mirror of
https://git.savannah.gnu.org/git/gnulib.git
synced 2025-08-16 01:22:18 +03:00
* build-aux/gendocs.sh (version): * doc/gendocs_template: * doc/gendocs_template_min: * doc/gnulib.texi: * lib/version-etc.c (COPYRIGHT_YEAR): Update copyright dates by hand in templates and the like. * all files: Run 'make update-copyright'.
385 lines
8.9 KiB
C
385 lines
8.9 KiB
C
/* Test of <float.h> substitute.
|
|
Copyright (C) 2011-2017 Free Software Foundation, Inc.
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
/* Written by Bruno Haible <bruno@clisp.org>, 2011. */
|
|
|
|
#include <config.h>
|
|
|
|
#include <float.h>
|
|
|
|
#include "fpucw.h"
|
|
#include "macros.h"
|
|
|
|
/* Check that FLT_RADIX is a constant expression. */
|
|
int a[] = { FLT_RADIX };
|
|
|
|
#if FLT_RADIX == 2
|
|
|
|
/* Return 2^n. */
|
|
static float
|
|
pow2f (int n)
|
|
{
|
|
int k = n;
|
|
volatile float x = 1;
|
|
volatile float y = 2;
|
|
/* Invariant: 2^n == x * y^k. */
|
|
if (k < 0)
|
|
{
|
|
y = 0.5f;
|
|
k = - k;
|
|
}
|
|
while (k > 0)
|
|
{
|
|
if (k != 2 * (k / 2))
|
|
{
|
|
x = x * y;
|
|
k = k - 1;
|
|
}
|
|
if (k == 0)
|
|
break;
|
|
y = y * y;
|
|
k = k / 2;
|
|
}
|
|
/* Now k == 0, hence x == 2^n. */
|
|
return x;
|
|
}
|
|
|
|
/* Return 2^n. */
|
|
static double
|
|
pow2d (int n)
|
|
{
|
|
int k = n;
|
|
volatile double x = 1;
|
|
volatile double y = 2;
|
|
/* Invariant: 2^n == x * y^k. */
|
|
if (k < 0)
|
|
{
|
|
y = 0.5;
|
|
k = - k;
|
|
}
|
|
while (k > 0)
|
|
{
|
|
if (k != 2 * (k / 2))
|
|
{
|
|
x = x * y;
|
|
k = k - 1;
|
|
}
|
|
if (k == 0)
|
|
break;
|
|
y = y * y;
|
|
k = k / 2;
|
|
}
|
|
/* Now k == 0, hence x == 2^n. */
|
|
return x;
|
|
}
|
|
|
|
/* Return 2^n. */
|
|
static long double
|
|
pow2l (int n)
|
|
{
|
|
int k = n;
|
|
volatile long double x = 1;
|
|
volatile long double y = 2;
|
|
/* Invariant: 2^n == x * y^k. */
|
|
if (k < 0)
|
|
{
|
|
y = 0.5L;
|
|
k = - k;
|
|
}
|
|
while (k > 0)
|
|
{
|
|
if (k != 2 * (k / 2))
|
|
{
|
|
x = x * y;
|
|
k = k - 1;
|
|
}
|
|
if (k == 0)
|
|
break;
|
|
y = y * y;
|
|
k = k / 2;
|
|
}
|
|
/* Now k == 0, hence x == 2^n. */
|
|
return x;
|
|
}
|
|
|
|
/* ----------------------- Check macros for 'float' ----------------------- */
|
|
|
|
/* Check that the FLT_* macros expand to constant expressions. */
|
|
int fb[] =
|
|
{
|
|
FLT_MANT_DIG, FLT_MIN_EXP, FLT_MAX_EXP,
|
|
FLT_DIG, FLT_MIN_10_EXP, FLT_MAX_10_EXP
|
|
};
|
|
float fc[] = { FLT_EPSILON, FLT_MIN, FLT_MAX };
|
|
|
|
static void
|
|
test_float (void)
|
|
{
|
|
/* Check that the value of FLT_MIN_EXP is well parenthesized. */
|
|
ASSERT ((FLT_MIN_EXP % 101111) == (FLT_MIN_EXP) % 101111);
|
|
|
|
/* Check that the value of DBL_MIN_10_EXP is well parenthesized. */
|
|
ASSERT ((FLT_MIN_10_EXP % 101111) == (FLT_MIN_10_EXP) % 101111);
|
|
|
|
/* Check that 'float' is as specified in IEEE 754. */
|
|
ASSERT (FLT_MANT_DIG == 24);
|
|
ASSERT (FLT_MIN_EXP == -125);
|
|
ASSERT (FLT_MAX_EXP == 128);
|
|
|
|
/* Check the value of FLT_MIN_10_EXP. */
|
|
ASSERT (FLT_MIN_10_EXP == - (int) (- (FLT_MIN_EXP - 1) * 0.30103));
|
|
|
|
/* Check the value of FLT_DIG. */
|
|
ASSERT (FLT_DIG == (int) ((FLT_MANT_DIG - 1) * 0.30103));
|
|
|
|
/* Check the value of FLT_MIN_10_EXP. */
|
|
ASSERT (FLT_MIN_10_EXP == - (int) (- (FLT_MIN_EXP - 1) * 0.30103));
|
|
|
|
/* Check the value of FLT_MAX_10_EXP. */
|
|
ASSERT (FLT_MAX_10_EXP == (int) (FLT_MAX_EXP * 0.30103));
|
|
|
|
/* Check the value of FLT_MAX. */
|
|
{
|
|
volatile float m = FLT_MAX;
|
|
int n;
|
|
|
|
ASSERT (m + m > m);
|
|
for (n = 0; n <= 2 * FLT_MANT_DIG; n++)
|
|
{
|
|
volatile float pow2_n = pow2f (n); /* 2^n */
|
|
volatile float x = m + (m / pow2_n);
|
|
if (x > m)
|
|
ASSERT (x + x == x);
|
|
else
|
|
ASSERT (!(x + x == x));
|
|
}
|
|
}
|
|
|
|
/* Check the value of FLT_MIN. */
|
|
{
|
|
volatile float m = FLT_MIN;
|
|
volatile float x = pow2f (FLT_MIN_EXP - 1);
|
|
ASSERT (m == x);
|
|
}
|
|
|
|
/* Check the value of FLT_EPSILON. */
|
|
{
|
|
volatile float e = FLT_EPSILON;
|
|
volatile float me;
|
|
int n;
|
|
|
|
me = 1.0f + e;
|
|
ASSERT (me > 1.0f);
|
|
ASSERT (me - 1.0f == e);
|
|
for (n = 0; n <= 2 * FLT_MANT_DIG; n++)
|
|
{
|
|
volatile float half_n = pow2f (- n); /* 2^-n */
|
|
volatile float x = me - half_n;
|
|
if (x < me)
|
|
ASSERT (x <= 1.0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------- Check macros for 'double' ----------------------- */
|
|
|
|
/* Check that the DBL_* macros expand to constant expressions. */
|
|
int db[] =
|
|
{
|
|
DBL_MANT_DIG, DBL_MIN_EXP, DBL_MAX_EXP,
|
|
DBL_DIG, DBL_MIN_10_EXP, DBL_MAX_10_EXP
|
|
};
|
|
double dc[] = { DBL_EPSILON, DBL_MIN, DBL_MAX };
|
|
|
|
static void
|
|
test_double (void)
|
|
{
|
|
/* Check that the value of DBL_MIN_EXP is well parenthesized. */
|
|
ASSERT ((DBL_MIN_EXP % 101111) == (DBL_MIN_EXP) % 101111);
|
|
|
|
/* Check that the value of DBL_MIN_10_EXP is well parenthesized. */
|
|
ASSERT ((DBL_MIN_10_EXP % 101111) == (DBL_MIN_10_EXP) % 101111);
|
|
|
|
/* Check that 'double' is as specified in IEEE 754. */
|
|
ASSERT (DBL_MANT_DIG == 53);
|
|
ASSERT (DBL_MIN_EXP == -1021);
|
|
ASSERT (DBL_MAX_EXP == 1024);
|
|
|
|
/* Check the value of DBL_MIN_10_EXP. */
|
|
ASSERT (DBL_MIN_10_EXP == - (int) (- (DBL_MIN_EXP - 1) * 0.30103));
|
|
|
|
/* Check the value of DBL_DIG. */
|
|
ASSERT (DBL_DIG == (int) ((DBL_MANT_DIG - 1) * 0.30103));
|
|
|
|
/* Check the value of DBL_MIN_10_EXP. */
|
|
ASSERT (DBL_MIN_10_EXP == - (int) (- (DBL_MIN_EXP - 1) * 0.30103));
|
|
|
|
/* Check the value of DBL_MAX_10_EXP. */
|
|
ASSERT (DBL_MAX_10_EXP == (int) (DBL_MAX_EXP * 0.30103));
|
|
|
|
/* Check the value of DBL_MAX. */
|
|
{
|
|
volatile double m = DBL_MAX;
|
|
int n;
|
|
|
|
ASSERT (m + m > m);
|
|
for (n = 0; n <= 2 * DBL_MANT_DIG; n++)
|
|
{
|
|
volatile double pow2_n = pow2d (n); /* 2^n */
|
|
volatile double x = m + (m / pow2_n);
|
|
if (x > m)
|
|
ASSERT (x + x == x);
|
|
else
|
|
ASSERT (!(x + x == x));
|
|
}
|
|
}
|
|
|
|
/* Check the value of DBL_MIN. */
|
|
{
|
|
volatile double m = DBL_MIN;
|
|
volatile double x = pow2d (DBL_MIN_EXP - 1);
|
|
ASSERT (m == x);
|
|
}
|
|
|
|
/* Check the value of DBL_EPSILON. */
|
|
{
|
|
volatile double e = DBL_EPSILON;
|
|
volatile double me;
|
|
int n;
|
|
|
|
me = 1.0 + e;
|
|
ASSERT (me > 1.0);
|
|
ASSERT (me - 1.0 == e);
|
|
for (n = 0; n <= 2 * DBL_MANT_DIG; n++)
|
|
{
|
|
volatile double half_n = pow2d (- n); /* 2^-n */
|
|
volatile double x = me - half_n;
|
|
if (x < me)
|
|
ASSERT (x <= 1.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* -------------------- Check macros for 'long double' -------------------- */
|
|
|
|
/* Check that the LDBL_* macros expand to constant expressions. */
|
|
int lb[] =
|
|
{
|
|
LDBL_MANT_DIG, LDBL_MIN_EXP, LDBL_MAX_EXP,
|
|
LDBL_DIG, LDBL_MIN_10_EXP, LDBL_MAX_10_EXP
|
|
};
|
|
long double lc1 = LDBL_EPSILON;
|
|
long double lc2 = LDBL_MIN;
|
|
#if 0 /* LDBL_MAX is not a constant expression on some platforms. */
|
|
long double lc3 = LDBL_MAX;
|
|
#endif
|
|
|
|
static void
|
|
test_long_double (void)
|
|
{
|
|
/* Check that the value of LDBL_MIN_EXP is well parenthesized. */
|
|
ASSERT ((LDBL_MIN_EXP % 101111) == (LDBL_MIN_EXP) % 101111);
|
|
|
|
/* Check that the value of LDBL_MIN_10_EXP is well parenthesized. */
|
|
ASSERT ((LDBL_MIN_10_EXP % 101111) == (LDBL_MIN_10_EXP) % 101111);
|
|
|
|
/* Check that 'long double' is at least as wide as 'double'. */
|
|
ASSERT (LDBL_MANT_DIG >= DBL_MANT_DIG);
|
|
ASSERT (LDBL_MIN_EXP - LDBL_MANT_DIG <= DBL_MIN_EXP - DBL_MANT_DIG);
|
|
ASSERT (LDBL_MAX_EXP >= DBL_MAX_EXP);
|
|
|
|
/* Check the value of LDBL_DIG. */
|
|
ASSERT (LDBL_DIG == (int)((LDBL_MANT_DIG - 1) * 0.30103));
|
|
|
|
/* Check the value of LDBL_MIN_10_EXP. */
|
|
ASSERT (LDBL_MIN_10_EXP == - (int) (- (LDBL_MIN_EXP - 1) * 0.30103));
|
|
|
|
/* Check the value of LDBL_MAX_10_EXP. */
|
|
ASSERT (LDBL_MAX_10_EXP == (int) (LDBL_MAX_EXP * 0.30103));
|
|
|
|
/* Check the value of LDBL_MAX. */
|
|
{
|
|
volatile long double m = LDBL_MAX;
|
|
int n;
|
|
|
|
ASSERT (m + m > m);
|
|
for (n = 0; n <= 2 * LDBL_MANT_DIG; n++)
|
|
{
|
|
volatile long double pow2_n = pow2l (n); /* 2^n */
|
|
volatile long double x = m + (m / pow2_n);
|
|
if (x > m)
|
|
ASSERT (x + x == x);
|
|
else
|
|
ASSERT (!(x + x == x));
|
|
}
|
|
}
|
|
|
|
/* Check the value of LDBL_MIN. */
|
|
{
|
|
volatile long double m = LDBL_MIN;
|
|
volatile long double x = pow2l (LDBL_MIN_EXP - 1);
|
|
ASSERT (m == x);
|
|
}
|
|
|
|
/* Check the value of LDBL_EPSILON. */
|
|
{
|
|
volatile long double e = LDBL_EPSILON;
|
|
volatile long double me;
|
|
int n;
|
|
|
|
me = 1.0L + e;
|
|
ASSERT (me > 1.0L);
|
|
ASSERT (me - 1.0L == e);
|
|
for (n = 0; n <= 2 * LDBL_MANT_DIG; n++)
|
|
{
|
|
volatile long double half_n = pow2l (- n); /* 2^-n */
|
|
volatile long double x = me - half_n;
|
|
if (x < me)
|
|
ASSERT (x <= 1.0L);
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
main ()
|
|
{
|
|
test_float ();
|
|
test_double ();
|
|
|
|
{
|
|
DECL_LONG_DOUBLE_ROUNDING
|
|
|
|
BEGIN_LONG_DOUBLE_ROUNDING ();
|
|
|
|
test_long_double ();
|
|
|
|
END_LONG_DOUBLE_ROUNDING ();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
|
|
int
|
|
main ()
|
|
{
|
|
fprintf (stderr, "Skipping test: FLT_RADIX is not 2.\n");
|
|
return 77;
|
|
}
|
|
|
|
#endif
|