASH) ||
(range2->type == XML_REGEXP_PUNCT_OPEN) ||
(range2->type == XML_REGEXP_PUNCT_CLOSE) ||
(range2->type == XML_REGEXP_PUNCT_INITQUOTE) ||
(range2->type == XML_REGEXP_PUNCT_FINQUOTE) ||
(range2->type == XML_REGEXP_PUNCT_OTHERS))
ret = 1;
break;
case XML_REGEXP_SEPAR:
if ((range2->type == XML_REGEXP_SEPAR_SPACE) ||
(range2->type == XML_REGEXP_SEPAR_LINE) ||
(range2->type == XML_REGEXP_SEPAR_PARA))
ret = 1;
break;
case XML_REGEXP_SYMBOL:
if ((range2->type == XML_REGEXP_SYMBOL_MATH) ||
(range2->type == XML_REGEXP_SYMBOL_CURRENCY) ||
(range2->type == XML_REGEXP_SYMBOL_MODIFIER) ||
(range2->type == XML_REGEXP_SYMBOL_OTHERS))
ret = 1;
break;
case XML_REGEXP_OTHER:
if ((range2->type == XML_REGEXP_OTHER_CONTROL) ||
(range2->type == XML_REGEXP_OTHER_FORMAT) ||
(range2->type == XML_REGEXP_OTHER_PRIVATE))
ret = 1;
break;
default:
if ((range2->type >= XML_REGEXP_LETTER) &&
(range2->type < XML_REGEXP_BLOCK_NAME))
ret = 0;
else {
/* safety net ! */
return(1);
}
}
}
if (((range1->neg == 0) && (range2->neg != 0)) ||
((range1->neg != 0) && (range2->neg == 0)))
ret = !ret;
return(ret);
}
/**
* Compares two atoms type to check whether they intersect in some ways,
* this is used by xmlFACompareAtoms only
*
* @param type1 an atom type
* @param type2 an atom type
* @returns 1 if they may intersect and 0 otherwise
*/
static int
xmlFACompareAtomTypes(xmlRegAtomType type1, xmlRegAtomType type2) {
if ((type1 == XML_REGEXP_EPSILON) ||
(type1 == XML_REGEXP_CHARVAL) ||
(type1 == XML_REGEXP_RANGES) ||
(type1 == XML_REGEXP_SUBREG) ||
(type1 == XML_REGEXP_STRING) ||
(type1 == XML_REGEXP_ANYCHAR))
return(1);
if ((type2 == XML_REGEXP_EPSILON) ||
(type2 == XML_REGEXP_CHARVAL) ||
(type2 == XML_REGEXP_RANGES) ||
(type2 == XML_REGEXP_SUBREG) ||
(type2 == XML_REGEXP_STRING) ||
(type2 == XML_REGEXP_ANYCHAR))
return(1);
if (type1 == type2) return(1);
/* simplify subsequent compares by making sure type1 < type2 */
if (type1 > type2) {
xmlRegAtomType tmp = type1;
type1 = type2;
type2 = tmp;
}
switch (type1) {
case XML_REGEXP_ANYSPACE: /* \s */
/* can't be a letter, number, mark, punctuation, symbol */
if ((type2 == XML_REGEXP_NOTSPACE) ||
((type2 >= XML_REGEXP_LETTER) &&
(type2 <= XML_REGEXP_LETTER_OTHERS)) ||
((type2 >= XML_REGEXP_NUMBER) &&
(type2 <= XML_REGEXP_NUMBER_OTHERS)) ||
((type2 >= XML_REGEXP_MARK) &&
(type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
((type2 >= XML_REGEXP_PUNCT) &&
(type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
((type2 >= XML_REGEXP_SYMBOL) &&
(type2 <= XML_REGEXP_SYMBOL_OTHERS))
) return(0);
break;
case XML_REGEXP_NOTSPACE: /* \S */
break;
case XML_REGEXP_INITNAME: /* \l */
/* can't be a number, mark, separator, punctuation, symbol or other */
if ((type2 == XML_REGEXP_NOTINITNAME) ||
((type2 >= XML_REGEXP_NUMBER) &&
(type2 <= XML_REGEXP_NUMBER_OTHERS)) ||
((type2 >= XML_REGEXP_MARK) &&
(type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
((type2 >= XML_REGEXP_SEPAR) &&
(type2 <= XML_REGEXP_SEPAR_PARA)) ||
((type2 >= XML_REGEXP_PUNCT) &&
(type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
((type2 >= XML_REGEXP_SYMBOL) &&
(type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
((type2 >= XML_REGEXP_OTHER) &&
(type2 <= XML_REGEXP_OTHER_NA))
) return(0);
break;
case XML_REGEXP_NOTINITNAME: /* \L */
break;
case XML_REGEXP_NAMECHAR: /* \c */
/* can't be a mark, separator, punctuation, symbol or other */
if ((type2 == XML_REGEXP_NOTNAMECHAR) ||
((type2 >= XML_REGEXP_MARK) &&
(type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
((type2 >= XML_REGEXP_PUNCT) &&
(type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
((type2 >= XML_REGEXP_SEPAR) &&
(type2 <= XML_REGEXP_SEPAR_PARA)) ||
((type2 >= XML_REGEXP_SYMBOL) &&
(type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
((type2 >= XML_REGEXP_OTHER) &&
(type2 <= XML_REGEXP_OTHER_NA))
) return(0);
break;
case XML_REGEXP_NOTNAMECHAR: /* \C */
break;
case XML_REGEXP_DECIMAL: /* \d */
/* can't be a letter, mark, separator, punctuation, symbol or other */
if ((type2 == XML_REGEXP_NOTDECIMAL) ||
(type2 == XML_REGEXP_REALCHAR) ||
((type2 >= XML_REGEXP_LETTER) &&
(type2 <= XML_REGEXP_LETTER_OTHERS)) ||
((type2 >= XML_REGEXP_MARK) &&
(type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
((type2 >= XML_REGEXP_PUNCT) &&
(type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
((type2 >= XML_REGEXP_SEPAR) &&
(type2 <= XML_REGEXP_SEPAR_PARA)) ||
((type2 >= XML_REGEXP_SYMBOL) &&
(type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
((type2 >= XML_REGEXP_OTHER) &&
(type2 <= XML_REGEXP_OTHER_NA))
)return(0);
break;
case XML_REGEXP_NOTDECIMAL: /* \D */
break;
case XML_REGEXP_REALCHAR: /* \w */
/* can't be a mark, separator, punctuation, symbol or other */
if ((type2 == XML_REGEXP_NOTDECIMAL) ||
((type2 >= XML_REGEXP_MARK) &&
(type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
((type2 >= XML_REGEXP_PUNCT) &&
(type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
((type2 >= XML_REGEXP_SEPAR) &&
(type2 <= XML_REGEXP_SEPAR_PARA)) ||
((type2 >= XML_REGEXP_SYMBOL) &&
(type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
((type2 >= XML_REGEXP_OTHER) &&
(type2 <= XML_REGEXP_OTHER_NA))
)return(0);
break;
case XML_REGEXP_NOTREALCHAR: /* \W */
break;
/*
* at that point we know both type 1 and type2 are from
* character categories are ordered and are different,
* it becomes simple because this is a partition
*/
case XML_REGEXP_LETTER:
if (type2 <= XML_REGEXP_LETTER_OTHERS)
return(1);
return(0);
case XML_REGEXP_LETTER_UPPERCASE:
case XML_REGEXP_LETTER_LOWERCASE:
case XML_REGEXP_LETTER_TITLECASE:
case XML_REGEXP_LETTER_MODIFIER:
case XML_REGEXP_LETTER_OTHERS:
return(0);
case XML_REGEXP_MARK:
if (type2 <= XML_REGEXP_MARK_ENCLOSING)
return(1);
return(0);
case XML_REGEXP_MARK_NONSPACING:
case XML_REGEXP_MARK_SPACECOMBINING:
case XML_REGEXP_MARK_ENCLOSING:
return(0);
case XML_REGEXP_NUMBER:
if (type2 <= XML_REGEXP_NUMBER_OTHERS)
return(1);
return(0);
case XML_REGEXP_NUMBER_DECIMAL:
case XML_REGEXP_NUMBER_LETTER:
case XML_REGEXP_NUMBER_OTHERS:
return(0);
case XML_REGEXP_PUNCT:
if (type2 <= XML_REGEXP_PUNCT_OTHERS)
return(1);
return(0);
case XML_REGEXP_PUNCT_CONNECTOR:
case XML_REGEXP_PUNCT_DASH:
case XML_REGEXP_PUNCT_OPEN:
case XML_REGEXP_PUNCT_CLOSE:
case XML_REGEXP_PUNCT_INITQUOTE:
case XML_REGEXP_PUNCT_FINQUOTE:
case XML_REGEXP_PUNCT_OTHERS:
return(0);
case XML_REGEXP_SEPAR:
if (type2 <= XML_REGEXP_SEPAR_PARA)
return(1);
return(0);
case XML_REGEXP_SEPAR_SPACE:
case XML_REGEXP_SEPAR_LINE:
case XML_REGEXP_SEPAR_PARA:
return(0);
case XML_REGEXP_SYMBOL:
if (type2 <= XML_REGEXP_SYMBOL_OTHERS)
return(1);
return(0);
case XML_REGEXP_SYMBOL_MATH:
case XML_REGEXP_SYMBOL_CURRENCY:
case XML_REGEXP_SYMBOL_MODIFIER:
case XML_REGEXP_SYMBOL_OTHERS:
return(0);
case XML_REGEXP_OTHER:
if (type2 <= XML_REGEXP_OTHER_NA)
return(1);
return(0);
case XML_REGEXP_OTHER_CONTROL:
case XML_REGEXP_OTHER_FORMAT:
case XML_REGEXP_OTHER_PRIVATE:
case XML_REGEXP_OTHER_NA:
return(0);
default:
break;
}
return(1);
}
/**
* Compares two atoms to check whether they are the same exactly
* this is used to remove equivalent transitions
*
* @param atom1 an atom
* @param atom2 an atom
* @param deep if not set only compare string pointers
* @returns 1 if same and 0 otherwise
*/
static int
xmlFAEqualAtoms(xmlRegAtomPtr atom1, xmlRegAtomPtr atom2, int deep) {
int ret = 0;
if (atom1 == atom2)
return(1);
if ((atom1 == NULL) || (atom2 == NULL))
return(0);
if (atom1->type != atom2->type)
return(0);
switch (atom1->type) {
case XML_REGEXP_EPSILON:
ret = 0;
break;
case XML_REGEXP_STRING:
if (!deep)
ret = (atom1->valuep == atom2->valuep);
else
ret = xmlStrEqual((xmlChar *)atom1->valuep,
(xmlChar *)atom2->valuep);
break;
case XML_REGEXP_CHARVAL:
ret = (atom1->codepoint == atom2->codepoint);
break;
case XML_REGEXP_RANGES:
/* too hard to do in the general case */
ret = 0;
default:
break;
}
return(ret);
}
/**
* Compares two atoms to check whether they intersect in some ways,
* this is used by xmlFAComputesDeterminism and xmlFARecurseDeterminism only
*
* @param atom1 an atom
* @param atom2 an atom
* @param deep if not set only compare string pointers
* @returns 1 if yes and 0 otherwise
*/
static int
xmlFACompareAtoms(xmlRegAtomPtr atom1, xmlRegAtomPtr atom2, int deep) {
int ret = 1;
if (atom1 == atom2)
return(1);
if ((atom1 == NULL) || (atom2 == NULL))
return(0);
if ((atom1->type == XML_REGEXP_ANYCHAR) ||
(atom2->type == XML_REGEXP_ANYCHAR))
return(1);
if (atom1->type > atom2->type) {
xmlRegAtomPtr tmp;
tmp = atom1;
atom1 = atom2;
atom2 = tmp;
}
if (atom1->type != atom2->type) {
ret = xmlFACompareAtomTypes(atom1->type, atom2->type);
/* if they can't intersect at the type level break now */
if (ret == 0)
return(0);
}
switch (atom1->type) {
case XML_REGEXP_STRING:
if (!deep)
ret = (atom1->valuep != atom2->valuep);
else {
xmlChar *val1 = (xmlChar *)atom1->valuep;
xmlChar *val2 = (xmlChar *)atom2->valuep;
int compound1 = (xmlStrchr(val1, '|') != NULL);
int compound2 = (xmlStrchr(val2, '|') != NULL);
/* Ignore negative match flag for ##other namespaces */
if (compound1 != compound2)
return(0);
ret = xmlRegStrEqualWildcard(val1, val2);
}
break;
case XML_REGEXP_EPSILON:
goto not_determinist;
case XML_REGEXP_CHARVAL:
if (atom2->type == XML_REGEXP_CHARVAL) {
ret = (atom1->codepoint == atom2->codepoint);
} else {
ret = xmlRegCheckCharacter(atom2, atom1->codepoint);
if (ret < 0)
ret = 1;
}
break;
case XML_REGEXP_RANGES:
if (atom2->type == XML_REGEXP_RANGES) {
int i, j, res;
xmlRegRangePtr r1, r2;
/*
* need to check that none of the ranges eventually matches
*/
for (i = 0;i < atom1->nbRanges;i++) {
for (j = 0;j < atom2->nbRanges;j++) {
r1 = atom1->ranges[i];
r2 = atom2->ranges[j];
res = xmlFACompareRanges(r1, r2);
if (res == 1) {
ret = 1;
goto done;
}
}
}
ret = 0;
}
break;
default:
goto not_determinist;
}
done:
if (atom1->neg != atom2->neg) {
ret = !ret;
}
if (ret == 0)
return(0);
not_determinist:
return(1);
}
/**
* Check whether the associated regexp is determinist,
* should be called after xmlFAEliminateEpsilonTransitions
*
* @param ctxt a regexp parser context
* @param state regexp state
* @param fromnr the from state
* @param tonr the to state
* @param atom the atom
*/
static int
xmlFARecurseDeterminism(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state,
int fromnr, int tonr, xmlRegAtomPtr atom) {
int ret = 1;
int res;
int transnr, nbTrans;
xmlRegTransPtr t1;
int deep = 1;
if (state == NULL)
return(ret);
if (state->markd == XML_REGEXP_MARK_VISITED)
return(ret);
if (ctxt->flags & AM_AUTOMATA_RNG)
deep = 0;
/*
* don't recurse on transitions potentially added in the course of
* the elimination.
*/
nbTrans = state->nbTrans;
for (transnr = 0;transnr < nbTrans;transnr++) {
t1 = &(state->trans[transnr]);
/*
* check transitions conflicting with the one looked at
*/
if ((t1->to < 0) || (t1->to == fromnr))
continue;
if (t1->atom == NULL) {
state->markd = XML_REGEXP_MARK_VISITED;
res = xmlFARecurseDeterminism(ctxt, ctxt->states[t1->to],
fromnr, tonr, atom);
if (res == 0) {
ret = 0;
/* t1->nd = 1; */
}
continue;
}
if (xmlFACompareAtoms(t1->atom, atom, deep)) {
/* Treat equal transitions as deterministic. */
if ((t1->to != tonr) ||
(!xmlFAEqualAtoms(t1->atom, atom, deep)))
ret = 0;
/* mark the transition as non-deterministic */
t1->nd = 1;
}
}
return(ret);
}
/**
* Reset flags after checking determinism.
*
* @param ctxt a regexp parser context
* @param state regexp state
*/
static void
xmlFAFinishRecurseDeterminism(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state) {
int transnr, nbTrans;
if (state == NULL)
return;
if (state->markd != XML_REGEXP_MARK_VISITED)
return;
state->markd = 0;
nbTrans = state->nbTrans;
for (transnr = 0; transnr < nbTrans; transnr++) {
xmlRegTransPtr t1 = &state->trans[transnr];
if ((t1->atom == NULL) && (t1->to >= 0))
xmlFAFinishRecurseDeterminism(ctxt, ctxt->states[t1->to]);
}
}
/**
* Check whether the associated regexp is determinist,
* should be called after xmlFAEliminateEpsilonTransitions
*
* @param ctxt a regexp parser context
*/
static int
xmlFAComputesDeterminism(xmlRegParserCtxtPtr ctxt) {
int statenr, transnr;
xmlRegStatePtr state;
xmlRegTransPtr t1, t2, last;
int i;
int ret = 1;
int deep = 1;
if (ctxt->determinist != -1)
return(ctxt->determinist);
if (ctxt->flags & AM_AUTOMATA_RNG)
deep = 0;
/*
* First cleanup the automata removing cancelled transitions
*/
for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
state = ctxt->states[statenr];
if (state == NULL)
continue;
if (state->nbTrans < 2)
continue;
for (transnr = 0;transnr < state->nbTrans;transnr++) {
t1 = &(state->trans[transnr]);
/*
* Determinism checks in case of counted or all transitions
* will have to be handled separately
*/
if (t1->atom == NULL) {
/* t1->nd = 1; */
continue;
}
if (t1->to < 0) /* eliminated */
continue;
for (i = 0;i < transnr;i++) {
t2 = &(state->trans[i]);
if (t2->to < 0) /* eliminated */
continue;
if (t2->atom != NULL) {
if (t1->to == t2->to) {
/*
* Here we use deep because we want to keep the
* transitions which indicate a conflict
*/
if (xmlFAEqualAtoms(t1->atom, t2->atom, deep) &&
(t1->counter == t2->counter) &&
(t1->count == t2->count))
t2->to = -1; /* eliminated */
}
}
}
}
}
/*
* Check for all states that there aren't 2 transitions
* with the same atom and a different target.
*/
for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
state = ctxt->states[statenr];
if (state == NULL)
continue;
if (state->nbTrans < 2)
continue;
last = NULL;
for (transnr = 0;transnr < state->nbTrans;transnr++) {
t1 = &(state->trans[transnr]);
/*
* Determinism checks in case of counted or all transitions
* will have to be handled separately
*/
if (t1->atom == NULL) {
continue;
}
if (t1->to < 0) /* eliminated */
continue;
for (i = 0;i < transnr;i++) {
t2 = &(state->trans[i]);
if (t2->to < 0) /* eliminated */
continue;
if (t2->atom != NULL) {
/*
* But here we don't use deep because we want to
* find transitions which indicate a conflict
*/
if (xmlFACompareAtoms(t1->atom, t2->atom, 1)) {
/*
* Treat equal counter transitions that couldn't be
* eliminated as deterministic.
*/
if ((t1->to != t2->to) ||
(t1->counter == t2->counter) ||
(!xmlFAEqualAtoms(t1->atom, t2->atom, deep)))
ret = 0;
/* mark the transitions as non-deterministic ones */
t1->nd = 1;
t2->nd = 1;
last = t1;
}
} else {
int res;
/*
* do the closure in case of remaining specific
* epsilon transitions like choices or all
*/
res = xmlFARecurseDeterminism(ctxt, ctxt->states[t2->to],
statenr, t1->to, t1->atom);
xmlFAFinishRecurseDeterminism(ctxt, ctxt->states[t2->to]);
/* don't shortcut the computation so all non deterministic
transition get marked down
if (ret == 0)
return(0);
*/
if (res == 0) {
t1->nd = 1;
/* t2->nd = 1; */
last = t1;
ret = 0;
}
}
}
/* don't shortcut the computation so all non deterministic
transition get marked down
if (ret == 0)
break; */
}
/*
* mark specifically the last non-deterministic transition
* from a state since there is no need to set-up rollback
* from it
*/
if (last != NULL) {
last->nd = 2;
}
/* don't shortcut the computation so all non deterministic
transition get marked down
if (ret == 0)
break; */
}
ctxt->determinist = ret;
return(ret);
}
/************************************************************************
* *
* Routines to check input against transition atoms *
* *
************************************************************************/
static int
xmlRegCheckCharacterRange(xmlRegAtomType type, int codepoint, int neg,
int start, int end, const xmlChar *blockName) {
int ret = 0;
switch (type) {
case XML_REGEXP_STRING:
case XML_REGEXP_SUBREG:
case XML_REGEXP_RANGES:
case XML_REGEXP_EPSILON:
return(-1);
case XML_REGEXP_ANYCHAR:
ret = ((codepoint != '\n') && (codepoint != '\r'));
break;
case XML_REGEXP_CHARVAL:
ret = ((codepoint >= start) && (codepoint <= end));
break;
case XML_REGEXP_NOTSPACE:
neg = !neg;
/* Falls through. */
case XML_REGEXP_ANYSPACE:
ret = ((codepoint == '\n') || (codepoint == '\r') ||
(codepoint == '\t') || (codepoint == ' '));
break;
case XML_REGEXP_NOTINITNAME:
neg = !neg;
/* Falls through. */
case XML_REGEXP_INITNAME:
ret = (IS_LETTER(codepoint) ||
(codepoint == '_') || (codepoint == ':'));
break;
case XML_REGEXP_NOTNAMECHAR:
neg = !neg;
/* Falls through. */
case XML_REGEXP_NAMECHAR:
ret = (IS_LETTER(codepoint) || IS_DIGIT(codepoint) ||
(codepoint == '.') || (codepoint == '-') ||
(codepoint == '_') || (codepoint == ':') ||
IS_COMBINING(codepoint) || IS_EXTENDER(codepoint));
break;
case XML_REGEXP_NOTDECIMAL:
neg = !neg;
/* Falls through. */
case XML_REGEXP_DECIMAL:
ret = xmlUCSIsCatNd(codepoint);
break;
case XML_REGEXP_REALCHAR:
neg = !neg;
/* Falls through. */
case XML_REGEXP_NOTREALCHAR:
ret = xmlUCSIsCatP(codepoint);
if (ret == 0)
ret = xmlUCSIsCatZ(codepoint);
if (ret == 0)
ret = xmlUCSIsCatC(codepoint);
break;
case XML_REGEXP_LETTER:
ret = xmlUCSIsCatL(codepoint);
break;
case XML_REGEXP_LETTER_UPPERCASE:
ret = xmlUCSIsCatLu(codepoint);
break;
case XML_REGEXP_LETTER_LOWERCASE:
ret = xmlUCSIsCatLl(codepoint);
break;
case XML_REGEXP_LETTER_TITLECASE:
ret = xmlUCSIsCatLt(codepoint);
break;
case XML_REGEXP_LETTER_MODIFIER:
ret = xmlUCSIsCatLm(codepoint);
break;
case XML_REGEXP_LETTER_OTHERS:
ret = xmlUCSIsCatLo(codepoint);
break;
case XML_REGEXP_MARK:
ret = xmlUCSIsCatM(codepoint);
break;
case XML_REGEXP_MARK_NONSPACING:
ret = xmlUCSIsCatMn(codepoint);
break;
case XML_REGEXP_MARK_SPACECOMBINING:
ret = xmlUCSIsCatMc(codepoint);
break;
case XML_REGEXP_MARK_ENCLOSING:
ret = xmlUCSIsCatMe(codepoint);
break;
case XML_REGEXP_NUMBER:
ret = xmlUCSIsCatN(codepoint);
break;
case XML_REGEXP_NUMBER_DECIMAL:
ret = xmlUCSIsCatNd(codepoint);
break;
case XML_REGEXP_NUMBER_LETTER:
ret = xmlUCSIsCatNl(codepoint);
break;
case XML_REGEXP_NUMBER_OTHERS:
ret = xmlUCSIsCatNo(codepoint);
break;
case XML_REGEXP_PUNCT:
ret = xmlUCSIsCatP(codepoint);
break;
case XML_REGEXP_PUNCT_CONNECTOR:
ret = xmlUCSIsCatPc(codepoint);
break;
case XML_REGEXP_PUNCT_DASH:
ret = xmlUCSIsCatPd(codepoint);
break;
case XML_REGEXP_PUNCT_OPEN:
ret = xmlUCSIsCatPs(codepoint);
break;
case XML_REGEXP_PUNCT_CLOSE:
ret = xmlUCSIsCatPe(codepoint);
break;
case XML_REGEXP_PUNCT_INITQUOTE:
ret = xmlUCSIsCatPi(codepoint);
break;
case XML_REGEXP_PUNCT_FINQUOTE:
ret = xmlUCSIsCatPf(codepoint);
break;
case XML_REGEXP_PUNCT_OTHERS:
ret = xmlUCSIsCatPo(codepoint);
break;
case XML_REGEXP_SEPAR:
ret = xmlUCSIsCatZ(codepoint);
break;
case XML_REGEXP_SEPAR_SPACE:
ret = xmlUCSIsCatZs(codepoint);
break;
case XML_REGEXP_SEPAR_LINE:
ret = xmlUCSIsCatZl(codepoint);
break;
case XML_REGEXP_SEPAR_PARA:
ret = xmlUCSIsCatZp(codepoint);
break;
case XML_REGEXP_SYMBOL:
ret = xmlUCSIsCatS(codepoint);
break;
case XML_REGEXP_SYMBOL_MATH:
ret = xmlUCSIsCatSm(codepoint);
break;
case XML_REGEXP_SYMBOL_CURRENCY:
ret = xmlUCSIsCatSc(codepoint);
break;
case XML_REGEXP_SYMBOL_MODIFIER:
ret = xmlUCSIsCatSk(codepoint);
break;
case XML_REGEXP_SYMBOL_OTHERS:
ret = xmlUCSIsCatSo(codepoint);
break;
case XML_REGEXP_OTHER:
ret = xmlUCSIsCatC(codepoint);
break;
case XML_REGEXP_OTHER_CONTROL:
ret = xmlUCSIsCatCc(codepoint);
break;
case XML_REGEXP_OTHER_FORMAT:
ret = xmlUCSIsCatCf(codepoint);
break;
case XML_REGEXP_OTHER_PRIVATE:
ret = xmlUCSIsCatCo(codepoint);
break;
case XML_REGEXP_OTHER_NA:
/* ret = xmlUCSIsCatCn(codepoint); */
/* Seems it doesn't exist anymore in recent Unicode releases */
ret = 0;
break;
case XML_REGEXP_BLOCK_NAME:
ret = xmlUCSIsBlock(codepoint, (const char *) blockName);
break;
}
if (neg)
return(!ret);
return(ret);
}
static int
xmlRegCheckCharacter(xmlRegAtomPtr atom, int codepoint) {
int i, ret = 0;
xmlRegRangePtr range;
if ((atom == NULL) || (!IS_CHAR(codepoint)))
return(-1);
switch (atom->type) {
case XML_REGEXP_SUBREG:
case XML_REGEXP_EPSILON:
return(-1);
case XML_REGEXP_CHARVAL:
return(codepoint == atom->codepoint);
case XML_REGEXP_RANGES: {
int accept = 0;
for (i = 0;i < atom->nbRanges;i++) {
range = atom->ranges[i];
if (range->neg == 2) {
ret = xmlRegCheckCharacterRange(range->type, codepoint,
0, range->start, range->end,
range->blockName);
if (ret != 0)
return(0); /* excluded char */
} else if (range->neg) {
ret = xmlRegCheckCharacterRange(range->type, codepoint,
0, range->start, range->end,
range->blockName);
if (ret == 0)
accept = 1;
else
return(0);
} else {
ret = xmlRegCheckCharacterRange(range->type, codepoint,
0, range->start, range->end,
range->blockName);
if (ret != 0)
accept = 1; /* might still be excluded */
}
}
return(accept);
}
case XML_REGEXP_STRING:
return(-1);
case XML_REGEXP_ANYCHAR:
case XML_REGEXP_ANYSPACE:
case XML_REGEXP_NOTSPACE:
case XML_REGEXP_INITNAME:
case XML_REGEXP_NOTINITNAME:
case XML_REGEXP_NAMECHAR:
case XML_REGEXP_NOTNAMECHAR:
case XML_REGEXP_DECIMAL:
case XML_REGEXP_NOTDECIMAL:
case XML_REGEXP_REALCHAR:
case XML_REGEXP_NOTREALCHAR:
case XML_REGEXP_LETTER:
case XML_REGEXP_LETTER_UPPERCASE:
case XML_REGEXP_LETTER_LOWERCASE:
case XML_REGEXP_LETTER_TITLECASE:
case XML_REGEXP_LETTER_MODIFIER:
case XML_REGEXP_LETTER_OTHERS:
case XML_REGEXP_MARK:
case XML_REGEXP_MARK_NONSPACING:
case XML_REGEXP_MARK_SPACECOMBINING:
case XML_REGEXP_MARK_ENCLOSING:
case XML_REGEXP_NUMBER:
case XML_REGEXP_NUMBER_DECIMAL:
case XML_REGEXP_NUMBER_LETTER:
case XML_REGEXP_NUMBER_OTHERS:
case XML_REGEXP_PUNCT:
case XML_REGEXP_PUNCT_CONNECTOR:
case XML_REGEXP_PUNCT_DASH:
case XML_REGEXP_PUNCT_OPEN:
case XML_REGEXP_PUNCT_CLOSE:
case XML_REGEXP_PUNCT_INITQUOTE:
case XML_REGEXP_PUNCT_FINQUOTE:
case XML_REGEXP_PUNCT_OTHERS:
case XML_REGEXP_SEPAR:
case XML_REGEXP_SEPAR_SPACE:
case XML_REGEXP_SEPAR_LINE:
case XML_REGEXP_SEPAR_PARA:
case XML_REGEXP_SYMBOL:
case XML_REGEXP_SYMBOL_MATH:
case XML_REGEXP_SYMBOL_CURRENCY:
case XML_REGEXP_SYMBOL_MODIFIER:
case XML_REGEXP_SYMBOL_OTHERS:
case XML_REGEXP_OTHER:
case XML_REGEXP_OTHER_CONTROL:
case XML_REGEXP_OTHER_FORMAT:
case XML_REGEXP_OTHER_PRIVATE:
case XML_REGEXP_OTHER_NA:
case XML_REGEXP_BLOCK_NAME:
ret = xmlRegCheckCharacterRange(atom->type, codepoint, 0, 0, 0,
(const xmlChar *)atom->valuep);
if (atom->neg)
ret = !ret;
break;
}
return(ret);
}
/************************************************************************
* *
* Saving and restoring state of an execution context *
* *
************************************************************************/
static void
xmlFARegExecSave(xmlRegExecCtxtPtr exec) {
#ifdef MAX_PUSH
if (exec->nbPush > MAX_PUSH) {
exec->status = XML_REGEXP_INTERNAL_LIMIT;
return;
}
exec->nbPush++;
#endif
if (exec->nbRollbacks >= exec->maxRollbacks) {
xmlRegExecRollback *tmp;
int newSize;
int len = exec->nbRollbacks;
newSize = xmlGrowCapacity(exec->maxRollbacks, sizeof(tmp[0]),
4, XML_MAX_ITEMS);
if (newSize < 0) {
exec->status = XML_REGEXP_OUT_OF_MEMORY;
return;
}
tmp = xmlRealloc(exec->rollbacks, newSize * sizeof(tmp[0]));
if (tmp == NULL) {
exec->status = XML_REGEXP_OUT_OF_MEMORY;
return;
}
exec->rollbacks = tmp;
exec->maxRollbacks = newSize;
tmp = &exec->rollbacks[len];
memset(tmp, 0, (exec->maxRollbacks - len) * sizeof(xmlRegExecRollback));
}
exec->rollbacks[exec->nbRollbacks].state = exec->state;
exec->rollbacks[exec->nbRollbacks].index = exec->index;
exec->rollbacks[exec->nbRollbacks].nextbranch = exec->transno + 1;
if (exec->comp->nbCounters > 0) {
if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
exec->rollbacks[exec->nbRollbacks].counts = (int *)
xmlMalloc(exec->comp->nbCounters * sizeof(int));
if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
exec->status = XML_REGEXP_OUT_OF_MEMORY;
return;
}
}
memcpy(exec->rollbacks[exec->nbRollbacks].counts, exec->counts,
exec->comp->nbCounters * sizeof(int));
}
exec->nbRollbacks++;
}
static void
xmlFARegExecRollBack(xmlRegExecCtxtPtr exec) {
if (exec->status != XML_REGEXP_OK)
return;
if (exec->nbRollbacks <= 0) {
exec->status = XML_REGEXP_NOT_FOUND;
return;
}
exec->nbRollbacks--;
exec->state = exec->rollbacks[exec->nbRollbacks].state;
exec->index = exec->rollbacks[exec->nbRollbacks].index;
exec->transno = exec->rollbacks[exec->nbRollbacks].nextbranch;
if (exec->comp->nbCounters > 0) {
if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
exec->status = XML_REGEXP_INTERNAL_ERROR;
return;
}
if (exec->counts) {
memcpy(exec->counts, exec->rollbacks[exec->nbRollbacks].counts,
exec->comp->nbCounters * sizeof(int));
}
}
}
/************************************************************************
* *
* Verifier, running an input against a compiled regexp *
* *
************************************************************************/
static int
xmlFARegExec(xmlRegexpPtr comp, const xmlChar *content) {
xmlRegExecCtxt execval;
xmlRegExecCtxtPtr exec = &execval;
int ret, codepoint = 0, len, deter;
exec->inputString = content;
exec->index = 0;
exec->nbPush = 0;
exec->determinist = 1;
exec->maxRollbacks = 0;
exec->nbRollbacks = 0;
exec->rollbacks = NULL;
exec->status = XML_REGEXP_OK;
exec->comp = comp;
exec->state = comp->states[0];
exec->transno = 0;
exec->transcount = 0;
exec->inputStack = NULL;
exec->inputStackMax = 0;
if (comp->nbCounters > 0) {
exec->counts = (int *) xmlMalloc(comp->nbCounters * sizeof(int));
if (exec->counts == NULL) {
return(XML_REGEXP_OUT_OF_MEMORY);
}
memset(exec->counts, 0, comp->nbCounters * sizeof(int));
} else
exec->counts = NULL;
while ((exec->status == XML_REGEXP_OK) && (exec->state != NULL) &&
((exec->inputString[exec->index] != 0) ||
((exec->state != NULL) &&
(exec->state->type != XML_REGEXP_FINAL_STATE)))) {
xmlRegTransPtr trans;
xmlRegAtomPtr atom;
/*
* If end of input on non-terminal state, rollback, however we may
* still have epsilon like transition for counted transitions
* on counters, in that case don't break too early. Additionally,
* if we are working on a range like "AB{0,2}", where B is not present,
* we don't want to break.
*/
len = 1;
if ((exec->inputString[exec->index] == 0) && (exec->counts == NULL)) {
/*
* if there is a transition, we must check if
* atom allows minOccurs of 0
*/
if (exec->transno < exec->state->nbTrans) {
trans = &exec->state->trans[exec->transno];
if (trans->to >=0) {
atom = trans->atom;
if (!((atom->min == 0) && (atom->max > 0)))
goto rollback;
}
} else
goto rollback;
}
exec->transcount = 0;
for (;exec->transno < exec->state->nbTrans;exec->transno++) {
trans = &exec->state->trans[exec->transno];
if (trans->to < 0)
continue;
atom = trans->atom;
ret = 0;
deter = 1;
if (trans->count >= 0) {
int count;
xmlRegCounterPtr counter;
if (exec->counts == NULL) {
exec->status = XML_REGEXP_INTERNAL_ERROR;
goto error;
}
/*
* A counted transition.
*/
count = exec->counts[trans->count];
counter = &exec->comp->counters[trans->count];
ret = ((count >= counter->min) && (count <= counter->max));
if ((ret) && (counter->min != counter->max))
deter = 0;
} else if (atom == NULL) {
exec->status = XML_REGEXP_INTERNAL_ERROR;
break;
} else if (exec->inputString[exec->index] != 0) {
len = 4;
codepoint = xmlGetUTF8Char(&exec->inputString[exec->index],
&len);
if (codepoint < 0) {
exec->status = XML_REGEXP_INVALID_UTF8;
goto error;
}
ret = xmlRegCheckCharacter(atom, codepoint);
if ((ret == 1) && (atom->min >= 0) && (atom->max > 0)) {
xmlRegStatePtr to = comp->states[trans->to];
/*
* this is a multiple input sequence
* If there is a counter associated increment it now.
* do not increment if the counter is already over the
* maximum limit in which case get to next transition
*/
if (trans->counter >= 0) {
xmlRegCounterPtr counter;
if ((exec->counts == NULL) ||
(exec->comp == NULL) ||
(exec->comp->counters == NULL)) {
exec->status = XML_REGEXP_INTERNAL_ERROR;
goto error;
}
counter = &exec->comp->counters[trans->counter];
if (exec->counts[trans->counter] >= counter->max)
continue; /* for loop on transitions */
}
/* Save before incrementing */
if (exec->state->nbTrans > exec->transno + 1) {
xmlFARegExecSave(exec);
if (exec->status != XML_REGEXP_OK)
goto error;
}
if (trans->counter >= 0) {
exec->counts[trans->counter]++;
}
exec->transcount = 1;
do {
/*
* Try to progress as much as possible on the input
*/
if (exec->transcount == atom->max) {
break;
}
exec->index += len;
/*
* End of input: stop here
*/
if (exec->inputString[exec->index] == 0) {
exec->index -= len;
break;
}
if (exec->transcount >= atom->min) {
int transno = exec->transno;
xmlRegStatePtr state = exec->state;
/*
* The transition is acceptable save it
*/
exec->transno = -1; /* trick */
exec->state = to;
xmlFARegExecSave(exec);
if (exec->status != XML_REGEXP_OK)
goto error;
exec->transno = transno;
exec->state = state;
}
len = 4;
codepoint = xmlGetUTF8Char(
&exec->inputString[exec->index], &len);
if (codepoint < 0) {
exec->status = XML_REGEXP_INVALID_UTF8;
goto error;
}
ret = xmlRegCheckCharacter(atom, codepoint);
exec->transcount++;
} while (ret == 1);
if (exec->transcount < atom->min)
ret = 0;
/*
* If the last check failed but one transition was found
* possible, rollback
*/
if (ret < 0)
ret = 0;
if (ret == 0) {
goto rollback;
}
if (trans->counter >= 0) {
if (exec->counts == NULL) {
exec->status = XML_REGEXP_INTERNAL_ERROR;
goto error;
}
exec->counts[trans->counter]--;
}
} else if ((ret == 0) && (atom->min == 0) && (atom->max > 0)) {
/*
* we don't match on the codepoint, but minOccurs of 0
* says that's ok. Setting len to 0 inhibits stepping
* over the codepoint.
*/
exec->transcount = 1;
len = 0;
ret = 1;
}
} else if ((atom->min == 0) && (atom->max > 0)) {
/* another spot to match when minOccurs is 0 */
exec->transcount = 1;
len = 0;
ret = 1;
}
if (ret == 1) {
if ((trans->nd == 1) ||
((trans->count >= 0) && (deter == 0) &&
(exec->state->nbTrans > exec->transno + 1))) {
xmlFARegExecSave(exec);
if (exec->status != XML_REGEXP_OK)
goto error;
}
if (trans->counter >= 0) {
xmlRegCounterPtr counter;
/* make sure we don't go over the counter maximum value */
if ((exec->counts == NULL) ||
(exec->comp == NULL) ||
(exec->comp->counters == NULL)) {
exec->status = XML_REGEXP_INTERNAL_ERROR;
goto error;
}
counter = &exec->comp->counters[trans->counter];
if (exec->counts[trans->counter] >= counter->max)
continue; /* for loop on transitions */
exec->counts[trans->counter]++;
}
if ((trans->count >= 0) &&
(trans->count < REGEXP_ALL_COUNTER)) {
if (exec->counts == NULL) {
exec->status = XML_REGEXP_INTERNAL_ERROR;
goto error;
}
exec->counts[trans->count] = 0;
}
exec->state = comp->states[trans->to];
exec->transno = 0;
if (trans->atom != NULL) {
exec->index += len;
}
goto progress;
} else if (ret < 0) {
exec->status = XML_REGEXP_INTERNAL_ERROR;
break;
}
}
if ((exec->transno != 0) || (exec->state->nbTrans == 0)) {
rollback:
/*
* Failed to find a way out
*/
exec->determinist = 0;
xmlFARegExecRollBack(exec);
}
progress:
continue;
}
error:
if (exec->rollbacks != NULL) {
if (exec->counts != NULL) {
int i;
for (i = 0;i < exec->maxRollbacks;i++)
if (exec->rollbacks[i].counts != NULL)
xmlFree(exec->rollbacks[i].counts);
}
xmlFree(exec->rollbacks);
}
if (exec->state == NULL)
return(XML_REGEXP_INTERNAL_ERROR);
if (exec->counts != NULL)
xmlFree(exec->counts);
if (exec->status == XML_REGEXP_OK)
return(1);
if (exec->status == XML_REGEXP_NOT_FOUND)
return(0);
return(exec->status);
}
/************************************************************************
* *
* Progressive interface to the verifier one atom at a time *
* *
************************************************************************/
/**
* Build a context used for progressive evaluation of a regexp.
*
* @deprecated Internal function, don't use.
*
* @param comp a precompiled regular expression
* @param callback a callback function used for handling progresses in the
* automata matching phase
* @param data the context data associated to the callback in this context
* @returns the new context
*/
xmlRegExecCtxt *
xmlRegNewExecCtxt(xmlRegexp *comp, xmlRegExecCallbacks callback, void *data) {
xmlRegExecCtxtPtr exec;
if (comp == NULL)
return(NULL);
if ((comp->compact == NULL) && (comp->states == NULL))
return(NULL);
exec = (xmlRegExecCtxtPtr) xmlMalloc(sizeof(xmlRegExecCtxt));
if (exec == NULL)
return(NULL);
memset(exec, 0, sizeof(xmlRegExecCtxt));
exec->inputString = NULL;
exec->index = 0;
exec->determinist = 1;
exec->maxRollbacks = 0;
exec->nbRollbacks = 0;
exec->rollbacks = NULL;
exec->status = XML_REGEXP_OK;
exec->comp = comp;
if (comp->compact == NULL)
exec->state = comp->states[0];
exec->transno = 0;
exec->transcount = 0;
exec->callback = callback;
exec->data = data;
if (comp->nbCounters > 0) {
/*
* For error handling, exec->counts is allocated twice the size
* the second half is used to store the data in case of rollback
*/
exec->counts = (int *) xmlMalloc(comp->nbCounters * sizeof(int)
* 2);
if (exec->counts == NULL) {
xmlFree(exec);
return(NULL);
}
memset(exec->counts, 0, comp->nbCounters * sizeof(int) * 2);
exec->errCounts = &exec->counts[comp->nbCounters];
} else {
exec->counts = NULL;
exec->errCounts = NULL;
}
exec->inputStackMax = 0;
exec->inputStackNr = 0;
exec->inputStack = NULL;
exec->errStateNo = -1;
exec->errString = NULL;
exec->nbPush = 0;
return(exec);
}
/**
* Free the structures associated to a regular expression evaluation context.
*
* @deprecated Internal function, don't use.
*
* @param exec a regular expression evaluation context
*/
void
xmlRegFreeExecCtxt(xmlRegExecCtxt *exec) {
if (exec == NULL)
return;
if (exec->rollbacks != NULL) {
if (exec->counts != NULL) {
int i;
for (i = 0;i < exec->maxRollbacks;i++)
if (exec->rollbacks[i].counts != NULL)
xmlFree(exec->rollbacks[i].counts);
}
xmlFree(exec->rollbacks);
}
if (exec->counts != NULL)
xmlFree(exec->counts);
if (exec->inputStack != NULL) {
int i;
for (i = 0;i < exec->inputStackNr;i++) {
if (exec->inputStack[i].value != NULL)
xmlFree(exec->inputStack[i].value);
}
xmlFree(exec->inputStack);
}
if (exec->errString != NULL)
xmlFree(exec->errString);
xmlFree(exec);
}
static int
xmlRegExecSetErrString(xmlRegExecCtxtPtr exec, const xmlChar *value) {
if (exec->errString != NULL)
xmlFree(exec->errString);
if (value == NULL) {
exec->errString = NULL;
} else {
exec->errString = xmlStrdup(value);
if (exec->errString == NULL) {
exec->status = XML_REGEXP_OUT_OF_MEMORY;
return(-1);
}
}
return(0);
}
static void
xmlFARegExecSaveInputString(xmlRegExecCtxtPtr exec, const xmlChar *value,
void *data) {
if (exec->inputStackNr + 1 >= exec->inputStackMax) {
xmlRegInputTokenPtr tmp;
int newSize;
newSize = xmlGrowCapacity(exec->inputStackMax, sizeof(tmp[0]),
4, XML_MAX_ITEMS);
if (newSize < 0) {
exec->status = XML_REGEXP_OUT_OF_MEMORY;
return;
}
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
if (newSize < 2)
newSize = 2;
#endif
tmp = xmlRealloc(exec->inputStack, newSize * sizeof(tmp[0]));
if (tmp == NULL) {
exec->status = XML_REGEXP_OUT_OF_MEMORY;
return;
}
exec->inputStack = tmp;
exec->inputStackMax = newSize;
}
if (value == NULL) {
exec->inputStack[exec->inputStackNr].value = NULL;
} else {
exec->inputStack[exec->inputStackNr].value = xmlStrdup(value);
if (exec->inputStack[exec->inputStackNr].value == NULL) {
exec->status = XML_REGEXP_OUT_OF_MEMORY;
return;
}
}
exec->inputStack[exec->inputStackNr].data = data;
exec->inputStackNr++;
exec->inputStack[exec->inputStackNr].value = NULL;
exec->inputStack[exec->inputStackNr].data = NULL;
}
/**
* Checks if both strings are equal or have the same content. "*"
* can be used as a wildcard in `valStr`; "|" is used as a separator of
* substrings in both `expStr` and `valStr`.
*
* @param expStr the string to be evaluated
* @param valStr the validation string
* @returns 1 if the comparison is satisfied and the number of substrings
* is equal, 0 otherwise.
*/
static int
xmlRegStrEqualWildcard(const xmlChar *expStr, const xmlChar *valStr) {
if (expStr == valStr) return(1);
if (expStr == NULL) return(0);
if (valStr == NULL) return(0);
do {
/*
* Eval if we have a wildcard for the current item.
*/
if (*expStr != *valStr) {
/* if one of them starts with a wildcard make valStr be it */
if (*valStr == '*') {
const xmlChar *tmp;
tmp = valStr;
valStr = expStr;
expStr = tmp;
}
if ((*valStr != 0) && (*expStr != 0) && (*expStr++ == '*')) {
do {
if (*valStr == XML_REG_STRING_SEPARATOR)
break;
valStr++;
} while (*valStr != 0);
continue;
} else
return(0);
}
expStr++;
valStr++;
} while (*valStr != 0);
if (*expStr != 0)
return (0);
else
return (1);
}
/**
* Push one input token in the execution context
*
* @param exec a regexp execution context
* @param comp the precompiled exec with a compact table
* @param value a string token input
* @param data data associated to the token to reuse in callbacks
* @returns 1 if the regexp reached a final state, 0 if non-final, and
* a negative value in case of error.
*/
static int
xmlRegCompactPushString(xmlRegExecCtxtPtr exec,
xmlRegexpPtr comp,
const xmlChar *value,
void *data) {
int state = exec->index;
int i, target;
if ((comp == NULL) || (comp->compact == NULL) || (comp->stringMap == NULL))
return(-1);
if (value == NULL) {
/*
* are we at a final state ?
*/
if (comp->compact[state * (comp->nbstrings + 1)] ==
XML_REGEXP_FINAL_STATE)
return(1);
return(0);
}
/*
* Examine all outside transitions from current state
*/
for (i = 0;i < comp->nbstrings;i++) {
target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
if ((target > 0) && (target <= comp->nbstates)) {
target--; /* to avoid 0 */
if (xmlRegStrEqualWildcard(comp->stringMap[i], value)) {
exec->index = target;
if ((exec->callback != NULL) && (comp->transdata != NULL)) {
exec->callback(exec->data, value,
comp->transdata[state * comp->nbstrings + i], data);
}
if (comp->compact[target * (comp->nbstrings + 1)] ==
XML_REGEXP_SINK_STATE)
goto error;
if (comp->compact[target * (comp->nbstrings + 1)] ==
XML_REGEXP_FINAL_STATE)
return(1);
return(0);
}
}
}
/*
* Failed to find an exit transition out from current state for the
* current token
*/
error:
exec->errStateNo = state;
exec->status = XML_REGEXP_NOT_FOUND;
xmlRegExecSetErrString(exec, value);
return(exec->status);
}
/**
* Push one input token in the execution context
*
* @param exec a regexp execution context or NULL to indicate the end
* @param value a string token input
* @param data data associated to the token to reuse in callbacks
* @param compound value was assembled from 2 strings
* @returns 1 if the regexp reached a final state, 0 if non-final, and
* a negative value in case of error.
*/
static int
xmlRegExecPushStringInternal(xmlRegExecCtxtPtr exec, const xmlChar *value,
void *data, int compound) {
xmlRegTransPtr trans;
xmlRegAtomPtr atom;
int ret;
int final = 0;
int progress = 1;
if (exec == NULL)
return(-1);
if (exec->comp == NULL)
return(-1);
if (exec->status != XML_REGEXP_OK)
return(exec->status);
if (exec->comp->compact != NULL)
return(xmlRegCompactPushString(exec, exec->comp, value, data));
if (value == NULL) {
if (exec->state->type == XML_REGEXP_FINAL_STATE)
return(1);
final = 1;
}
/*
* If we have an active rollback stack push the new value there
* and get back to where we were left
*/
if ((value != NULL) && (exec->inputStackNr > 0)) {
xmlFARegExecSaveInputString(exec, value, data);
value = exec->inputStack[exec->index].value;
data = exec->inputStack[exec->index].data;
}
while ((exec->status == XML_REGEXP_OK) &&
((value != NULL) ||
((final == 1) &&
(exec->state->type != XML_REGEXP_FINAL_STATE)))) {
/*
* End of input on non-terminal state, rollback, however we may
* still have epsilon like transition for counted transitions
* on counters, in that case don't break too early.
*/
if ((value == NULL) && (exec->counts == NULL))
goto rollback;
exec->transcount = 0;
for (;exec->transno < exec->state->nbTrans;exec->transno++) {
trans = &exec->state->trans[exec->transno];
if (trans->to < 0)
continue;
atom = trans->atom;
ret = 0;
if (trans->count == REGEXP_ALL_LAX_COUNTER) {
int i;
int count;
xmlRegTransPtr t;
xmlRegCounterPtr counter;
ret = 0;
/*
* Check all counted transitions from the current state
*/
if ((value == NULL) && (final)) {
ret = 1;
} else if (value != NULL) {
for (i = 0;i < exec->state->nbTrans;i++) {
t = &exec->state->trans[i];
if ((t->counter < 0) || (t == trans))
continue;
counter = &exec->comp->counters[t->counter];
count = exec->counts[t->counter];
if ((count < counter->max) &&
(t->atom != NULL) &&
(xmlStrEqual(value, t->atom->valuep))) {
ret = 0;
break;
}
if ((count >= counter->min) &&
(count < counter->max) &&
(t->atom != NULL) &&
(xmlStrEqual(value, t->atom->valuep))) {
ret = 1;
break;
}
}
}
} else if (trans->count == REGEXP_ALL_COUNTER) {
int i;
int count;
xmlRegTransPtr t;
xmlRegCounterPtr counter;
ret = 1;
/*
* Check all counted transitions from the current state
*/
for (i = 0;i < exec->state->nbTrans;i++) {
t = &exec->state->trans[i];
if ((t->counter < 0) || (t == trans))
continue;
counter = &exec->comp->counters[t->counter];
count = exec->counts[t->counter];
if ((count < counter->min) || (count > counter->max)) {
ret = 0;
break;
}
}
} else if (trans->count >= 0) {
int count;
xmlRegCounterPtr counter;
/*
* A counted transition.
*/
count = exec->counts[trans->count];
counter = &exec->comp->counters[trans->count];
ret = ((count >= counter->min) && (count <= counter->max));
} else if (atom == NULL) {
exec->status = XML_REGEXP_INTERNAL_ERROR;
break;
} else if (value != NULL) {
ret = xmlRegStrEqualWildcard(atom->valuep, value);
if (atom->neg) {
ret = !ret;
if (!compound)
ret = 0;
}
if ((ret == 1) && (trans->counter >= 0)) {
xmlRegCounterPtr counter;
int count;
count = exec->counts[trans->counter];
counter = &exec->comp->counters[trans->counter];
if (count >= counter->max)
ret = 0;
}
if ((ret == 1) && (atom->min > 0) && (atom->max > 0)) {
xmlRegStatePtr to = exec->comp->states[trans->to];
/*
* this is a multiple input sequence
*/
if (exec->state->nbTrans > exec->transno + 1) {
if (exec->inputStackNr <= 0) {
xmlFARegExecSaveInputString(exec, value, data);
}
xmlFARegExecSave(exec);
}
exec->transcount = 1;
do {
/*
* Try to progress as much as possible on the input
*/
if (exec->transcount == atom->max) {
break;
}
exec->index++;
value = exec->inputStack[exec->index].value;
data = exec->inputStack[exec->index].data;
/*
* End of input: stop here
*/
if (value == NULL) {
exec->index --;
break;
}
if (exec->transcount >= atom->min) {
int transno = exec->transno;
xmlRegStatePtr state = exec->state;
/*
* The transition is acceptable save it
*/
exec->transno = -1; /* trick */
exec->state = to;
if (exec->inputStackNr <= 0) {
xmlFARegExecSaveInputString(exec, value, data);
}
xmlFARegExecSave(exec);
exec->transno = transno;
exec->state = state;
}
ret = xmlStrEqual(value, atom->valuep);
exec->transcount++;
} while (ret == 1);
if (exec->transcount < atom->min)
ret = 0;
/*
* If the last check failed but one transition was found
* possible, rollback
*/
if (ret < 0)
ret = 0;
if (ret == 0) {
goto rollback;
}
}
}
if (ret == 1) {
if ((exec->callback != NULL) && (atom != NULL) &&
(data != NULL)) {
exec->callback(exec->data, atom->valuep,
atom->data, data);
}
if (exec->state->nbTrans > exec->transno + 1) {
if (exec->inputStackNr <= 0) {
xmlFARegExecSaveInputString(exec, value, data);
}
xmlFARegExecSave(exec);
}
if (trans->counter >= 0) {
exec->counts[trans->counter]++;
}
if ((trans->count >= 0) &&
(trans->count < REGEXP_ALL_COUNTER)) {
exec->counts[trans->count] = 0;
}
if ((exec->comp->states[trans->to] != NULL) &&
(exec->comp->states[trans->to]->type ==
XML_REGEXP_SINK_STATE)) {
/*
* entering a sink state, save the current state as error
* state.
*/
if (xmlRegExecSetErrString(exec, value) < 0)
break;
exec->errState = exec->state;
memcpy(exec->errCounts, exec->counts,
exec->comp->nbCounters * sizeof(int));
}
exec->state = exec->comp->states[trans->to];
exec->transno = 0;
if (trans->atom != NULL) {
if (exec->inputStack != NULL) {
exec->index++;
if (exec->index < exec->inputStackNr) {
value = exec->inputStack[exec->index].value;
data = exec->inputStack[exec->index].data;
} else {
value = NULL;
data = NULL;
}
} else {
value = NULL;
data = NULL;
}
}
goto progress;
} else if (ret < 0) {
exec->status = XML_REGEXP_INTERNAL_ERROR;
break;
}
}
if ((exec->transno != 0) || (exec->state->nbTrans == 0)) {
rollback:
/*
* if we didn't yet rollback on the current input
* store the current state as the error state.
*/
if ((progress) && (exec->state != NULL) &&
(exec->state->type != XML_REGEXP_SINK_STATE)) {
progress = 0;
if (xmlRegExecSetErrString(exec, value) < 0)
break;
exec->errState = exec->state;
if (exec->comp->nbCounters)
memcpy(exec->errCounts, exec->counts,
exec->comp->nbCounters * sizeof(int));
}
/*
* Failed to find a way out
*/
exec->determinist = 0;
xmlFARegExecRollBack(exec);
if ((exec->inputStack != NULL ) &&
(exec->status == XML_REGEXP_OK)) {
value = exec->inputStack[exec->index].value;
data = exec->inputStack[exec->index].data;
}
}
continue;
progress:
progress = 1;
}
if (exec->status == XML_REGEXP_OK) {
return(exec->state->type == XML_REGEXP_FINAL_STATE);
}
return(exec->status);
}
/**
* Push one input token in the execution context
*
* @deprecated Internal function, don't use.
*
* @param exec a regexp execution context or NULL to indicate the end
* @param value a string token input
* @param data data associated to the token to reuse in callbacks
* @returns 1 if the regexp reached a final state, 0 if non-final, and
* a negative value in case of error.
*/
int
xmlRegExecPushString(xmlRegExecCtxt *exec, const xmlChar *value,
void *data) {
return(xmlRegExecPushStringInternal(exec, value, data, 0));
}
/**
* Push one input token in the execution context
*
* @deprecated Internal function, don't use.
*
* @param exec a regexp execution context or NULL to indicate the end
* @param value the first string token input
* @param value2 the second string token input
* @param data data associated to the token to reuse in callbacks
* @returns 1 if the regexp reached a final state, 0 if non-final, and
* a negative value in case of error.
*/
int
xmlRegExecPushString2(xmlRegExecCtxt *exec, const xmlChar *value,
const xmlChar *value2, void *data) {
xmlChar buf[150];
int lenn, lenp, ret;
xmlChar *str;
if (exec == NULL)
return(-1);
if (exec->comp == NULL)
return(-1);
if (exec->status != XML_REGEXP_OK)
return(exec->status);
if (value2 == NULL)
return(xmlRegExecPushString(exec, value, data));
lenn = strlen((char *) value2);
lenp = strlen((char *) value);
if (150 < lenn + lenp + 2) {
str = xmlMalloc(lenn + lenp + 2);
if (str == NULL) {
exec->status = XML_REGEXP_OUT_OF_MEMORY;
return(-1);
}
} else {
str = buf;
}
memcpy(&str[0], value, lenp);
str[lenp] = XML_REG_STRING_SEPARATOR;
memcpy(&str[lenp + 1], value2, lenn);
str[lenn + lenp + 1] = 0;
if (exec->comp->compact != NULL)
ret = xmlRegCompactPushString(exec, exec->comp, str, data);
else
ret = xmlRegExecPushStringInternal(exec, str, data, 1);
if (str != buf)
xmlFree(str);
return(ret);
}
/**
* Extract information from the regexp execution. Internal routine to
* implement #xmlRegExecNextValues and #xmlRegExecErrInfo
*
* @param exec a regexp execution context
* @param err error extraction or normal one
* @param nbval pointer to the number of accepted values IN/OUT
* @param nbneg return number of negative transitions
* @param values pointer to the array of acceptable values
* @param terminal return value if this was a terminal state
* @returns 0 in case of success or -1 in case of error.
*/
static int
xmlRegExecGetValues(xmlRegExecCtxtPtr exec, int err,
int *nbval, int *nbneg,
xmlChar **values, int *terminal) {
int maxval;
int nb = 0;
if ((exec == NULL) || (nbval == NULL) || (nbneg == NULL) ||
(values == NULL) || (*nbval <= 0))
return(-1);
maxval = *nbval;
*nbval = 0;
*nbneg = 0;
if ((exec->comp != NULL) && (exec->comp->compact != NULL)) {
xmlRegexpPtr comp;
int target, i, state;
comp = exec->comp;
if (err) {
if (exec->errStateNo == -1) return(-1);
state = exec->errStateNo;
} else {
state = exec->index;
}
if (terminal != NULL) {
if (comp->compact[state * (comp->nbstrings + 1)] ==
XML_REGEXP_FINAL_STATE)
*terminal = 1;
else
*terminal = 0;
}
for (i = 0;(i < comp->nbstrings) && (nb < maxval);i++) {
target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
if ((target > 0) && (target <= comp->nbstates) &&
(comp->compact[(target - 1) * (comp->nbstrings + 1)] !=
XML_REGEXP_SINK_STATE)) {
values[nb++] = comp->stringMap[i];
(*nbval)++;
}
}
for (i = 0;(i < comp->nbstrings) && (nb < maxval);i++) {
target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
if ((target > 0) && (target <= comp->nbstates) &&
(comp->compact[(target - 1) * (comp->nbstrings + 1)] ==
XML_REGEXP_SINK_STATE)) {
values[nb++] = comp->stringMap[i];
(*nbneg)++;
}
}
} else {
int transno;
xmlRegTransPtr trans;
xmlRegAtomPtr atom;
xmlRegStatePtr state;
if (terminal != NULL) {
if (exec->state->type == XML_REGEXP_FINAL_STATE)
*terminal = 1;
else
*terminal = 0;
}
if (err) {
if (exec->errState == NULL) return(-1);
state = exec->errState;
} else {
if (exec->state == NULL) return(-1);
state = exec->state;
}
for (transno = 0;
(transno < state->nbTrans) && (nb < maxval);
transno++) {
trans = &state->trans[transno];
if (trans->to < 0)
continue;
atom = trans->atom;
if ((atom == NULL) || (atom->valuep == NULL))
continue;
if (trans->count == REGEXP_ALL_LAX_COUNTER) {
/* this should not be reached but ... */
} else if (trans->count == REGEXP_ALL_COUNTER) {
/* this should not be reached but ... */
} else if (trans->counter >= 0) {
xmlRegCounterPtr counter = NULL;
int count;
if (err)
count = exec->errCounts[trans->counter];
else
count = exec->counts[trans->counter];
if (exec->comp != NULL)
counter = &exec->comp->counters[trans->counter];
if ((counter == NULL) || (count < counter->max)) {
if (atom->neg)
values[nb++] = (xmlChar *) atom->valuep2;
else
values[nb++] = (xmlChar *) atom->valuep;
(*nbval)++;
}
} else {
if ((exec->comp != NULL) && (exec->comp->states[trans->to] != NULL) &&
(exec->comp->states[trans->to]->type !=
XML_REGEXP_SINK_STATE)) {
if (atom->neg)
values[nb++] = (xmlChar *) atom->valuep2;
else
values[nb++] = (xmlChar *) atom->valuep;
(*nbval)++;
}
}
}
for (transno = 0;
(transno < state->nbTrans) && (nb < maxval);
transno++) {
trans = &state->trans[transno];
if (trans->to < 0)
continue;
atom = trans->atom;
if ((atom == NULL) || (atom->valuep == NULL))
continue;
if (trans->count == REGEXP_ALL_LAX_COUNTER) {
continue;
} else if (trans->count == REGEXP_ALL_COUNTER) {
continue;
} else if (trans->counter >= 0) {
continue;
} else {
if ((exec->comp->states[trans->to] != NULL) &&
(exec->comp->states[trans->to]->type ==
XML_REGEXP_SINK_STATE)) {
if (atom->neg)
values[nb++] = (xmlChar *) atom->valuep2;
else
values[nb++] = (xmlChar *) atom->valuep;
(*nbneg)++;
}
}
}
}
return(0);
}
/**
* Extract information from the regexp execution.
* The parameter `values` must point to an array of `nbval` string pointers
* on return nbval will contain the number of possible strings in that
* state and the `values` array will be updated with them. The string values
* returned will be freed with the `exec` context and don't need to be
* deallocated.
*
* @deprecated Internal function, don't use.
*
* @param exec a regexp execution context
* @param nbval pointer to the number of accepted values IN/OUT
* @param nbneg return number of negative transitions
* @param values pointer to the array of acceptable values
* @param terminal return value if this was a terminal state
* @returns 0 in case of success or -1 in case of error.
*/
int
xmlRegExecNextValues(xmlRegExecCtxt *exec, int *nbval, int *nbneg,
xmlChar **values, int *terminal) {
return(xmlRegExecGetValues(exec, 0, nbval, nbneg, values, terminal));
}
/**
* Extract error information from the regexp execution. The parameter
* `string` will be updated with the value pushed and not accepted,
* the parameter `values` must point to an array of `nbval` string pointers
* on return nbval will contain the number of possible strings in that
* state and the `values` array will be updated with them. The string values
* returned will be freed with the `exec` context and don't need to be
* deallocated.
*
* @deprecated Internal function, don't use.
*
* @param exec a regexp execution context generating an error
* @param string return value for the error string
* @param nbval pointer to the number of accepted values IN/OUT
* @param nbneg return number of negative transitions
* @param values pointer to the array of acceptable values
* @param terminal return value if this was a terminal state
* @returns 0 in case of success or -1 in case of error.
*/
int
xmlRegExecErrInfo(xmlRegExecCtxt *exec, const xmlChar **string,
int *nbval, int *nbneg, xmlChar **values, int *terminal) {
if (exec == NULL)
return(-1);
if (string != NULL) {
if (exec->status != XML_REGEXP_OK)
*string = exec->errString;
else
*string = NULL;
}
return(xmlRegExecGetValues(exec, 1, nbval, nbneg, values, terminal));
}
/************************************************************************
* *
* Parser for the Schemas Datatype Regular Expressions *
* http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#regexs *
* *
************************************************************************/
/**
* [10] Char ::= [^.\?*+()|\#x5B\#x5D]
*
* @param ctxt a regexp parser context
*/
static int
xmlFAIsChar(xmlRegParserCtxtPtr ctxt) {
int cur;
int len;
len = 4;
cur = xmlGetUTF8Char(ctxt->cur, &len);
if (cur < 0) {
ERROR("Invalid UTF-8");
return(0);
}
if ((cur == '.') || (cur == '\\') || (cur == '?') ||
(cur == '*') || (cur == '+') || (cur == '(') ||
(cur == ')') || (cur == '|') || (cur == 0x5B) ||
(cur == 0x5D) || (cur == 0))
return(-1);
return(cur);
}
/**
* [27] charProp ::= IsCategory | IsBlock
* [28] IsCategory ::= Letters | Marks | Numbers | Punctuation |
* Separators | Symbols | Others
* [29] Letters ::= 'L' [ultmo]?
* [30] Marks ::= 'M' [nce]?
* [31] Numbers ::= 'N' [dlo]?
* [32] Punctuation ::= 'P' [cdseifo]?
* [33] Separators ::= 'Z' [slp]?
* [34] Symbols ::= 'S' [mcko]?
* [35] Others ::= 'C' [cfon]?
* [36] IsBlock ::= 'Is' [a-zA-Z0-9\#x2D]+
*
* @param ctxt a regexp parser context
*/
static void
xmlFAParseCharProp(xmlRegParserCtxtPtr ctxt) {
int cur;
xmlRegAtomType type = (xmlRegAtomType) 0;
xmlChar *blockName = NULL;
cur = CUR;
if (cur == 'L') {
NEXT;
cur = CUR;
if (cur == 'u') {
NEXT;
type = XML_REGEXP_LETTER_UPPERCASE;
} else if (cur == 'l') {
NEXT;
type = XML_REGEXP_LETTER_LOWERCASE;
} else if (cur == 't') {
NEXT;
type = XML_REGEXP_LETTER_TITLECASE;
} else if (cur == 'm') {
NEXT;
type = XML_REGEXP_LETTER_MODIFIER;
} else if (cur == 'o') {
NEXT;
type = XML_REGEXP_LETTER_OTHERS;
} else {
type = XML_REGEXP_LETTER;
}
} else if (cur == 'M') {
NEXT;
cur = CUR;
if (cur == 'n') {
NEXT;
/* nonspacing */
type = XML_REGEXP_MARK_NONSPACING;
} else if (cur == 'c') {
NEXT;
/* spacing combining */
type = XML_REGEXP_MARK_SPACECOMBINING;
} else if (cur == 'e') {
NEXT;
/* enclosing */
type = XML_REGEXP_MARK_ENCLOSING;
} else {
/* all marks */
type = XML_REGEXP_MARK;
}
} else if (cur == 'N') {
NEXT;
cur = CUR;
if (cur == 'd') {
NEXT;
/* digital */
type = XML_REGEXP_NUMBER_DECIMAL;
} else if (cur == 'l') {
NEXT;
/* letter */
type = XML_REGEXP_NUMBER_LETTER;
} else if (cur == 'o') {
NEXT;
/* other */
type = XML_REGEXP_NUMBER_OTHERS;
} else {
/* all numbers */
type = XML_REGEXP_NUMBER;
}
} else if (cur == 'P') {
NEXT;
cur = CUR;
if (cur == 'c') {
NEXT;
/* connector */
type = XML_REGEXP_PUNCT_CONNECTOR;
} else if (cur == 'd') {
NEXT;
/* dash */
type = XML_REGEXP_PUNCT_DASH;
} else if (cur == 's') {
NEXT;
/* open */
type = XML_REGEXP_PUNCT_OPEN;
} else if (cur == 'e') {
NEXT;
/* close */
type = XML_REGEXP_PUNCT_CLOSE;
} else if (cur == 'i') {
NEXT;
/* initial quote */
type = XML_REGEXP_PUNCT_INITQUOTE;
} else if (cur == 'f') {
NEXT;
/* final quote */
type = XML_REGEXP_PUNCT_FINQUOTE;
} else if (cur == 'o') {
NEXT;
/* other */
type = XML_REGEXP_PUNCT_OTHERS;
} else {
/* all punctuation */
type = XML_REGEXP_PUNCT;
}
} else if (cur == 'Z') {
NEXT;
cur = CUR;
if (cur == 's') {
NEXT;
/* space */
type = XML_REGEXP_SEPAR_SPACE;
} else if (cur == 'l') {
NEXT;
/* line */
type = XML_REGEXP_SEPAR_LINE;
} else if (cur == 'p') {
NEXT;
/* paragraph */
type = XML_REGEXP_SEPAR_PARA;
} else {
/* all separators */
type = XML_REGEXP_SEPAR;
}
} else if (cur == 'S') {
NEXT;
cur = CUR;
if (cur == 'm') {
NEXT;
type = XML_REGEXP_SYMBOL_MATH;
/* math */
} else if (cur == 'c') {
NEXT;
type = XML_REGEXP_SYMBOL_CURRENCY;
/* currency */
} else if (cur == 'k') {
NEXT;
type = XML_REGEXP_SYMBOL_MODIFIER;
/* modifiers */
} else if (cur == 'o') {
NEXT;
type = XML_REGEXP_SYMBOL_OTHERS;
/* other */
} else {
/* all symbols */
type = XML_REGEXP_SYMBOL;
}
} else if (cur == 'C') {
NEXT;
cur = CUR;
if (cur == 'c') {
NEXT;
/* control */
type = XML_REGEXP_OTHER_CONTROL;
} else if (cur == 'f') {
NEXT;
/* format */
type = XML_REGEXP_OTHER_FORMAT;
} else if (cur == 'o') {
NEXT;
/* private use */
type = XML_REGEXP_OTHER_PRIVATE;
} else if (cur == 'n') {
NEXT;
/* not assigned */
type = XML_REGEXP_OTHER_NA;
} else {
/* all others */
type = XML_REGEXP_OTHER;
}
} else if (cur == 'I') {
const xmlChar *start;
NEXT;
cur = CUR;
if (cur != 's') {
ERROR("IsXXXX expected");
return;
}
NEXT;
start = ctxt->cur;
cur = CUR;
if (((cur >= 'a') && (cur <= 'z')) ||
((cur >= 'A') && (cur <= 'Z')) ||
((cur >= '0') && (cur <= '9')) ||
(cur == 0x2D)) {
NEXT;
cur = CUR;
while (((cur >= 'a') && (cur <= 'z')) ||
((cur >= 'A') && (cur <= 'Z')) ||
((cur >= '0') && (cur <= '9')) ||
(cur == 0x2D)) {
NEXT;
cur = CUR;
}
}
type = XML_REGEXP_BLOCK_NAME;
blockName = xmlStrndup(start, ctxt->cur - start);
if (blockName == NULL)
xmlRegexpErrMemory(ctxt);
} else {
ERROR("Unknown char property");
return;
}
if (ctxt->atom == NULL) {
ctxt->atom = xmlRegNewAtom(ctxt, type);
if (ctxt->atom == NULL) {
xmlFree(blockName);
return;
}
ctxt->atom->valuep = blockName;
} else if (ctxt->atom->type == XML_REGEXP_RANGES) {
if (xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
type, 0, 0, blockName) == NULL) {
xmlFree(blockName);
}
}
}
static int parse_escaped_codeunit(xmlRegParserCtxtPtr ctxt)
{
int val = 0, i, cur;
for (i = 0; i < 4; i++) {
NEXT;
val *= 16;
cur = CUR;
if (cur >= '0' && cur <= '9') {
val += cur - '0';
} else if (cur >= 'A' && cur <= 'F') {
val += cur - 'A' + 10;
} else if (cur >= 'a' && cur <= 'f') {
val += cur - 'a' + 10;
} else {
ERROR("Expecting hex digit");
return -1;
}
}
return val;
}
static int parse_escaped_codepoint(xmlRegParserCtxtPtr ctxt)
{
int val = parse_escaped_codeunit(ctxt);
if (0xD800 <= val && val <= 0xDBFF) {
NEXT;
if (CUR == '\\') {
NEXT;
if (CUR == 'u') {
int low = parse_escaped_codeunit(ctxt);
if (0xDC00 <= low && low <= 0xDFFF) {
return (val - 0xD800) * 0x400 + (low - 0xDC00) + 0x10000;
}
}
}
ERROR("Invalid low surrogate pair code unit");
val = -1;
}
return val;
}
/**
* ```
* [23] charClassEsc ::= ( SingleCharEsc | MultiCharEsc | catEsc | complEsc )
* [24] SingleCharEsc ::= '\' [nrt\|.?*+(){}\#x2D\#x5B\#x5D\#x5E]
* [25] catEsc ::= '\p{' charProp '}'
* [26] complEsc ::= '\P{' charProp '}'
* [37] MultiCharEsc ::= '.' | ('\' [sSiIcCdDwW])
* ```
*
* @param ctxt a regexp parser context
*/
static void
xmlFAParseCharClassEsc(xmlRegParserCtxtPtr ctxt) {
int cur;
if (CUR == '.') {
if (ctxt->atom == NULL) {
ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_ANYCHAR);
} else if (ctxt->atom->type == XML_REGEXP_RANGES) {
xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
XML_REGEXP_ANYCHAR, 0, 0, NULL);
}
NEXT;
return;
}
if (CUR != '\\') {
ERROR("Escaped sequence: expecting \\");
return;
}
NEXT;
cur = CUR;
if (cur == 'p') {
NEXT;
if (CUR != '{') {
ERROR("Expecting '{'");
return;
}
NEXT;
xmlFAParseCharProp(ctxt);
if (CUR != '}') {
ERROR("Expecting '}'");
return;
}
NEXT;
} else if (cur == 'P') {
NEXT;
if (CUR != '{') {
ERROR("Expecting '{'");
return;
}
NEXT;
xmlFAParseCharProp(ctxt);
if (ctxt->atom != NULL)
ctxt->atom->neg = 1;
if (CUR != '}') {
ERROR("Expecting '}'");
return;
}
NEXT;
} else if ((cur == 'n') || (cur == 'r') || (cur == 't') || (cur == '\\') ||
(cur == '|') || (cur == '.') || (cur == '?') || (cur == '*') ||
(cur == '+') || (cur == '(') || (cur == ')') || (cur == '{') ||
(cur == '}') || (cur == 0x2D) || (cur == 0x5B) || (cur == 0x5D) ||
(cur == 0x5E) ||
/* Non-standard escape sequences:
* Java 1.8|.NET Core 3.1|MSXML 6 */
(cur == '!') || /* + | + | + */
(cur == '"') || /* + | + | + */
(cur == '#') || /* + | + | + */
(cur == '$') || /* + | + | + */
(cur == '%') || /* + | + | + */
(cur == ',') || /* + | + | + */
(cur == '/') || /* + | + | + */
(cur == ':') || /* + | + | + */
(cur == ';') || /* + | + | + */
(cur == '=') || /* + | + | + */
(cur == '>') || /* | + | + */
(cur == '@') || /* + | + | + */
(cur == '`') || /* + | + | + */
(cur == '~') || /* + | + | + */
(cur == 'u')) { /* | + | + */
if (ctxt->atom == NULL) {
ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_CHARVAL);
if (ctxt->atom != NULL) {
switch (cur) {
case 'n':
ctxt->atom->codepoint = '\n';
break;
case 'r':
ctxt->atom->codepoint = '\r';
break;
case 't':
ctxt->atom->codepoint = '\t';
break;
case 'u':
cur = parse_escaped_codepoint(ctxt);
if (cur < 0) {
return;
}
ctxt->atom->codepoint = cur;
break;
default:
ctxt->atom->codepoint = cur;
}
}
} else if (ctxt->atom->type == XML_REGEXP_RANGES) {
switch (cur) {
case 'n':
cur = '\n';
break;
case 'r':
cur = '\r';
break;
case 't':
cur = '\t';
break;
}
xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
XML_REGEXP_CHARVAL, cur, cur, NULL);
}
NEXT;
} else if ((cur == 's') || (cur == 'S') || (cur == 'i') || (cur == 'I') ||
(cur == 'c') || (cur == 'C') || (cur == 'd') || (cur == 'D') ||
(cur == 'w') || (cur == 'W')) {
xmlRegAtomType type = XML_REGEXP_ANYSPACE;
switch (cur) {
case 's':
type = XML_REGEXP_ANYSPACE;
break;
case 'S':
type = XML_REGEXP_NOTSPACE;
break;
case 'i':
type = XML_REGEXP_INITNAME;
break;
case 'I':
type = XML_REGEXP_NOTINITNAME;
break;
case 'c':
type = XML_REGEXP_NAMECHAR;
break;
case 'C':
type = XML_REGEXP_NOTNAMECHAR;
break;
case 'd':
type = XML_REGEXP_DECIMAL;
break;
case 'D':
type = XML_REGEXP_NOTDECIMAL;
break;
case 'w':
type = XML_REGEXP_REALCHAR;
break;
case 'W':
type = XML_REGEXP_NOTREALCHAR;
break;
}
NEXT;
if (ctxt->atom == NULL) {
ctxt->atom = xmlRegNewAtom(ctxt, type);
} else if (ctxt->atom->type == XML_REGEXP_RANGES) {
xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
type, 0, 0, NULL);
}
} else {
ERROR("Wrong escape sequence, misuse of character '\\'");
}
}
/**
* ```
* [17] charRange ::= seRange | XmlCharRef | XmlCharIncDash
* [18] seRange ::= charOrEsc '-' charOrEsc
* [20] charOrEsc ::= XmlChar | SingleCharEsc
* [21] XmlChar ::= [^\\#x2D\#x5B\#x5D]
* [22] XmlCharIncDash ::= [^\\#x5B\#x5D]
* ```
*
* @param ctxt a regexp parser context
*/
static void
xmlFAParseCharRange(xmlRegParserCtxtPtr ctxt) {
int cur, len;
int start = -1;
int end = -1;
if (CUR == '\0') {
ERROR("Expecting ']'");
return;
}
cur = CUR;
if (cur == '\\') {
NEXT;
cur = CUR;
switch (cur) {
case 'n': start = 0xA; break;
case 'r': start = 0xD; break;
case 't': start = 0x9; break;
case '\\': case '|': case '.': case '-': case '^': case '?':
case '*': case '+': case '{': case '}': case '(': case ')':
case '[': case ']':
start = cur; break;
default:
ERROR("Invalid escape value");
return;
}
end = start;
len = 1;
} else if ((cur != 0x5B) && (cur != 0x5D)) {
len = 4;
end = start = xmlGetUTF8Char(ctxt->cur, &len);
if (start < 0) {
ERROR("Invalid UTF-8");
return;
}
} else {
ERROR("Expecting a char range");
return;
}
/*
* Since we are "inside" a range, we can assume ctxt->cur is past
* the start of ctxt->string, and PREV should be safe
*/
if ((start == '-') && (NXT(1) != ']') && (PREV != '[') && (PREV != '^')) {
NEXTL(len);
return;
}
NEXTL(len);
cur = CUR;
if ((cur != '-') || (NXT(1) == '[') || (NXT(1) == ']')) {
xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
XML_REGEXP_CHARVAL, start, end, NULL);
return;
}
NEXT;
cur = CUR;
if (cur == '\\') {
NEXT;
cur = CUR;
switch (cur) {
case 'n': end = 0xA; break;
case 'r': end = 0xD; break;
case 't': end = 0x9; break;
case '\\': case '|': case '.': case '-': case '^': case '?':
case '*': case '+': case '{': case '}': case '(': case ')':
case '[': case ']':
end = cur; break;
default:
ERROR("Invalid escape value");
return;
}
len = 1;
} else if ((cur != '\0') && (cur != 0x5B) && (cur != 0x5D)) {
len = 4;
end = xmlGetUTF8Char(ctxt->cur, &len);
if (end < 0) {
ERROR("Invalid UTF-8");
return;
}
} else {
ERROR("Expecting the end of a char range");
return;
}
/* TODO check that the values are acceptable character ranges for XML */
if (end < start) {
ERROR("End of range is before start of range");
} else {
NEXTL(len);
xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
XML_REGEXP_CHARVAL, start, end, NULL);
}
}
/**
* [14] posCharGroup ::= ( charRange | charClassEsc )+
*
* @param ctxt a regexp parser context
*/
static void
xmlFAParsePosCharGroup(xmlRegParserCtxtPtr ctxt) {
do {
if (CUR == '\\') {
xmlFAParseCharClassEsc(ctxt);
} else {
xmlFAParseCharRange(ctxt);
}
} while ((CUR != ']') && (CUR != '-') &&
(CUR != 0) && (ctxt->error == 0));
}
/**
* [13] charGroup ::= posCharGroup | negCharGroup | charClassSub
* [15] negCharGroup ::= '^' posCharGroup
* [16] charClassSub ::= ( posCharGroup | negCharGroup ) '-' charClassExpr
* [12] charClassExpr ::= '[' charGroup ']'
*
* @param ctxt a regexp parser context
*/
static void
xmlFAParseCharGroup(xmlRegParserCtxtPtr ctxt) {
int neg = ctxt->neg;
if (CUR == '^') {
NEXT;
ctxt->neg = !ctxt->neg;
xmlFAParsePosCharGroup(ctxt);
ctxt->neg = neg;
}
while ((CUR != ']') && (ctxt->error == 0)) {
if ((CUR == '-') && (NXT(1) == '[')) {
NEXT; /* eat the '-' */
NEXT; /* eat the '[' */
ctxt->neg = 2;
xmlFAParseCharGroup(ctxt);
ctxt->neg = neg;
if (CUR == ']') {
NEXT;
} else {
ERROR("charClassExpr: ']' expected");
}
break;
} else {
xmlFAParsePosCharGroup(ctxt);
}
}
}
/**
* [11] charClass ::= charClassEsc | charClassExpr
* [12] charClassExpr ::= '[' charGroup ']'
*
* @param ctxt a regexp parser context
*/
static void
xmlFAParseCharClass(xmlRegParserCtxtPtr ctxt) {
if (CUR == '[') {
NEXT;
ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_RANGES);
if (ctxt->atom == NULL)
return;
xmlFAParseCharGroup(ctxt);
if (CUR == ']') {
NEXT;
} else {
ERROR("xmlFAParseCharClass: ']' expected");
}
} else {
xmlFAParseCharClassEsc(ctxt);
}
}
/**
* [8] QuantExact ::= [0-9]+
*
* @param ctxt a regexp parser context
* @returns 0 if success or -1 in case of error
*/
static int
xmlFAParseQuantExact(xmlRegParserCtxtPtr ctxt) {
int ret = 0;
int ok = 0;
int overflow = 0;
while ((CUR >= '0') && (CUR <= '9')) {
if (ret > INT_MAX / 10) {
overflow = 1;
} else {
int digit = CUR - '0';
ret *= 10;
if (ret > INT_MAX - digit)
overflow = 1;
else
ret += digit;
}
ok = 1;
NEXT;
}
if ((ok != 1) || (overflow == 1)) {
return(-1);
}
return(ret);
}
/**
* [4] quantifier ::= [?*+] | ( '{' quantity '}' )
* [5] quantity ::= quantRange | quantMin | QuantExact
* [6] quantRange ::= QuantExact ',' QuantExact
* [7] quantMin ::= QuantExact ','
* [8] QuantExact ::= [0-9]+
*
* @param ctxt a regexp parser context
*/
static int
xmlFAParseQuantifier(xmlRegParserCtxtPtr ctxt) {
int cur;
cur = CUR;
if ((cur == '?') || (cur == '*') || (cur == '+')) {
if (ctxt->atom != NULL) {
if (cur == '?')
ctxt->atom->quant = XML_REGEXP_QUANT_OPT;
else if (cur == '*')
ctxt->atom->quant = XML_REGEXP_QUANT_MULT;
else if (cur == '+')
ctxt->atom->quant = XML_REGEXP_QUANT_PLUS;
}
NEXT;
return(1);
}
if (cur == '{') {
int min = 0, max = 0;
NEXT;
cur = xmlFAParseQuantExact(ctxt);
if (cur >= 0)
min = cur;
else {
ERROR("Improper quantifier");
}
if (CUR == ',') {
NEXT;
if (CUR == '}')
max = INT_MAX;
else {
cur = xmlFAParseQuantExact(ctxt);
if (cur >= 0)
max = cur;
else {
ERROR("Improper quantifier");
}
}
}
if (CUR == '}') {
NEXT;
} else {
ERROR("Unterminated quantifier");
}
if (max == 0)
max = min;
if (ctxt->atom != NULL) {
ctxt->atom->quant = XML_REGEXP_QUANT_RANGE;
ctxt->atom->min = min;
ctxt->atom->max = max;
}
return(1);
}
return(0);
}
/**
* [9] atom ::= Char | charClass | ( '(' regExp ')' )
*
* @param ctxt a regexp parser context
*/
static int
xmlFAParseAtom(xmlRegParserCtxtPtr ctxt) {
int codepoint, len;
codepoint = xmlFAIsChar(ctxt);
if (codepoint > 0) {
ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_CHARVAL);
if (ctxt->atom == NULL)
return(-1);
len = 4;
codepoint = xmlGetUTF8Char(ctxt->cur, &len);
if (codepoint < 0) {
ERROR("Invalid UTF-8");
return(-1);
}
ctxt->atom->codepoint = codepoint;
NEXTL(len);
return(1);
} else if (CUR == '|') {
return(0);
} else if (CUR == 0) {
return(0);
} else if (CUR == ')') {
return(0);
} else if (CUR == '(') {
xmlRegStatePtr start, oldend, start0;
NEXT;
if (ctxt->depth >= 50) {
ERROR("xmlFAParseAtom: maximum nesting depth exceeded");
return(-1);
}
/*
* this extra Epsilon transition is needed if we count with 0 allowed
* unfortunately this can't be known at that point
*/
xmlFAGenerateEpsilonTransition(ctxt, ctxt->state, NULL);
start0 = ctxt->state;
xmlFAGenerateEpsilonTransition(ctxt, ctxt->state, NULL);
start = ctxt->state;
oldend = ctxt->end;
ctxt->end = NULL;
ctxt->atom = NULL;
ctxt->depth++;
xmlFAParseRegExp(ctxt, 0);
ctxt->depth--;
if (CUR == ')') {
NEXT;
} else {
ERROR("xmlFAParseAtom: expecting ')'");
}
ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_SUBREG);
if (ctxt->atom == NULL)
return(-1);
ctxt->atom->start = start;
ctxt->atom->start0 = start0;
ctxt->atom->stop = ctxt->state;
ctxt->end = oldend;
return(1);
} else if ((CUR == '[') || (CUR == '\\') || (CUR == '.')) {
xmlFAParseCharClass(ctxt);
return(1);
}
return(0);
}
/**
* [3] piece ::= atom quantifier?
*
* @param ctxt a regexp parser context
*/
static int
xmlFAParsePiece(xmlRegParserCtxtPtr ctxt) {
int ret;
ctxt->atom = NULL;
ret = xmlFAParseAtom(ctxt);
if (ret == 0)
return(0);
if (ctxt->atom == NULL) {
ERROR("internal: no atom generated");
}
xmlFAParseQuantifier(ctxt);
return(1);
}
/**
* `to` is used to optimize by removing duplicate path in automata
* in expressions like (a|b)(c|d)
*
* [2] branch ::= piece*
*
* @param ctxt a regexp parser context
* @param to optional target to the end of the branch
*/
static int
xmlFAParseBranch(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr to) {
xmlRegStatePtr previous;
int ret;
previous = ctxt->state;
ret = xmlFAParsePiece(ctxt);
if (ret == 0) {
/* Empty branch */
xmlFAGenerateEpsilonTransition(ctxt, previous, to);
} else {
if (xmlFAGenerateTransitions(ctxt, previous,
(CUR=='|' || CUR==')' || CUR==0) ? to : NULL,
ctxt->atom) < 0) {
xmlRegFreeAtom(ctxt->atom);
ctxt->atom = NULL;
return(-1);
}
previous = ctxt->state;
ctxt->atom = NULL;
}
while ((ret != 0) && (ctxt->error == 0)) {
ret = xmlFAParsePiece(ctxt);
if (ret != 0) {
if (xmlFAGenerateTransitions(ctxt, previous,
(CUR=='|' || CUR==')' || CUR==0) ? to : NULL,
ctxt->atom) < 0) {
xmlRegFreeAtom(ctxt->atom);
ctxt->atom = NULL;
return(-1);
}
previous = ctxt->state;
ctxt->atom = NULL;
}
}
return(0);
}
/**
* [1] regExp ::= branch ( '|' branch )*
*
* @param ctxt a regexp parser context
* @param top is this the top-level expression ?
*/
static void
xmlFAParseRegExp(xmlRegParserCtxtPtr ctxt, int top) {
xmlRegStatePtr start, end;
/* if not top start should have been generated by an epsilon trans */
start = ctxt->state;
ctxt->end = NULL;
xmlFAParseBranch(ctxt, NULL);
if (top) {
ctxt->state->type = XML_REGEXP_FINAL_STATE;
}
if (CUR != '|') {
ctxt->end = ctxt->state;
return;
}
end = ctxt->state;
while ((CUR == '|') && (ctxt->error == 0)) {
NEXT;
ctxt->state = start;
ctxt->end = NULL;
xmlFAParseBranch(ctxt, end);
}
if (!top) {
ctxt->state = end;
ctxt->end = end;
}
}
/************************************************************************
* *
* The basic API *
* *
************************************************************************/
/**
* No-op since 2.14.0.
*
* @deprecated Don't use.
*
* @param output the file for the output debug
* @param regexp the compiled regexp
*/
void
xmlRegexpPrint(FILE *output ATTRIBUTE_UNUSED,
xmlRegexp *regexp ATTRIBUTE_UNUSED) {
}
/**
* Parses an XML Schemas regular expression.
*
* Parses a regular expression conforming to XML Schemas Part 2 Datatype
* Appendix F and builds an automata suitable for testing strings against
* that regular expression.
*
* @param regexp a regular expression string
* @returns the compiled expression or NULL in case of error
*/
xmlRegexp *
xmlRegexpCompile(const xmlChar *regexp) {
xmlRegexpPtr ret = NULL;
xmlRegParserCtxtPtr ctxt;
if (regexp == NULL)
return(NULL);
ctxt = xmlRegNewParserCtxt(regexp);
if (ctxt == NULL)
return(NULL);
/* initialize the parser */
ctxt->state = xmlRegStatePush(ctxt);
if (ctxt->state == NULL)
goto error;
ctxt->start = ctxt->state;
ctxt->end = NULL;
/* parse the expression building an automata */
xmlFAParseRegExp(ctxt, 1);
if (CUR != 0) {
ERROR("xmlFAParseRegExp: extra characters");
}
if (ctxt->error != 0)
goto error;
ctxt->end = ctxt->state;
ctxt->start->type = XML_REGEXP_START_STATE;
ctxt->end->type = XML_REGEXP_FINAL_STATE;
/* remove the Epsilon except for counted transitions */
xmlFAEliminateEpsilonTransitions(ctxt);
if (ctxt->error != 0)
goto error;
ret = xmlRegEpxFromParse(ctxt);
error:
xmlRegFreeParserCtxt(ctxt);
return(ret);
}
/**
* Check if the regular expression matches a string.
*
* @param comp the compiled regular expression
* @param content the value to check against the regular expression
* @returns 1 if it matches, 0 if not and a negative value in case of error
*/
int
xmlRegexpExec(xmlRegexp *comp, const xmlChar *content) {
if ((comp == NULL) || (content == NULL))
return(-1);
return(xmlFARegExec(comp, content));
}
/**
* Check if the regular expression is deterministic.
*
* DTD and XML Schemas require a deterministic content model,
* so the automaton compiled from the regex must be a DFA.
*
* The runtime of this function is quadratic in the number of
* outgoing edges, causing serious worst-case performance issues.
*
* @deprecated: Internal function, don't use.
*
* @param comp the compiled regular expression
* @returns 1 if it yes, 0 if not and a negative value in case
* of error
*/
int
xmlRegexpIsDeterminist(xmlRegexp *comp) {
xmlAutomataPtr am;
int ret;
if (comp == NULL)
return(-1);
if (comp->determinist != -1)
return(comp->determinist);
am = xmlNewAutomata();
if (am == NULL)
return(-1);
if (am->states != NULL) {
int i;
for (i = 0;i < am->nbStates;i++)
xmlRegFreeState(am->states[i]);
xmlFree(am->states);
}
am->nbAtoms = comp->nbAtoms;
am->atoms = comp->atoms;
am->nbStates = comp->nbStates;
am->states = comp->states;
am->determinist = -1;
am->flags = comp->flags;
ret = xmlFAComputesDeterminism(am);
am->atoms = NULL;
am->states = NULL;
xmlFreeAutomata(am);
comp->determinist = ret;
return(ret);
}
/**
* Free a regexp.
*
* @param regexp the regexp
*/
void
xmlRegFreeRegexp(xmlRegexp *regexp) {
int i;
if (regexp == NULL)
return;
if (regexp->string != NULL)
xmlFree(regexp->string);
if (regexp->states != NULL) {
for (i = 0;i < regexp->nbStates;i++)
xmlRegFreeState(regexp->states[i]);
xmlFree(regexp->states);
}
if (regexp->atoms != NULL) {
for (i = 0;i < regexp->nbAtoms;i++)
xmlRegFreeAtom(regexp->atoms[i]);
xmlFree(regexp->atoms);
}
if (regexp->counters != NULL)
xmlFree(regexp->counters);
if (regexp->compact != NULL)
xmlFree(regexp->compact);
if (regexp->transdata != NULL)
xmlFree(regexp->transdata);
if (regexp->stringMap != NULL) {
for (i = 0; i < regexp->nbstrings;i++)
xmlFree(regexp->stringMap[i]);
xmlFree(regexp->stringMap);
}
xmlFree(regexp);
}
/************************************************************************
* *
* The Automata interface *
* *
************************************************************************/
/**
* Create a new automata
*
* @deprecated Internal function, don't use.
*
* @returns the new object or NULL in case of failure
*/
xmlAutomata *
xmlNewAutomata(void) {
xmlAutomataPtr ctxt;
ctxt = xmlRegNewParserCtxt(NULL);
if (ctxt == NULL)
return(NULL);
/* initialize the parser */
ctxt->state = xmlRegStatePush(ctxt);
if (ctxt->state == NULL) {
xmlFreeAutomata(ctxt);
return(NULL);
}
ctxt->start = ctxt->state;
ctxt->end = NULL;
ctxt->start->type = XML_REGEXP_START_STATE;
ctxt->flags = 0;
return(ctxt);
}
/**
* Free an automata
*
* @deprecated Internal function, don't use.
*
* @param am an automata
*/
void
xmlFreeAutomata(xmlAutomata *am) {
if (am == NULL)
return;
xmlRegFreeParserCtxt(am);
}
/**
* Set some flags on the automata
*
* @deprecated Internal function, don't use.
*
* @param am an automata
* @param flags a set of internal flags
*/
void
xmlAutomataSetFlags(xmlAutomata *am, int flags) {
if (am == NULL)
return;
am->flags |= flags;
}
/**
* Initial state lookup
*
* @deprecated Internal function, don't use.
*
* @param am an automata
* @returns the initial state of the automata
*/
xmlAutomataState *
xmlAutomataGetInitState(xmlAutomata *am) {
if (am == NULL)
return(NULL);
return(am->start);
}
/**
* Makes that state a final state
*
* @deprecated Internal function, don't use.
*
* @param am an automata
* @param state a state in this automata
* @returns 0 or -1 in case of error
*/
int
xmlAutomataSetFinalState(xmlAutomata *am, xmlAutomataState *state) {
if ((am == NULL) || (state == NULL))
return(-1);
state->type = XML_REGEXP_FINAL_STATE;
return(0);
}
/**
* Add a transition.
*
* If `to` is NULL, this creates first a new target state in the automata
* and then adds a transition from the `from` state to the target state
* activated by the value of `token`
*
* @deprecated Internal function, don't use.
*
* @param am an automata
* @param from the starting point of the transition
* @param to the target point of the transition or NULL
* @param token the input string associated to that transition
* @param data data passed to the callback function if the transition is activated
* @returns the target state or NULL in case of error
*/
xmlAutomataState *
xmlAutomataNewTransition(xmlAutomata *am, xmlAutomataState *from,
xmlAutomataState *to, const xmlChar *token,
void *data) {
xmlRegAtomPtr atom;
if ((am == NULL) || (from == NULL) || (token == NULL))
return(NULL);
atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
if (atom == NULL)
return(NULL);
atom->data = data;
atom->valuep = xmlStrdup(token);
if (atom->valuep == NULL) {
xmlRegFreeAtom(atom);
xmlRegexpErrMemory(am);
return(NULL);
}
if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
xmlRegFreeAtom(atom);
return(NULL);
}
if (to == NULL)
return(am->state);
return(to);
}
/**
* If `to` is NULL, this creates first a new target state in the automata
* and then adds a transition from the `from` state to the target state
* activated by the value of `token`
*
* @deprecated Internal function, don't use.
*
* @param am an automata
* @param from the starting point of the transition
* @param to the target point of the transition or NULL
* @param token the first input string associated to that transition
* @param token2 the second input string associated to that transition
* @param data data passed to the callback function if the transition is activated
* @returns the target state or NULL in case of error
*/
xmlAutomataState *
xmlAutomataNewTransition2(xmlAutomata *am, xmlAutomataState *from,
xmlAutomataState *to, const xmlChar *token,
const xmlChar *token2, void *data) {
xmlRegAtomPtr atom;
if ((am == NULL) || (from == NULL) || (token == NULL))
return(NULL);
atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
if (atom == NULL)
return(NULL);
atom->data = data;
if ((token2 == NULL) || (*token2 == 0)) {
atom->valuep = xmlStrdup(token);
} else {
int lenn, lenp;
xmlChar *str;
lenn = strlen((char *) token2);
lenp = strlen((char *) token);
str = xmlMalloc(lenn + lenp + 2);
if (str == NULL) {
xmlRegFreeAtom(atom);
return(NULL);
}
memcpy(&str[0], token, lenp);
str[lenp] = '|';
memcpy(&str[lenp + 1], token2, lenn);
str[lenn + lenp + 1] = 0;
atom->valuep = str;
}
if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
xmlRegFreeAtom(atom);
return(NULL);
}
if (to == NULL)
return(am->state);
return(to);
}
/**
* If `to` is NULL, this creates first a new target state in the automata
* and then adds a transition from the `from` state to the target state
* activated by any value except (`token`,`token2`)
* Note that if `token2` is not NULL, then (X, NULL) won't match to follow
* the semantic of XSD \#\#other
*
* @deprecated Internal function, don't use.
*
* @param am an automata
* @param from the starting point of the transition
* @param to the target point of the transition or NULL
* @param token the first input string associated to that transition
* @param token2 the second input string associated to that transition
* @param data data passed to the callback function if the transition is activated
* @returns the target state or NULL in case of error
*/
xmlAutomataState *
xmlAutomataNewNegTrans(xmlAutomata *am, xmlAutomataState *from,
xmlAutomataState *to, const xmlChar *token,
const xmlChar *token2, void *data) {
xmlRegAtomPtr atom;
xmlChar err_msg[200];
if ((am == NULL) || (from == NULL) || (token == NULL))
return(NULL);
atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
if (atom == NULL)
return(NULL);
atom->data = data;
atom->neg = 1;
if ((token2 == NULL) || (*token2 == 0)) {
atom->valuep = xmlStrdup(token);
} else {
int lenn, lenp;
xmlChar *str;
lenn = strlen((char *) token2);
lenp = strlen((char *) token);
str = xmlMalloc(lenn + lenp + 2);
if (str == NULL) {
xmlRegFreeAtom(atom);
return(NULL);
}
memcpy(&str[0], token, lenp);
str[lenp] = '|';
memcpy(&str[lenp + 1], token2, lenn);
str[lenn + lenp + 1] = 0;
atom->valuep = str;
}
snprintf((char *) err_msg, 199, "not %s", (const char *) atom->valuep);
err_msg[199] = 0;
atom->valuep2 = xmlStrdup(err_msg);
if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
xmlRegFreeAtom(atom);
return(NULL);
}
am->negs++;
if (to == NULL)
return(am->state);
return(to);
}
/**
* If `to` is NULL, this creates first a new target state in the automata
* and then adds a transition from the `from` state to the target state
* activated by a succession of input of value `token` and `token2` and
* whose number is between `min` and `max`
*
* @deprecated Internal function, don't use.
*
* @param am an automata
* @param from the starting point of the transition
* @param to the target point of the transition or NULL
* @param token the input string associated to that transition
* @param token2 the second input string associated to that transition
* @param min the minimum successive occurrences of token
* @param max the maximum successive occurrences of token
* @param data data associated to the transition
* @returns the target state or NULL in case of error
*/
xmlAutomataState *
xmlAutomataNewCountTrans2(xmlAutomata *am, xmlAutomataState *from,
xmlAutomataState *to, const xmlChar *token,
const xmlChar *token2,
int min, int max, void *data) {
xmlRegAtomPtr atom;
int counter;
if ((am == NULL) || (from == NULL) || (token == NULL))
return(NULL);
if (min < 0)
return(NULL);
if ((max < min) || (max < 1))
return(NULL);
atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
if (atom == NULL)
return(NULL);
if ((token2 == NULL) || (*token2 == 0)) {
atom->valuep = xmlStrdup(token);
if (atom->valuep == NULL)
goto error;
} else {
int lenn, lenp;
xmlChar *str;
lenn = strlen((char *) token2);
lenp = strlen((char *) token);
str = xmlMalloc(lenn + lenp + 2);
if (str == NULL)
goto error;
memcpy(&str[0], token, lenp);
str[lenp] = '|';
memcpy(&str[lenp + 1], token2, lenn);
str[lenn + lenp + 1] = 0;
atom->valuep = str;
}
atom->data = data;
if (min == 0)
atom->min = 1;
else
atom->min = min;
atom->max = max;
/*
* associate a counter to the transition.
*/
counter = xmlRegGetCounter(am);
if (counter < 0)
goto error;
am->counters[counter].min = min;
am->counters[counter].max = max;
/* xmlFAGenerateTransitions(am, from, to, atom); */
if (to == NULL) {
to = xmlRegStatePush(am);
if (to == NULL)
goto error;
}
xmlRegStateAddTrans(am, from, atom, to, counter, -1);
if (xmlRegAtomPush(am, atom) < 0)
goto error;
am->state = to;
if (to == NULL)
to = am->state;
if (to == NULL)
return(NULL);
if (min == 0)
xmlFAGenerateEpsilonTransition(am, from, to);
return(to);
error:
xmlRegFreeAtom(atom);
return(NULL);
}
/**
* If `to` is NULL, this creates first a new target state in the automata
* and then adds a transition from the `from` state to the target state
* activated by a succession of input of value `token` and whose number
* is between `min` and `max`
*
* @deprecated Internal function, don't use.
*
* @param am an automata
* @param from the starting point of the transition
* @param to the target point of the transition or NULL
* @param token the input string associated to that transition
* @param min the minimum successive occurrences of token
* @param max the maximum successive occurrences of token
* @param data data associated to the transition
* @returns the target state or NULL in case of error
*/
xmlAutomataState *
xmlAutomataNewCountTrans(xmlAutomata *am, xmlAutomataState *from,
xmlAutomataState *to, const xmlChar *token,
int min, int max, void *data) {
xmlRegAtomPtr atom;
int counter;
if ((am == NULL) || (from == NULL) || (token == NULL))
return(NULL);
if (min < 0)
return(NULL);
if ((max < min) || (max < 1))
return(NULL);
atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
if (atom == NULL)
return(NULL);
atom->valuep = xmlStrdup(token);
if (atom->valuep == NULL)
goto error;
atom->data = data;
if (min == 0)
atom->min = 1;
else
atom->min = min;
atom->max = max;
/*
* associate a counter to the transition.
*/
counter = xmlRegGetCounter(am);
if (counter < 0)
goto error;
am->counters[counter].min = min;
am->counters[counter].max = max;
/* xmlFAGenerateTransitions(am, from, to, atom); */
if (to == NULL) {
to = xmlRegStatePush(am);
if (to == NULL)
goto error;
}
xmlRegStateAddTrans(am, from, atom, to, counter, -1);
if (xmlRegAtomPush(am, atom) < 0)
goto error;
am->state = to;
if (to == NULL)
to = am->state;
if (to == NULL)
return(NULL);
if (min == 0)
xmlFAGenerateEpsilonTransition(am, from, to);
return(to);
error:
xmlRegFreeAtom(atom);
return(NULL);
}
/**
* If `to` is NULL, this creates first a new target state in the automata
* and then adds a transition from the `from` state to the target state
* activated by a succession of input of value `token` and `token2` and whose
* number is between `min` and `max`, moreover that transition can only be
* crossed once.
*
* @deprecated Internal function, don't use.
*
* @param am an automata
* @param from the starting point of the transition
* @param to the target point of the transition or NULL
* @param token the input string associated to that transition
* @param token2 the second input string associated to that transition
* @param min the minimum successive occurrences of token
* @param max the maximum successive occurrences of token
* @param data data associated to the transition
* @returns the target state or NULL in case of error
*/
xmlAutomataState *
xmlAutomataNewOnceTrans2(xmlAutomata *am, xmlAutomataState *from,
xmlAutomataState *to, const xmlChar *token,
const xmlChar *token2,
int min, int max, void *data) {
xmlRegAtomPtr atom;
int counter;
if ((am == NULL) || (from == NULL) || (token == NULL))
return(NULL);
if (min < 1)
return(NULL);
if (max < min)
return(NULL);
atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
if (atom == NULL)
return(NULL);
if ((token2 == NULL) || (*token2 == 0)) {
atom->valuep = xmlStrdup(token);
if (atom->valuep == NULL)
goto error;
} else {
int lenn, lenp;
xmlChar *str;
lenn = strlen((char *) token2);
lenp = strlen((char *) token);
str = xmlMalloc(lenn + lenp + 2);
if (str == NULL)
goto error;
memcpy(&str[0], token, lenp);
str[lenp] = '|';
memcpy(&str[lenp + 1], token2, lenn);
str[lenn + lenp + 1] = 0;
atom->valuep = str;
}
atom->data = data;
atom->quant = XML_REGEXP_QUANT_ONCEONLY;
atom->min = min;
atom->max = max;
/*
* associate a counter to the transition.
*/
counter = xmlRegGetCounter(am);
if (counter < 0)
goto error;
am->counters[counter].min = 1;
am->counters[counter].max = 1;
/* xmlFAGenerateTransitions(am, from, to, atom); */
if (to == NULL) {
to = xmlRegStatePush(am);
if (to == NULL)
goto error;
}
xmlRegStateAddTrans(am, from, atom, to, counter, -1);
if (xmlRegAtomPush(am, atom) < 0)
goto error;
am->state = to;
return(to);
error:
xmlRegFreeAtom(atom);
return(NULL);
}
/**
* If `to` is NULL, this creates first a new target state in the automata
* and then adds a transition from the `from` state to the target state
* activated by a succession of input of value `token` and whose number
* is between `min` and `max`, moreover that transition can only be crossed
* once.
*
* @deprecated Internal function, don't use.
*
* @param am an automata
* @param from the starting point of the transition
* @param to the target point of the transition or NULL
* @param token the input string associated to that transition
* @param min the minimum successive occurrences of token
* @param max the maximum successive occurrences of token
* @param data data associated to the transition
* @returns the target state or NULL in case of error
*/
xmlAutomataState *
xmlAutomataNewOnceTrans(xmlAutomata *am, xmlAutomataState *from,
xmlAutomataState *to, const xmlChar *token,
int min, int max, void *data) {
xmlRegAtomPtr atom;
int counter;
if ((am == NULL) || (from == NULL) || (token == NULL))
return(NULL);
if (min < 1)
return(NULL);
if (max < min)
return(NULL);
atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
if (atom == NULL)
return(NULL);
atom->valuep = xmlStrdup(token);
atom->data = data;
atom->quant = XML_REGEXP_QUANT_ONCEONLY;
atom->min = min;
atom->max = max;
/*
* associate a counter to the transition.
*/
counter = xmlRegGetCounter(am);
if (counter < 0)
goto error;
am->counters[counter].min = 1;
am->counters[counter].max = 1;
/* xmlFAGenerateTransitions(am, from, to, atom); */
if (to == NULL) {
to = xmlRegStatePush(am);
if (to == NULL)
goto error;
}
xmlRegStateAddTrans(am, from, atom, to, counter, -1);
if (xmlRegAtomPush(am, atom) < 0)
goto error;
am->state = to;
return(to);
error:
xmlRegFreeAtom(atom);
return(NULL);
}
/**
* Create a new disconnected state in the automata
*
* @deprecated Internal function, don't use.
*
* @param am an automata
* @returns the new state or NULL in case of error
*/
xmlAutomataState *
xmlAutomataNewState(xmlAutomata *am) {
if (am == NULL)
return(NULL);
return(xmlRegStatePush(am));
}
/**
* If `to` is NULL, this creates first a new target state in the automata
* and then adds an epsilon transition from the `from` state to the
* target state
*
* @deprecated Internal function, don't use.
*
* @param am an automata
* @param from the starting point of the transition
* @param to the target point of the transition or NULL
* @returns the target state or NULL in case of error
*/
xmlAutomataState *
xmlAutomataNewEpsilon(xmlAutomata *am, xmlAutomataState *from,
xmlAutomataState *to) {
if ((am == NULL) || (from == NULL))
return(NULL);
xmlFAGenerateEpsilonTransition(am, from, to);
if (to == NULL)
return(am->state);
return(to);
}
/**
* If `to` is NULL, this creates first a new target state in the automata
* and then adds a an ALL transition from the `from` state to the
* target state. That transition is an epsilon transition allowed only when
* all transitions from the `from` node have been activated.
*
* @deprecated Internal function, don't use.
*
* @param am an automata
* @param from the starting point of the transition
* @param to the target point of the transition or NULL
* @param lax allow to transition if not all all transitions have been activated
* @returns the target state or NULL in case of error
*/
xmlAutomataState *
xmlAutomataNewAllTrans(xmlAutomata *am, xmlAutomataState *from,
xmlAutomataState *to, int lax) {
if ((am == NULL) || (from == NULL))
return(NULL);
xmlFAGenerateAllTransition(am, from, to, lax);
if (to == NULL)
return(am->state);
return(to);
}
/**
* Create a new counter
*
* @deprecated Internal function, don't use.
*
* @param am an automata
* @param min the minimal value on the counter
* @param max the maximal value on the counter
* @returns the counter number or -1 in case of error
*/
int
xmlAutomataNewCounter(xmlAutomata *am, int min, int max) {
int ret;
if (am == NULL)
return(-1);
ret = xmlRegGetCounter(am);
if (ret < 0)
return(-1);
am->counters[ret].min = min;
am->counters[ret].max = max;
return(ret);
}
/**
* If `to` is NULL, this creates first a new target state in the automata
* and then adds an epsilon transition from the `from` state to the target state
* which will increment the counter provided
*
* @deprecated Internal function, don't use.
*
* @param am an automata
* @param from the starting point of the transition
* @param to the target point of the transition or NULL
* @param counter the counter associated to that transition
* @returns the target state or NULL in case of error
*/
xmlAutomataState *
xmlAutomataNewCountedTrans(xmlAutomata *am, xmlAutomataState *from,
xmlAutomataState *to, int counter) {
if ((am == NULL) || (from == NULL) || (counter < 0))
return(NULL);
xmlFAGenerateCountedEpsilonTransition(am, from, to, counter);
if (to == NULL)
return(am->state);
return(to);
}
/**
* If `to` is NULL, this creates first a new target state in the automata
* and then adds an epsilon transition from the `from` state to the target state
* which will be allowed only if the counter is within the right range.
*
* @deprecated Internal function, don't use.
*
* @param am an automata
* @param from the starting point of the transition
* @param to the target point of the transition or NULL
* @param counter the counter associated to that transition
* @returns the target state or NULL in case of error
*/
xmlAutomataState *
xmlAutomataNewCounterTrans(xmlAutomata *am, xmlAutomataState *from,
xmlAutomataState *to, int counter) {
if ((am == NULL) || (from == NULL) || (counter < 0))
return(NULL);
xmlFAGenerateCountedTransition(am, from, to, counter);
if (to == NULL)
return(am->state);
return(to);
}
/**
* Compile the automata into a Reg Exp ready for being executed.
* The automata should be free after this point.
*
* @deprecated Internal function, don't use.
*
* @param am an automata
* @returns the compiled regexp or NULL in case of error
*/
xmlRegexp *
xmlAutomataCompile(xmlAutomata *am) {
xmlRegexpPtr ret;
if ((am == NULL) || (am->error != 0)) return(NULL);
xmlFAEliminateEpsilonTransitions(am);
if (am->error != 0)
return(NULL);
/* xmlFAComputesDeterminism(am); */
ret = xmlRegEpxFromParse(am);
return(ret);
}
/**
* Checks if an automata is determinist.
*
* @deprecated Internal function, don't use.
*
* @param am an automata
* @returns 1 if true, 0 if not, and -1 in case of error
*/
int
xmlAutomataIsDeterminist(xmlAutomata *am) {
int ret;
if (am == NULL)
return(-1);
ret = xmlFAComputesDeterminism(am);
return(ret);
}
#endif /* LIBXML_REGEXP_ENABLED */