mirror of
https://git.savannah.gnu.org/git/gnulib.git
synced 2025-08-17 12:41:05 +03:00
* build-aux/gendocs.sh (version): * doc/gendocs_template: * doc/gendocs_template_min: * doc/gnulib.texi: * lib/version-etc.c (COPYRIGHT_YEAR): Update copyright dates by hand in templates and the like. * all files: Run 'make update-copyright'.
179 lines
6.4 KiB
Plaintext
179 lines
6.4 KiB
Plaintext
# fma.m4 serial 2
|
|
dnl Copyright (C) 2011-2017 Free Software Foundation, Inc.
|
|
dnl This file is free software; the Free Software Foundation
|
|
dnl gives unlimited permission to copy and/or distribute it,
|
|
dnl with or without modifications, as long as this notice is preserved.
|
|
|
|
AC_DEFUN([gl_FUNC_FMA],
|
|
[
|
|
AC_REQUIRE([gl_MATH_H_DEFAULTS])
|
|
|
|
dnl Determine FMA_LIBM.
|
|
gl_MATHFUNC([fma], [double], [(double, double, double)],
|
|
[extern
|
|
#ifdef __cplusplus
|
|
"C"
|
|
#endif
|
|
double fma (double, double, double);
|
|
])
|
|
if test $gl_cv_func_fma_no_libm = yes \
|
|
|| test $gl_cv_func_fma_in_libm = yes; then
|
|
dnl Also check whether it's declared.
|
|
dnl IRIX 6.5 has fma() in libm but doesn't declare it in <math.h>,
|
|
dnl and the function is buggy.
|
|
AC_CHECK_DECL([fma], , [REPLACE_FMA=1], [[#include <math.h>]])
|
|
if test $REPLACE_FMA = 0; then
|
|
gl_FUNC_FMA_WORKS
|
|
case "$gl_cv_func_fma_works" in
|
|
*no) REPLACE_FMA=1 ;;
|
|
esac
|
|
fi
|
|
else
|
|
HAVE_FMA=0
|
|
fi
|
|
if test $HAVE_FMA = 0 || test $REPLACE_FMA = 1; then
|
|
dnl Find libraries needed to link lib/fmal.c.
|
|
AC_REQUIRE([gl_FUNC_FREXP])
|
|
AC_REQUIRE([gl_FUNC_LDEXP])
|
|
AC_REQUIRE([gl_FUNC_FEGETROUND])
|
|
FMA_LIBM=
|
|
dnl Append $FREXP_LIBM to FMA_LIBM, avoiding gratuitous duplicates.
|
|
case " $FMA_LIBM " in
|
|
*" $FREXP_LIBM "*) ;;
|
|
*) FMA_LIBM="$FMA_LIBM $FREXP_LIBM" ;;
|
|
esac
|
|
dnl Append $LDEXP_LIBM to FMA_LIBM, avoiding gratuitous duplicates.
|
|
case " $FMA_LIBM " in
|
|
*" $LDEXP_LIBM "*) ;;
|
|
*) FMA_LIBM="$FMA_LIBM $LDEXP_LIBM" ;;
|
|
esac
|
|
dnl Append $FEGETROUND_LIBM to FMA_LIBM, avoiding gratuitous duplicates.
|
|
case " $FMA_LIBM " in
|
|
*" $FEGETROUND_LIBM "*) ;;
|
|
*) FMA_LIBM="$FMA_LIBM $FEGETROUND_LIBM" ;;
|
|
esac
|
|
fi
|
|
AC_SUBST([FMA_LIBM])
|
|
])
|
|
|
|
dnl Test whether fma() has any of the 7 known bugs of glibc 2.11.3 on x86_64.
|
|
AC_DEFUN([gl_FUNC_FMA_WORKS],
|
|
[
|
|
AC_REQUIRE([AC_PROG_CC])
|
|
AC_REQUIRE([AC_CANONICAL_HOST]) dnl for cross-compiles
|
|
AC_REQUIRE([gl_FUNC_LDEXP])
|
|
save_LIBS="$LIBS"
|
|
LIBS="$LIBS $FMA_LIBM $LDEXP_LIBM"
|
|
AC_CACHE_CHECK([whether fma works], [gl_cv_func_fma_works],
|
|
[
|
|
AC_RUN_IFELSE(
|
|
[AC_LANG_SOURCE([[
|
|
#include <float.h>
|
|
#include <math.h>
|
|
double p0 = 0.0;
|
|
int main()
|
|
{
|
|
int failed_tests = 0;
|
|
/* These tests fail with glibc 2.11.3 on x86_64. */
|
|
{
|
|
volatile double x = 1.5; /* 3 * 2^-1 */
|
|
volatile double y = x;
|
|
volatile double z = ldexp (1.0, DBL_MANT_DIG + 1); /* 2^54 */
|
|
/* x * y + z with infinite precision: 2^54 + 9 * 2^-2.
|
|
Lies between (2^52 + 0) * 2^2 and (2^52 + 1) * 2^2
|
|
and is closer to (2^52 + 1) * 2^2, therefore the rounding
|
|
must round up and produce (2^52 + 1) * 2^2. */
|
|
volatile double expected = z + 4.0;
|
|
volatile double result = fma (x, y, z);
|
|
if (result != expected)
|
|
failed_tests |= 1;
|
|
}
|
|
{
|
|
volatile double x = 1.25; /* 2^0 + 2^-2 */
|
|
volatile double y = - x;
|
|
volatile double z = ldexp (1.0, DBL_MANT_DIG + 1); /* 2^54 */
|
|
/* x * y + z with infinite precision: 2^54 - 2^0 - 2^-1 - 2^-4.
|
|
Lies between (2^53 - 1) * 2^1 and 2^53 * 2^1
|
|
and is closer to (2^53 - 1) * 2^1, therefore the rounding
|
|
must round down and produce (2^53 - 1) * 2^1. */
|
|
volatile double expected = (ldexp (1.0, DBL_MANT_DIG) - 1.0) * 2.0;
|
|
volatile double result = fma (x, y, z);
|
|
if (result != expected)
|
|
failed_tests |= 2;
|
|
}
|
|
{
|
|
volatile double x = 1.0 + ldexp (1.0, 1 - DBL_MANT_DIG); /* 2^0 + 2^-52 */
|
|
volatile double y = x;
|
|
volatile double z = 4.0; /* 2^2 */
|
|
/* x * y + z with infinite precision: 2^2 + 2^0 + 2^-51 + 2^-104.
|
|
Lies between (2^52 + 2^50) * 2^-50 and (2^52 + 2^50 + 1) * 2^-50
|
|
and is closer to (2^52 + 2^50 + 1) * 2^-50, therefore the rounding
|
|
must round up and produce (2^52 + 2^50 + 1) * 2^-50. */
|
|
volatile double expected = 4.0 + 1.0 + ldexp (1.0, 3 - DBL_MANT_DIG);
|
|
volatile double result = fma (x, y, z);
|
|
if (result != expected)
|
|
failed_tests |= 4;
|
|
}
|
|
{
|
|
volatile double x = 1.0 + ldexp (1.0, 1 - DBL_MANT_DIG); /* 2^0 + 2^-52 */
|
|
volatile double y = - x;
|
|
volatile double z = 8.0; /* 2^3 */
|
|
/* x * y + z with infinite precision: 2^2 + 2^1 + 2^0 - 2^-51 - 2^-104.
|
|
Lies between (2^52 + 2^51 + 2^50 - 1) * 2^-50 and
|
|
(2^52 + 2^51 + 2^50) * 2^-50 and is closer to
|
|
(2^52 + 2^51 + 2^50 - 1) * 2^-50, therefore the rounding
|
|
must round down and produce (2^52 + 2^51 + 2^50 - 1) * 2^-50. */
|
|
volatile double expected = 7.0 - ldexp (1.0, 3 - DBL_MANT_DIG);
|
|
volatile double result = fma (x, y, z);
|
|
if (result != expected)
|
|
failed_tests |= 8;
|
|
}
|
|
{
|
|
volatile double x = 1.25; /* 2^0 + 2^-2 */
|
|
volatile double y = - 0.75; /* - 2^0 + 2^-2 */
|
|
volatile double z = ldexp (1.0, DBL_MANT_DIG); /* 2^53 */
|
|
/* x * y + z with infinite precision: 2^53 - 2^0 + 2^-4.
|
|
Lies between (2^53 - 2^0) and 2^53 and is closer to (2^53 - 2^0),
|
|
therefore the rounding must round down and produce (2^53 - 2^0). */
|
|
volatile double expected = ldexp (1.0, DBL_MANT_DIG) - 1.0;
|
|
volatile double result = fma (x, y, z);
|
|
if (result != expected)
|
|
failed_tests |= 16;
|
|
}
|
|
if ((DBL_MANT_DIG % 2) == 1)
|
|
{
|
|
volatile double x = 1.0 + ldexp (1.0, - (DBL_MANT_DIG + 1) / 2); /* 2^0 + 2^-27 */
|
|
volatile double y = 1.0 - ldexp (1.0, - (DBL_MANT_DIG + 1) / 2); /* 2^0 - 2^-27 */
|
|
volatile double z = - ldexp (1.0, DBL_MIN_EXP - DBL_MANT_DIG); /* - 2^-1074 */
|
|
/* x * y + z with infinite precision: 2^0 - 2^-54 - 2^-1074.
|
|
Lies between (2^53 - 1) * 2^-53 and 2^53 * 2^-53 and is closer to
|
|
(2^53 - 1) * 2^-53, therefore the rounding must round down and
|
|
produce (2^53 - 1) * 2^-53. */
|
|
volatile double expected = 1.0 - ldexp (1.0, - DBL_MANT_DIG);
|
|
volatile double result = fma (x, y, z);
|
|
if (result != expected)
|
|
failed_tests |= 32;
|
|
}
|
|
{
|
|
double minus_inf = -1.0 / p0;
|
|
volatile double x = ldexp (1.0, DBL_MAX_EXP - 1);
|
|
volatile double y = ldexp (1.0, DBL_MAX_EXP - 1);
|
|
volatile double z = minus_inf;
|
|
volatile double result = fma (x, y, z);
|
|
if (!(result == minus_inf))
|
|
failed_tests |= 64;
|
|
}
|
|
return failed_tests;
|
|
}]])],
|
|
[gl_cv_func_fma_works=yes],
|
|
[gl_cv_func_fma_works=no],
|
|
[dnl Guess no, even on glibc systems.
|
|
gl_cv_func_fma_works="guessing no"
|
|
])
|
|
])
|
|
LIBS="$save_LIBS"
|
|
])
|
|
|
|
# Prerequisites of lib/fma.c.
|
|
AC_DEFUN([gl_PREREQ_FMA], [:])
|