mirror of
https://git.savannah.gnu.org/git/gnulib.git
synced 2025-08-16 01:22:18 +03:00
* build-aux/gendocs.sh (version): * doc/gendocs_template: * doc/gendocs_template_min: * doc/gnulib.texi: * lib/version-etc.c (COPYRIGHT_YEAR): Update copyright dates by hand in templates and the like. * all files: Run 'make update-copyright'.
124 lines
4.4 KiB
C
124 lines
4.4 KiB
C
/* Test of fmod*() function family.
|
|
Copyright (C) 2012-2017 Free Software Foundation, Inc.
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
static DOUBLE
|
|
my_ldexp (DOUBLE x, int d)
|
|
{
|
|
for (; d > 0; d--)
|
|
x *= L_(2.0);
|
|
for (; d < 0; d++)
|
|
x *= L_(0.5);
|
|
return x;
|
|
}
|
|
|
|
static void
|
|
test_function (void)
|
|
{
|
|
int i;
|
|
int j;
|
|
const DOUBLE TWO_MANT_DIG =
|
|
/* Assume MANT_DIG <= 5 * 31.
|
|
Use the identity
|
|
n = floor(n/5) + floor((n+1)/5) + ... + floor((n+4)/5). */
|
|
(DOUBLE) (1U << ((MANT_DIG - 1) / 5))
|
|
* (DOUBLE) (1U << ((MANT_DIG - 1 + 1) / 5))
|
|
* (DOUBLE) (1U << ((MANT_DIG - 1 + 2) / 5))
|
|
* (DOUBLE) (1U << ((MANT_DIG - 1 + 3) / 5))
|
|
* (DOUBLE) (1U << ((MANT_DIG - 1 + 4) / 5));
|
|
|
|
/* Randomized tests. */
|
|
for (i = 0; i < SIZEOF (RANDOM) / 5; i++)
|
|
for (j = 0; j < SIZEOF (RANDOM) / 5; j++)
|
|
{
|
|
DOUBLE x = L_(16.0) * RANDOM[i]; /* 0.0 <= x <= 16.0 */
|
|
DOUBLE y = RANDOM[j]; /* 0.0 <= y < 1.0 */
|
|
if (y > L_(0.0))
|
|
{
|
|
DOUBLE z = FMOD (x, y);
|
|
ASSERT (z >= L_(0.0));
|
|
ASSERT (z < y);
|
|
z -= x - (int) (x / y) * y;
|
|
ASSERT (/* The common case. */
|
|
(z > - L_(16.0) / TWO_MANT_DIG
|
|
&& z < L_(16.0) / TWO_MANT_DIG)
|
|
|| /* rounding error: x / y computed too large */
|
|
(z > y - L_(16.0) / TWO_MANT_DIG
|
|
&& z < y + L_(16.0) / TWO_MANT_DIG)
|
|
|| /* rounding error: x / y computed too small */
|
|
(z > - y - L_(16.0) / TWO_MANT_DIG
|
|
&& z < - y + L_(16.0) / TWO_MANT_DIG));
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < SIZEOF (RANDOM) / 5; i++)
|
|
for (j = 0; j < SIZEOF (RANDOM) / 5; j++)
|
|
{
|
|
DOUBLE x = L_(1.0e9) * RANDOM[i]; /* 0.0 <= x <= 10^9 */
|
|
DOUBLE y = RANDOM[j]; /* 0.0 <= y < 1.0 */
|
|
if (y > L_(0.0))
|
|
{
|
|
DOUBLE z = FMOD (x, y);
|
|
DOUBLE r;
|
|
ASSERT (z >= L_(0.0));
|
|
ASSERT (z < y);
|
|
{
|
|
/* Determine the quotient x / y in two steps, because it
|
|
may be > 2^31. */
|
|
int q1 = (int) (x / y / L_(65536.0));
|
|
int q2 = (int) ((x - q1 * L_(65536.0) * y) / y);
|
|
DOUBLE q = (DOUBLE) q1 * L_(65536.0) + (DOUBLE) q2;
|
|
r = x - q * y;
|
|
}
|
|
/* The absolute error of z can be up to 1e9/2^MANT_DIG.
|
|
The absolute error of r can also be up to 1e9/2^MANT_DIG.
|
|
Therefore the error of z - r can be twice as large. */
|
|
z -= r;
|
|
ASSERT (/* The common case. */
|
|
(z > - L_(2.0) * L_(1.0e9) / TWO_MANT_DIG
|
|
&& z < L_(2.0) * L_(1.0e9) / TWO_MANT_DIG)
|
|
|| /* rounding error: x / y computed too large */
|
|
(z > y - L_(2.0) * L_(1.0e9) / TWO_MANT_DIG
|
|
&& z < y + L_(2.0) * L_(1.0e9) / TWO_MANT_DIG)
|
|
|| /* rounding error: x / y computed too small */
|
|
(z > - y - L_(2.0) * L_(1.0e9) / TWO_MANT_DIG
|
|
&& z < - y + L_(2.0) * L_(1.0e9) / TWO_MANT_DIG));
|
|
}
|
|
}
|
|
|
|
{
|
|
int large_exp = (MAX_EXP - 1 < 1000 ? MAX_EXP - 1 : 1000);
|
|
DOUBLE large = my_ldexp (L_(1.0), large_exp); /* = 2^large_exp */
|
|
for (i = 0; i < SIZEOF (RANDOM) / 10; i++)
|
|
for (j = 0; j < SIZEOF (RANDOM) / 10; j++)
|
|
{
|
|
DOUBLE x = large * RANDOM[i]; /* 0.0 <= x <= 2^large_exp */
|
|
DOUBLE y = RANDOM[j]; /* 0.0 <= y < 1.0 */
|
|
if (y > L_(0.0))
|
|
{
|
|
DOUBLE z = FMOD (x, y);
|
|
/* Regardless how large the rounding errors are, the result
|
|
must be >= 0, < y. */
|
|
ASSERT (z >= L_(0.0));
|
|
ASSERT (z < y);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
volatile DOUBLE x;
|
|
volatile DOUBLE y;
|
|
DOUBLE z;
|