mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-11-03 20:53:13 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			518 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			518 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* Software floating-point emulation.
 | 
						|
   Definitions for IEEE Extended Precision.
 | 
						|
   Copyright (C) 1999-2017 Free Software Foundation, Inc.
 | 
						|
   This file is part of the GNU C Library.
 | 
						|
   Contributed by Jakub Jelinek (jj@ultra.linux.cz).
 | 
						|
 | 
						|
   The GNU C Library is free software; you can redistribute it and/or
 | 
						|
   modify it under the terms of the GNU Lesser General Public
 | 
						|
   License as published by the Free Software Foundation; either
 | 
						|
   version 2.1 of the License, or (at your option) any later version.
 | 
						|
 | 
						|
   In addition to the permissions in the GNU Lesser General Public
 | 
						|
   License, the Free Software Foundation gives you unlimited
 | 
						|
   permission to link the compiled version of this file into
 | 
						|
   combinations with other programs, and to distribute those
 | 
						|
   combinations without any restriction coming from the use of this
 | 
						|
   file.  (The Lesser General Public License restrictions do apply in
 | 
						|
   other respects; for example, they cover modification of the file,
 | 
						|
   and distribution when not linked into a combine executable.)
 | 
						|
 | 
						|
   The GNU C Library is distributed in the hope that it will be useful,
 | 
						|
   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
   Lesser General Public License for more details.
 | 
						|
 | 
						|
   You should have received a copy of the GNU Lesser General Public
 | 
						|
   License along with the GNU C Library; if not, see
 | 
						|
   <http://www.gnu.org/licenses/>.  */
 | 
						|
 | 
						|
#ifndef SOFT_FP_EXTENDED_H
 | 
						|
#define SOFT_FP_EXTENDED_H	1
 | 
						|
 | 
						|
#if _FP_W_TYPE_SIZE < 32
 | 
						|
# error "Here's a nickel, kid. Go buy yourself a real computer."
 | 
						|
#endif
 | 
						|
 | 
						|
#if _FP_W_TYPE_SIZE < 64
 | 
						|
# define _FP_FRACTBITS_E	(4*_FP_W_TYPE_SIZE)
 | 
						|
# define _FP_FRACTBITS_DW_E	(8*_FP_W_TYPE_SIZE)
 | 
						|
#else
 | 
						|
# define _FP_FRACTBITS_E	(2*_FP_W_TYPE_SIZE)
 | 
						|
# define _FP_FRACTBITS_DW_E	(4*_FP_W_TYPE_SIZE)
 | 
						|
#endif
 | 
						|
 | 
						|
#define _FP_FRACBITS_E		64
 | 
						|
#define _FP_FRACXBITS_E		(_FP_FRACTBITS_E - _FP_FRACBITS_E)
 | 
						|
#define _FP_WFRACBITS_E		(_FP_WORKBITS + _FP_FRACBITS_E)
 | 
						|
#define _FP_WFRACXBITS_E	(_FP_FRACTBITS_E - _FP_WFRACBITS_E)
 | 
						|
#define _FP_EXPBITS_E		15
 | 
						|
#define _FP_EXPBIAS_E		16383
 | 
						|
#define _FP_EXPMAX_E		32767
 | 
						|
 | 
						|
#define _FP_QNANBIT_E		\
 | 
						|
	((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-2) % _FP_W_TYPE_SIZE)
 | 
						|
#define _FP_QNANBIT_SH_E		\
 | 
						|
	((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-2+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
 | 
						|
#define _FP_IMPLBIT_E		\
 | 
						|
	((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-1) % _FP_W_TYPE_SIZE)
 | 
						|
#define _FP_IMPLBIT_SH_E		\
 | 
						|
	((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-1+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
 | 
						|
#define _FP_OVERFLOW_E		\
 | 
						|
	((_FP_W_TYPE) 1 << (_FP_WFRACBITS_E % _FP_W_TYPE_SIZE))
 | 
						|
 | 
						|
#define _FP_WFRACBITS_DW_E	(2 * _FP_WFRACBITS_E)
 | 
						|
#define _FP_WFRACXBITS_DW_E	(_FP_FRACTBITS_DW_E - _FP_WFRACBITS_DW_E)
 | 
						|
#define _FP_HIGHBIT_DW_E	\
 | 
						|
  ((_FP_W_TYPE) 1 << (_FP_WFRACBITS_DW_E - 1) % _FP_W_TYPE_SIZE)
 | 
						|
 | 
						|
typedef float XFtype __attribute__ ((mode (XF)));
 | 
						|
 | 
						|
#if _FP_W_TYPE_SIZE < 64
 | 
						|
 | 
						|
union _FP_UNION_E
 | 
						|
{
 | 
						|
  XFtype flt;
 | 
						|
  struct _FP_STRUCT_LAYOUT
 | 
						|
  {
 | 
						|
# if __BYTE_ORDER == __BIG_ENDIAN
 | 
						|
    unsigned long pad1 : _FP_W_TYPE_SIZE;
 | 
						|
    unsigned long pad2 : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);
 | 
						|
    unsigned long sign : 1;
 | 
						|
    unsigned long exp : _FP_EXPBITS_E;
 | 
						|
    unsigned long frac1 : _FP_W_TYPE_SIZE;
 | 
						|
    unsigned long frac0 : _FP_W_TYPE_SIZE;
 | 
						|
# else
 | 
						|
    unsigned long frac0 : _FP_W_TYPE_SIZE;
 | 
						|
    unsigned long frac1 : _FP_W_TYPE_SIZE;
 | 
						|
    unsigned exp : _FP_EXPBITS_E;
 | 
						|
    unsigned sign : 1;
 | 
						|
# endif /* not bigendian */
 | 
						|
  } bits __attribute__ ((packed));
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
# define FP_DECL_E(X)		_FP_DECL (4, X)
 | 
						|
 | 
						|
# define FP_UNPACK_RAW_E(X, val)			\
 | 
						|
  do							\
 | 
						|
    {							\
 | 
						|
      union _FP_UNION_E FP_UNPACK_RAW_E_flo;		\
 | 
						|
      FP_UNPACK_RAW_E_flo.flt = (val);			\
 | 
						|
							\
 | 
						|
      X##_f[2] = 0;					\
 | 
						|
      X##_f[3] = 0;					\
 | 
						|
      X##_f[0] = FP_UNPACK_RAW_E_flo.bits.frac0;	\
 | 
						|
      X##_f[1] = FP_UNPACK_RAW_E_flo.bits.frac1;	\
 | 
						|
      X##_f[1] &= ~_FP_IMPLBIT_E;			\
 | 
						|
      X##_e  = FP_UNPACK_RAW_E_flo.bits.exp;		\
 | 
						|
      X##_s  = FP_UNPACK_RAW_E_flo.bits.sign;		\
 | 
						|
    }							\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_UNPACK_RAW_EP(X, val)			\
 | 
						|
  do							\
 | 
						|
    {							\
 | 
						|
      union _FP_UNION_E *FP_UNPACK_RAW_EP_flo		\
 | 
						|
	= (union _FP_UNION_E *) (val);			\
 | 
						|
							\
 | 
						|
      X##_f[2] = 0;					\
 | 
						|
      X##_f[3] = 0;					\
 | 
						|
      X##_f[0] = FP_UNPACK_RAW_EP_flo->bits.frac0;	\
 | 
						|
      X##_f[1] = FP_UNPACK_RAW_EP_flo->bits.frac1;	\
 | 
						|
      X##_f[1] &= ~_FP_IMPLBIT_E;			\
 | 
						|
      X##_e  = FP_UNPACK_RAW_EP_flo->bits.exp;		\
 | 
						|
      X##_s  = FP_UNPACK_RAW_EP_flo->bits.sign;		\
 | 
						|
    }							\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_PACK_RAW_E(val, X)			\
 | 
						|
  do						\
 | 
						|
    {						\
 | 
						|
      union _FP_UNION_E FP_PACK_RAW_E_flo;	\
 | 
						|
						\
 | 
						|
      if (X##_e)				\
 | 
						|
	X##_f[1] |= _FP_IMPLBIT_E;		\
 | 
						|
      else					\
 | 
						|
	X##_f[1] &= ~(_FP_IMPLBIT_E);		\
 | 
						|
      FP_PACK_RAW_E_flo.bits.frac0 = X##_f[0];	\
 | 
						|
      FP_PACK_RAW_E_flo.bits.frac1 = X##_f[1];	\
 | 
						|
      FP_PACK_RAW_E_flo.bits.exp   = X##_e;	\
 | 
						|
      FP_PACK_RAW_E_flo.bits.sign  = X##_s;	\
 | 
						|
						\
 | 
						|
      (val) = FP_PACK_RAW_E_flo.flt;		\
 | 
						|
    }						\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_PACK_RAW_EP(val, X)				\
 | 
						|
  do							\
 | 
						|
    {							\
 | 
						|
      if (!FP_INHIBIT_RESULTS)				\
 | 
						|
	{						\
 | 
						|
	  union _FP_UNION_E *FP_PACK_RAW_EP_flo		\
 | 
						|
	    = (union _FP_UNION_E *) (val);		\
 | 
						|
							\
 | 
						|
	  if (X##_e)					\
 | 
						|
	    X##_f[1] |= _FP_IMPLBIT_E;			\
 | 
						|
	  else						\
 | 
						|
	    X##_f[1] &= ~(_FP_IMPLBIT_E);		\
 | 
						|
	  FP_PACK_RAW_EP_flo->bits.frac0 = X##_f[0];	\
 | 
						|
	  FP_PACK_RAW_EP_flo->bits.frac1 = X##_f[1];	\
 | 
						|
	  FP_PACK_RAW_EP_flo->bits.exp   = X##_e;	\
 | 
						|
	  FP_PACK_RAW_EP_flo->bits.sign  = X##_s;	\
 | 
						|
	}						\
 | 
						|
    }							\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_UNPACK_E(X, val)			\
 | 
						|
  do						\
 | 
						|
    {						\
 | 
						|
      FP_UNPACK_RAW_E (X, (val));		\
 | 
						|
      _FP_UNPACK_CANONICAL (E, 4, X);		\
 | 
						|
    }						\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_UNPACK_EP(X, val)			\
 | 
						|
  do						\
 | 
						|
    {						\
 | 
						|
      FP_UNPACK_RAW_EP (X, (val));		\
 | 
						|
      _FP_UNPACK_CANONICAL (E, 4, X);		\
 | 
						|
    }						\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_UNPACK_SEMIRAW_E(X, val)		\
 | 
						|
  do						\
 | 
						|
    {						\
 | 
						|
      FP_UNPACK_RAW_E (X, (val));		\
 | 
						|
      _FP_UNPACK_SEMIRAW (E, 4, X);		\
 | 
						|
    }						\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_UNPACK_SEMIRAW_EP(X, val)		\
 | 
						|
  do						\
 | 
						|
    {						\
 | 
						|
      FP_UNPACK_RAW_EP (X, (val));		\
 | 
						|
      _FP_UNPACK_SEMIRAW (E, 4, X);		\
 | 
						|
    }						\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_PACK_E(val, X)			\
 | 
						|
  do						\
 | 
						|
    {						\
 | 
						|
      _FP_PACK_CANONICAL (E, 4, X);		\
 | 
						|
      FP_PACK_RAW_E ((val), X);			\
 | 
						|
    }						\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_PACK_EP(val, X)			\
 | 
						|
  do						\
 | 
						|
    {						\
 | 
						|
      _FP_PACK_CANONICAL (E, 4, X);		\
 | 
						|
      FP_PACK_RAW_EP ((val), X);		\
 | 
						|
    }						\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_PACK_SEMIRAW_E(val, X)		\
 | 
						|
  do						\
 | 
						|
    {						\
 | 
						|
      _FP_PACK_SEMIRAW (E, 4, X);		\
 | 
						|
      FP_PACK_RAW_E ((val), X);			\
 | 
						|
    }						\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_PACK_SEMIRAW_EP(val, X)		\
 | 
						|
  do						\
 | 
						|
    {						\
 | 
						|
      _FP_PACK_SEMIRAW (E, 4, X);		\
 | 
						|
      FP_PACK_RAW_EP ((val), X);		\
 | 
						|
    }						\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_ISSIGNAN_E(X)	_FP_ISSIGNAN (E, 4, X)
 | 
						|
# define FP_NEG_E(R, X)		_FP_NEG (E, 4, R, X)
 | 
						|
# define FP_ADD_E(R, X, Y)	_FP_ADD (E, 4, R, X, Y)
 | 
						|
# define FP_SUB_E(R, X, Y)	_FP_SUB (E, 4, R, X, Y)
 | 
						|
# define FP_MUL_E(R, X, Y)	_FP_MUL (E, 4, R, X, Y)
 | 
						|
# define FP_DIV_E(R, X, Y)	_FP_DIV (E, 4, R, X, Y)
 | 
						|
# define FP_SQRT_E(R, X)	_FP_SQRT (E, 4, R, X)
 | 
						|
# define FP_FMA_E(R, X, Y, Z)	_FP_FMA (E, 4, 8, R, X, Y, Z)
 | 
						|
 | 
						|
/* Square root algorithms:
 | 
						|
   We have just one right now, maybe Newton approximation
 | 
						|
   should be added for those machines where division is fast.
 | 
						|
   This has special _E version because standard _4 square
 | 
						|
   root would not work (it has to start normally with the
 | 
						|
   second word and not the first), but as we have to do it
 | 
						|
   anyway, we optimize it by doing most of the calculations
 | 
						|
   in two UWtype registers instead of four.  */
 | 
						|
 | 
						|
# define _FP_SQRT_MEAT_E(R, S, T, X, q)			\
 | 
						|
  do							\
 | 
						|
    {							\
 | 
						|
      (q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1);	\
 | 
						|
      _FP_FRAC_SRL_4 (X, (_FP_WORKBITS));		\
 | 
						|
      while (q)						\
 | 
						|
	{						\
 | 
						|
	  T##_f[1] = S##_f[1] + (q);			\
 | 
						|
	  if (T##_f[1] <= X##_f[1])			\
 | 
						|
	    {						\
 | 
						|
	      S##_f[1] = T##_f[1] + (q);		\
 | 
						|
	      X##_f[1] -= T##_f[1];			\
 | 
						|
	      R##_f[1] += (q);				\
 | 
						|
	    }						\
 | 
						|
	  _FP_FRAC_SLL_2 (X, 1);			\
 | 
						|
	  (q) >>= 1;					\
 | 
						|
	}						\
 | 
						|
      (q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1);	\
 | 
						|
      while (q)						\
 | 
						|
	{						\
 | 
						|
	  T##_f[0] = S##_f[0] + (q);			\
 | 
						|
	  T##_f[1] = S##_f[1];				\
 | 
						|
	  if (T##_f[1] < X##_f[1]			\
 | 
						|
	      || (T##_f[1] == X##_f[1]			\
 | 
						|
		  && T##_f[0] <= X##_f[0]))		\
 | 
						|
	    {						\
 | 
						|
	      S##_f[0] = T##_f[0] + (q);		\
 | 
						|
	      S##_f[1] += (T##_f[0] > S##_f[0]);	\
 | 
						|
	      _FP_FRAC_DEC_2 (X, T);			\
 | 
						|
	      R##_f[0] += (q);				\
 | 
						|
	    }						\
 | 
						|
	  _FP_FRAC_SLL_2 (X, 1);			\
 | 
						|
	  (q) >>= 1;					\
 | 
						|
	}						\
 | 
						|
      _FP_FRAC_SLL_4 (R, (_FP_WORKBITS));		\
 | 
						|
      if (X##_f[0] | X##_f[1])				\
 | 
						|
	{						\
 | 
						|
	  if (S##_f[1] < X##_f[1]			\
 | 
						|
	      || (S##_f[1] == X##_f[1]			\
 | 
						|
		  && S##_f[0] < X##_f[0]))		\
 | 
						|
	    R##_f[0] |= _FP_WORK_ROUND;			\
 | 
						|
	  R##_f[0] |= _FP_WORK_STICKY;			\
 | 
						|
	}						\
 | 
						|
    }							\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_CMP_E(r, X, Y, un, ex)	_FP_CMP (E, 4, (r), X, Y, (un), (ex))
 | 
						|
# define FP_CMP_EQ_E(r, X, Y, ex)	_FP_CMP_EQ (E, 4, (r), X, Y, (ex))
 | 
						|
# define FP_CMP_UNORD_E(r, X, Y, ex)	_FP_CMP_UNORD (E, 4, (r), X, Y, (ex))
 | 
						|
 | 
						|
# define FP_TO_INT_E(r, X, rsz, rsg)	_FP_TO_INT (E, 4, (r), X, (rsz), (rsg))
 | 
						|
# define FP_TO_INT_ROUND_E(r, X, rsz, rsg)	\
 | 
						|
  _FP_TO_INT_ROUND (E, 4, (r), X, (rsz), (rsg))
 | 
						|
# define FP_FROM_INT_E(X, r, rs, rt)	_FP_FROM_INT (E, 4, X, (r), (rs), rt)
 | 
						|
 | 
						|
# define _FP_FRAC_HIGH_E(X)	(X##_f[2])
 | 
						|
# define _FP_FRAC_HIGH_RAW_E(X)	(X##_f[1])
 | 
						|
 | 
						|
# define _FP_FRAC_HIGH_DW_E(X)	(X##_f[4])
 | 
						|
 | 
						|
#else   /* not _FP_W_TYPE_SIZE < 64 */
 | 
						|
union _FP_UNION_E
 | 
						|
{
 | 
						|
  XFtype flt;
 | 
						|
  struct _FP_STRUCT_LAYOUT
 | 
						|
  {
 | 
						|
# if __BYTE_ORDER == __BIG_ENDIAN
 | 
						|
    _FP_W_TYPE pad  : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);
 | 
						|
    unsigned sign   : 1;
 | 
						|
    unsigned exp    : _FP_EXPBITS_E;
 | 
						|
    _FP_W_TYPE frac : _FP_W_TYPE_SIZE;
 | 
						|
# else
 | 
						|
    _FP_W_TYPE frac : _FP_W_TYPE_SIZE;
 | 
						|
    unsigned exp    : _FP_EXPBITS_E;
 | 
						|
    unsigned sign   : 1;
 | 
						|
# endif
 | 
						|
  } bits;
 | 
						|
};
 | 
						|
 | 
						|
# define FP_DECL_E(X)		_FP_DECL (2, X)
 | 
						|
 | 
						|
# define FP_UNPACK_RAW_E(X, val)		\
 | 
						|
  do						\
 | 
						|
    {						\
 | 
						|
      union _FP_UNION_E FP_UNPACK_RAW_E_flo;	\
 | 
						|
      FP_UNPACK_RAW_E_flo.flt = (val);		\
 | 
						|
						\
 | 
						|
      X##_f0 = FP_UNPACK_RAW_E_flo.bits.frac;	\
 | 
						|
      X##_f0 &= ~_FP_IMPLBIT_E;			\
 | 
						|
      X##_f1 = 0;				\
 | 
						|
      X##_e = FP_UNPACK_RAW_E_flo.bits.exp;	\
 | 
						|
      X##_s = FP_UNPACK_RAW_E_flo.bits.sign;	\
 | 
						|
    }						\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_UNPACK_RAW_EP(X, val)		\
 | 
						|
  do						\
 | 
						|
    {						\
 | 
						|
      union _FP_UNION_E *FP_UNPACK_RAW_EP_flo	\
 | 
						|
	= (union _FP_UNION_E *) (val);		\
 | 
						|
						\
 | 
						|
      X##_f0 = FP_UNPACK_RAW_EP_flo->bits.frac;	\
 | 
						|
      X##_f0 &= ~_FP_IMPLBIT_E;			\
 | 
						|
      X##_f1 = 0;				\
 | 
						|
      X##_e = FP_UNPACK_RAW_EP_flo->bits.exp;	\
 | 
						|
      X##_s = FP_UNPACK_RAW_EP_flo->bits.sign;	\
 | 
						|
    }						\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_PACK_RAW_E(val, X)			\
 | 
						|
  do						\
 | 
						|
    {						\
 | 
						|
      union _FP_UNION_E FP_PACK_RAW_E_flo;	\
 | 
						|
						\
 | 
						|
      if (X##_e)				\
 | 
						|
	X##_f0 |= _FP_IMPLBIT_E;		\
 | 
						|
      else					\
 | 
						|
	X##_f0 &= ~(_FP_IMPLBIT_E);		\
 | 
						|
      FP_PACK_RAW_E_flo.bits.frac = X##_f0;	\
 | 
						|
      FP_PACK_RAW_E_flo.bits.exp  = X##_e;	\
 | 
						|
      FP_PACK_RAW_E_flo.bits.sign = X##_s;	\
 | 
						|
						\
 | 
						|
      (val) = FP_PACK_RAW_E_flo.flt;		\
 | 
						|
    }						\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_PACK_RAW_EP(fs, val, X)			\
 | 
						|
  do							\
 | 
						|
    {							\
 | 
						|
      if (!FP_INHIBIT_RESULTS)				\
 | 
						|
	{						\
 | 
						|
	  union _FP_UNION_E *FP_PACK_RAW_EP_flo		\
 | 
						|
	    = (union _FP_UNION_E *) (val);		\
 | 
						|
							\
 | 
						|
	  if (X##_e)					\
 | 
						|
	    X##_f0 |= _FP_IMPLBIT_E;			\
 | 
						|
	  else						\
 | 
						|
	    X##_f0 &= ~(_FP_IMPLBIT_E);			\
 | 
						|
	  FP_PACK_RAW_EP_flo->bits.frac = X##_f0;	\
 | 
						|
	  FP_PACK_RAW_EP_flo->bits.exp  = X##_e;	\
 | 
						|
	  FP_PACK_RAW_EP_flo->bits.sign = X##_s;	\
 | 
						|
	}						\
 | 
						|
    }							\
 | 
						|
  while (0)
 | 
						|
 | 
						|
 | 
						|
# define FP_UNPACK_E(X, val)			\
 | 
						|
  do						\
 | 
						|
    {						\
 | 
						|
      FP_UNPACK_RAW_E (X, (val));		\
 | 
						|
      _FP_UNPACK_CANONICAL (E, 2, X);		\
 | 
						|
    }						\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_UNPACK_EP(X, val)			\
 | 
						|
  do						\
 | 
						|
    {						\
 | 
						|
      FP_UNPACK_RAW_EP (X, (val));		\
 | 
						|
      _FP_UNPACK_CANONICAL (E, 2, X);		\
 | 
						|
    }						\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_UNPACK_SEMIRAW_E(X, val)		\
 | 
						|
  do						\
 | 
						|
    {						\
 | 
						|
      FP_UNPACK_RAW_E (X, (val));		\
 | 
						|
      _FP_UNPACK_SEMIRAW (E, 2, X);		\
 | 
						|
    }						\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_UNPACK_SEMIRAW_EP(X, val)		\
 | 
						|
  do						\
 | 
						|
    {						\
 | 
						|
      FP_UNPACK_RAW_EP (X, (val));		\
 | 
						|
      _FP_UNPACK_SEMIRAW (E, 2, X);		\
 | 
						|
    }						\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_PACK_E(val, X)			\
 | 
						|
  do						\
 | 
						|
    {						\
 | 
						|
      _FP_PACK_CANONICAL (E, 2, X);		\
 | 
						|
      FP_PACK_RAW_E ((val), X);			\
 | 
						|
    }						\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_PACK_EP(val, X)			\
 | 
						|
  do						\
 | 
						|
    {						\
 | 
						|
      _FP_PACK_CANONICAL (E, 2, X);		\
 | 
						|
      FP_PACK_RAW_EP ((val), X);		\
 | 
						|
    }						\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_PACK_SEMIRAW_E(val, X)		\
 | 
						|
  do						\
 | 
						|
    {						\
 | 
						|
      _FP_PACK_SEMIRAW (E, 2, X);		\
 | 
						|
      FP_PACK_RAW_E ((val), X);			\
 | 
						|
    }						\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_PACK_SEMIRAW_EP(val, X)		\
 | 
						|
  do						\
 | 
						|
    {						\
 | 
						|
      _FP_PACK_SEMIRAW (E, 2, X);		\
 | 
						|
      FP_PACK_RAW_EP ((val), X);		\
 | 
						|
    }						\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_ISSIGNAN_E(X)	_FP_ISSIGNAN (E, 2, X)
 | 
						|
# define FP_NEG_E(R, X)		_FP_NEG (E, 2, R, X)
 | 
						|
# define FP_ADD_E(R, X, Y)	_FP_ADD (E, 2, R, X, Y)
 | 
						|
# define FP_SUB_E(R, X, Y)	_FP_SUB (E, 2, R, X, Y)
 | 
						|
# define FP_MUL_E(R, X, Y)	_FP_MUL (E, 2, R, X, Y)
 | 
						|
# define FP_DIV_E(R, X, Y)	_FP_DIV (E, 2, R, X, Y)
 | 
						|
# define FP_SQRT_E(R, X)	_FP_SQRT (E, 2, R, X)
 | 
						|
# define FP_FMA_E(R, X, Y, Z)	_FP_FMA (E, 2, 4, R, X, Y, Z)
 | 
						|
 | 
						|
/* Square root algorithms:
 | 
						|
   We have just one right now, maybe Newton approximation
 | 
						|
   should be added for those machines where division is fast.
 | 
						|
   We optimize it by doing most of the calculations
 | 
						|
   in one UWtype registers instead of two, although we don't
 | 
						|
   have to.  */
 | 
						|
# define _FP_SQRT_MEAT_E(R, S, T, X, q)			\
 | 
						|
  do							\
 | 
						|
    {							\
 | 
						|
      (q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1);	\
 | 
						|
      _FP_FRAC_SRL_2 (X, (_FP_WORKBITS));		\
 | 
						|
      while (q)						\
 | 
						|
	{						\
 | 
						|
	  T##_f0 = S##_f0 + (q);			\
 | 
						|
	  if (T##_f0 <= X##_f0)				\
 | 
						|
	    {						\
 | 
						|
	      S##_f0 = T##_f0 + (q);			\
 | 
						|
	      X##_f0 -= T##_f0;				\
 | 
						|
	      R##_f0 += (q);				\
 | 
						|
	    }						\
 | 
						|
	  _FP_FRAC_SLL_1 (X, 1);			\
 | 
						|
	  (q) >>= 1;					\
 | 
						|
	}						\
 | 
						|
      _FP_FRAC_SLL_2 (R, (_FP_WORKBITS));		\
 | 
						|
      if (X##_f0)					\
 | 
						|
	{						\
 | 
						|
	  if (S##_f0 < X##_f0)				\
 | 
						|
	    R##_f0 |= _FP_WORK_ROUND;			\
 | 
						|
	  R##_f0 |= _FP_WORK_STICKY;			\
 | 
						|
	}						\
 | 
						|
    }							\
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define FP_CMP_E(r, X, Y, un, ex)	_FP_CMP (E, 2, (r), X, Y, (un), (ex))
 | 
						|
# define FP_CMP_EQ_E(r, X, Y, ex)	_FP_CMP_EQ (E, 2, (r), X, Y, (ex))
 | 
						|
# define FP_CMP_UNORD_E(r, X, Y, ex)	_FP_CMP_UNORD (E, 2, (r), X, Y, (ex))
 | 
						|
 | 
						|
# define FP_TO_INT_E(r, X, rsz, rsg)	_FP_TO_INT (E, 2, (r), X, (rsz), (rsg))
 | 
						|
# define FP_TO_INT_ROUND_E(r, X, rsz, rsg)	\
 | 
						|
  _FP_TO_INT_ROUND (E, 2, (r), X, (rsz), (rsg))
 | 
						|
# define FP_FROM_INT_E(X, r, rs, rt)	_FP_FROM_INT (E, 2, X, (r), (rs), rt)
 | 
						|
 | 
						|
# define _FP_FRAC_HIGH_E(X)	(X##_f1)
 | 
						|
# define _FP_FRAC_HIGH_RAW_E(X)	(X##_f0)
 | 
						|
 | 
						|
# define _FP_FRAC_HIGH_DW_E(X)	(X##_f[2])
 | 
						|
 | 
						|
#endif /* not _FP_W_TYPE_SIZE < 64 */
 | 
						|
 | 
						|
#endif /* !SOFT_FP_EXTENDED_H */
 |