mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-11-03 20:53:13 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			843 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			843 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* getifaddrs -- get names and addresses of all network interfaces
 | 
						|
   Copyright (C) 2003-2015 Free Software Foundation, Inc.
 | 
						|
   This file is part of the GNU C Library.
 | 
						|
 | 
						|
   The GNU C Library is free software; you can redistribute it and/or
 | 
						|
   modify it under the terms of the GNU Lesser General Public
 | 
						|
   License as published by the Free Software Foundation; either
 | 
						|
   version 2.1 of the License, or (at your option) any later version.
 | 
						|
 | 
						|
   The GNU C Library is distributed in the hope that it will be useful,
 | 
						|
   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
   Lesser General Public License for more details.
 | 
						|
 | 
						|
   You should have received a copy of the GNU Lesser General Public
 | 
						|
   License along with the GNU C Library; if not, see
 | 
						|
   <http://www.gnu.org/licenses/>.  */
 | 
						|
 | 
						|
#include <alloca.h>
 | 
						|
#include <assert.h>
 | 
						|
#include <errno.h>
 | 
						|
#include <ifaddrs.h>
 | 
						|
#include <net/if.h>
 | 
						|
#include <netinet/in.h>
 | 
						|
#include <netpacket/packet.h>
 | 
						|
#include <stdbool.h>
 | 
						|
#include <stdint.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <sys/ioctl.h>
 | 
						|
#include <sys/socket.h>
 | 
						|
#include <sysdep.h>
 | 
						|
#include <time.h>
 | 
						|
#include <unistd.h>
 | 
						|
 | 
						|
#include "netlinkaccess.h"
 | 
						|
 | 
						|
 | 
						|
/* There is a problem with this type.  The address length for
 | 
						|
   Infiniband sockets is much longer than the 8 bytes allocated in the
 | 
						|
   sockaddr_ll definition.  Hence we use here a special
 | 
						|
   definition.  */
 | 
						|
struct sockaddr_ll_max
 | 
						|
  {
 | 
						|
    unsigned short int sll_family;
 | 
						|
    unsigned short int sll_protocol;
 | 
						|
    int sll_ifindex;
 | 
						|
    unsigned short int sll_hatype;
 | 
						|
    unsigned char sll_pkttype;
 | 
						|
    unsigned char sll_halen;
 | 
						|
    unsigned char sll_addr[24];
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
/* struct to hold the data for one ifaddrs entry, so we can allocate
 | 
						|
   everything at once.  */
 | 
						|
struct ifaddrs_storage
 | 
						|
{
 | 
						|
  struct ifaddrs ifa;
 | 
						|
  union
 | 
						|
  {
 | 
						|
    /* Save space for the biggest of the four used sockaddr types and
 | 
						|
       avoid a lot of casts.  */
 | 
						|
    struct sockaddr sa;
 | 
						|
    struct sockaddr_ll_max sl;
 | 
						|
    struct sockaddr_in s4;
 | 
						|
    struct sockaddr_in6 s6;
 | 
						|
  } addr, netmask, broadaddr;
 | 
						|
  char name[IF_NAMESIZE + 1];
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
__netlink_free_handle (struct netlink_handle *h)
 | 
						|
{
 | 
						|
  struct netlink_res *ptr;
 | 
						|
  int saved_errno = errno;
 | 
						|
 | 
						|
  ptr = h->nlm_list;
 | 
						|
  while (ptr != NULL)
 | 
						|
    {
 | 
						|
      struct netlink_res *tmpptr;
 | 
						|
 | 
						|
      tmpptr = ptr->next;
 | 
						|
      free (ptr);
 | 
						|
      ptr = tmpptr;
 | 
						|
    }
 | 
						|
 | 
						|
  __set_errno (saved_errno);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int
 | 
						|
__netlink_sendreq (struct netlink_handle *h, int type)
 | 
						|
{
 | 
						|
  struct req
 | 
						|
  {
 | 
						|
    struct nlmsghdr nlh;
 | 
						|
    struct rtgenmsg g;
 | 
						|
    char pad[0];
 | 
						|
  } req;
 | 
						|
  struct sockaddr_nl nladdr;
 | 
						|
 | 
						|
  if (h->seq == 0)
 | 
						|
    h->seq = time (NULL);
 | 
						|
 | 
						|
  req.nlh.nlmsg_len = sizeof (req);
 | 
						|
  req.nlh.nlmsg_type = type;
 | 
						|
  req.nlh.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST;
 | 
						|
  req.nlh.nlmsg_pid = 0;
 | 
						|
  req.nlh.nlmsg_seq = h->seq;
 | 
						|
  req.g.rtgen_family = AF_UNSPEC;
 | 
						|
  if (sizeof (req) != offsetof (struct req, pad))
 | 
						|
    memset (req.pad, '\0', sizeof (req) - offsetof (struct req, pad));
 | 
						|
 | 
						|
  memset (&nladdr, '\0', sizeof (nladdr));
 | 
						|
  nladdr.nl_family = AF_NETLINK;
 | 
						|
 | 
						|
  return TEMP_FAILURE_RETRY (__sendto (h->fd, (void *) &req, sizeof (req), 0,
 | 
						|
				       (struct sockaddr *) &nladdr,
 | 
						|
				       sizeof (nladdr)));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int
 | 
						|
__netlink_request (struct netlink_handle *h, int type)
 | 
						|
{
 | 
						|
  struct netlink_res *nlm_next;
 | 
						|
  struct sockaddr_nl nladdr;
 | 
						|
  struct nlmsghdr *nlmh;
 | 
						|
  ssize_t read_len;
 | 
						|
  bool done = false;
 | 
						|
 | 
						|
#ifdef PAGE_SIZE
 | 
						|
  /* Help the compiler optimize out the malloc call if PAGE_SIZE
 | 
						|
     is constant and smaller or equal to PTHREAD_STACK_MIN/4.  */
 | 
						|
  const size_t buf_size = PAGE_SIZE;
 | 
						|
#else
 | 
						|
  const size_t buf_size = __getpagesize ();
 | 
						|
#endif
 | 
						|
  bool use_malloc = false;
 | 
						|
  char *buf;
 | 
						|
 | 
						|
  if (__libc_use_alloca (buf_size))
 | 
						|
    buf = alloca (buf_size);
 | 
						|
  else
 | 
						|
    {
 | 
						|
      buf = malloc (buf_size);
 | 
						|
      if (buf != NULL)
 | 
						|
	use_malloc = true;
 | 
						|
      else
 | 
						|
	goto out_fail;
 | 
						|
    }
 | 
						|
 | 
						|
  struct iovec iov = { buf, buf_size };
 | 
						|
 | 
						|
  if (__netlink_sendreq (h, type) < 0)
 | 
						|
    goto out_fail;
 | 
						|
 | 
						|
  while (! done)
 | 
						|
    {
 | 
						|
      struct msghdr msg =
 | 
						|
	{
 | 
						|
	  (void *) &nladdr, sizeof (nladdr),
 | 
						|
	  &iov, 1,
 | 
						|
	  NULL, 0,
 | 
						|
	  0
 | 
						|
	};
 | 
						|
 | 
						|
      read_len = TEMP_FAILURE_RETRY (__recvmsg (h->fd, &msg, 0));
 | 
						|
      if (read_len < 0)
 | 
						|
	goto out_fail;
 | 
						|
 | 
						|
      if (nladdr.nl_pid != 0)
 | 
						|
	continue;
 | 
						|
 | 
						|
      if (__glibc_unlikely (msg.msg_flags & MSG_TRUNC))
 | 
						|
	goto out_fail;
 | 
						|
 | 
						|
      size_t count = 0;
 | 
						|
      size_t remaining_len = read_len;
 | 
						|
      for (nlmh = (struct nlmsghdr *) buf;
 | 
						|
	   NLMSG_OK (nlmh, remaining_len);
 | 
						|
	   nlmh = (struct nlmsghdr *) NLMSG_NEXT (nlmh, remaining_len))
 | 
						|
	{
 | 
						|
	  if ((pid_t) nlmh->nlmsg_pid != h->pid
 | 
						|
	      || nlmh->nlmsg_seq != h->seq)
 | 
						|
	    continue;
 | 
						|
 | 
						|
	  ++count;
 | 
						|
	  if (nlmh->nlmsg_type == NLMSG_DONE)
 | 
						|
	    {
 | 
						|
	      /* We found the end, leave the loop.  */
 | 
						|
	      done = true;
 | 
						|
	      break;
 | 
						|
	    }
 | 
						|
	  if (nlmh->nlmsg_type == NLMSG_ERROR)
 | 
						|
	    {
 | 
						|
	      struct nlmsgerr *nlerr = (struct nlmsgerr *) NLMSG_DATA (nlmh);
 | 
						|
	      if (nlmh->nlmsg_len < NLMSG_LENGTH (sizeof (struct nlmsgerr)))
 | 
						|
		errno = EIO;
 | 
						|
	      else
 | 
						|
		errno = -nlerr->error;
 | 
						|
	      goto out_fail;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
      /* If there was nothing with the expected nlmsg_pid and nlmsg_seq,
 | 
						|
	 there is no point to record it.  */
 | 
						|
      if (count == 0)
 | 
						|
	continue;
 | 
						|
 | 
						|
      nlm_next = (struct netlink_res *) malloc (sizeof (struct netlink_res)
 | 
						|
						+ read_len);
 | 
						|
      if (nlm_next == NULL)
 | 
						|
	goto out_fail;
 | 
						|
      nlm_next->next = NULL;
 | 
						|
      nlm_next->nlh = memcpy (nlm_next + 1, buf, read_len);
 | 
						|
      nlm_next->size = read_len;
 | 
						|
      nlm_next->seq = h->seq;
 | 
						|
      if (h->nlm_list == NULL)
 | 
						|
	h->nlm_list = nlm_next;
 | 
						|
      else
 | 
						|
	h->end_ptr->next = nlm_next;
 | 
						|
      h->end_ptr = nlm_next;
 | 
						|
    }
 | 
						|
 | 
						|
  if (use_malloc)
 | 
						|
    free (buf);
 | 
						|
  return 0;
 | 
						|
 | 
						|
out_fail:
 | 
						|
  if (use_malloc)
 | 
						|
    free (buf);
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
__netlink_close (struct netlink_handle *h)
 | 
						|
{
 | 
						|
  /* Don't modify errno.  */
 | 
						|
  INTERNAL_SYSCALL_DECL (err);
 | 
						|
  (void) INTERNAL_SYSCALL (close, err, 1, h->fd);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Open a NETLINK socket.  */
 | 
						|
int
 | 
						|
__netlink_open (struct netlink_handle *h)
 | 
						|
{
 | 
						|
  struct sockaddr_nl nladdr;
 | 
						|
 | 
						|
  h->fd = __socket (PF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
 | 
						|
  if (h->fd < 0)
 | 
						|
    goto out;
 | 
						|
 | 
						|
  memset (&nladdr, '\0', sizeof (nladdr));
 | 
						|
  nladdr.nl_family = AF_NETLINK;
 | 
						|
  if (__bind (h->fd, (struct sockaddr *) &nladdr, sizeof (nladdr)) < 0)
 | 
						|
    {
 | 
						|
    close_and_out:
 | 
						|
      __netlink_close (h);
 | 
						|
    out:
 | 
						|
      return -1;
 | 
						|
    }
 | 
						|
  /* Determine the ID the kernel assigned for this netlink connection.
 | 
						|
     It is not necessarily the PID if there is more than one socket
 | 
						|
     open.  */
 | 
						|
  socklen_t addr_len = sizeof (nladdr);
 | 
						|
  if (__getsockname (h->fd, (struct sockaddr *) &nladdr, &addr_len) < 0)
 | 
						|
    goto close_and_out;
 | 
						|
  h->pid = nladdr.nl_pid;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* We know the number of RTM_NEWLINK entries, so we reserve the first
 | 
						|
   # of entries for this type. All RTM_NEWADDR entries have an index
 | 
						|
   pointer to the RTM_NEWLINK entry.  To find the entry, create
 | 
						|
   a table to map kernel index entries to our index numbers.
 | 
						|
   Since we get at first all RTM_NEWLINK entries, it can never happen
 | 
						|
   that a RTM_NEWADDR index is not known to this map.  */
 | 
						|
static int
 | 
						|
internal_function
 | 
						|
map_newlink (int index, struct ifaddrs_storage *ifas, int *map, int max)
 | 
						|
{
 | 
						|
  int i;
 | 
						|
 | 
						|
  for (i = 0; i < max; i++)
 | 
						|
    {
 | 
						|
      if (map[i] == -1)
 | 
						|
	{
 | 
						|
	  map[i] = index;
 | 
						|
	  if (i > 0)
 | 
						|
	    ifas[i - 1].ifa.ifa_next = &ifas[i].ifa;
 | 
						|
	  return i;
 | 
						|
	}
 | 
						|
      else if (map[i] == index)
 | 
						|
	return i;
 | 
						|
    }
 | 
						|
 | 
						|
  /* This means interfaces changed between the reading of the
 | 
						|
     RTM_GETLINK and RTM_GETADDR information.  We have to repeat
 | 
						|
     everything.  */
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Create a linked list of `struct ifaddrs' structures, one for each
 | 
						|
   network interface on the host machine.  If successful, store the
 | 
						|
   list in *IFAP and return 0.  On errors, return -1 and set `errno'.  */
 | 
						|
static int
 | 
						|
getifaddrs_internal (struct ifaddrs **ifap)
 | 
						|
{
 | 
						|
  struct netlink_handle nh = { 0, 0, 0, NULL, NULL };
 | 
						|
  struct netlink_res *nlp;
 | 
						|
  struct ifaddrs_storage *ifas;
 | 
						|
  unsigned int i, newlink, newaddr, newaddr_idx;
 | 
						|
  int *map_newlink_data;
 | 
						|
  size_t ifa_data_size = 0;  /* Size to allocate for all ifa_data.  */
 | 
						|
  char *ifa_data_ptr;	/* Pointer to the unused part of memory for
 | 
						|
				ifa_data.  */
 | 
						|
  int result = 0;
 | 
						|
 | 
						|
  *ifap = NULL;
 | 
						|
 | 
						|
  if (__netlink_open (&nh) < 0)
 | 
						|
    return -1;
 | 
						|
 | 
						|
  /* Tell the kernel that we wish to get a list of all
 | 
						|
     active interfaces, collect all data for every interface.  */
 | 
						|
  if (__netlink_request (&nh, RTM_GETLINK) < 0)
 | 
						|
    {
 | 
						|
      result = -1;
 | 
						|
      goto exit_free;
 | 
						|
    }
 | 
						|
 | 
						|
  /* Now ask the kernel for all addresses which are assigned
 | 
						|
     to an interface and collect all data for every interface.
 | 
						|
     Since we store the addresses after the interfaces in the
 | 
						|
     list, we will later always find the interface before the
 | 
						|
     corresponding addresses.  */
 | 
						|
  ++nh.seq;
 | 
						|
  if (__netlink_request (&nh, RTM_GETADDR) < 0)
 | 
						|
    {
 | 
						|
      result = -1;
 | 
						|
      goto exit_free;
 | 
						|
    }
 | 
						|
 | 
						|
  /* Count all RTM_NEWLINK and RTM_NEWADDR entries to allocate
 | 
						|
     enough memory.  */
 | 
						|
  newlink = newaddr = 0;
 | 
						|
  for (nlp = nh.nlm_list; nlp; nlp = nlp->next)
 | 
						|
    {
 | 
						|
      struct nlmsghdr *nlh;
 | 
						|
      size_t size = nlp->size;
 | 
						|
 | 
						|
      if (nlp->nlh == NULL)
 | 
						|
	continue;
 | 
						|
 | 
						|
      /* Walk through all entries we got from the kernel and look, which
 | 
						|
	 message type they contain.  */
 | 
						|
      for (nlh = nlp->nlh; NLMSG_OK (nlh, size); nlh = NLMSG_NEXT (nlh, size))
 | 
						|
	{
 | 
						|
	  /* Check if the message is what we want.  */
 | 
						|
	  if ((pid_t) nlh->nlmsg_pid != nh.pid || nlh->nlmsg_seq != nlp->seq)
 | 
						|
	    continue;
 | 
						|
 | 
						|
	  if (nlh->nlmsg_type == NLMSG_DONE)
 | 
						|
	    break;		/* ok */
 | 
						|
 | 
						|
	  if (nlh->nlmsg_type == RTM_NEWLINK)
 | 
						|
	    {
 | 
						|
	      /* A RTM_NEWLINK message can have IFLA_STATS data. We need to
 | 
						|
		 know the size before creating the list to allocate enough
 | 
						|
		 memory.  */
 | 
						|
	      struct ifinfomsg *ifim = (struct ifinfomsg *) NLMSG_DATA (nlh);
 | 
						|
	      struct rtattr *rta = IFLA_RTA (ifim);
 | 
						|
	      size_t rtasize = IFLA_PAYLOAD (nlh);
 | 
						|
 | 
						|
	      while (RTA_OK (rta, rtasize))
 | 
						|
		{
 | 
						|
		  size_t rta_payload = RTA_PAYLOAD (rta);
 | 
						|
 | 
						|
		  if (rta->rta_type == IFLA_STATS)
 | 
						|
		    {
 | 
						|
		      ifa_data_size += rta_payload;
 | 
						|
		      break;
 | 
						|
		    }
 | 
						|
		  else
 | 
						|
		    rta = RTA_NEXT (rta, rtasize);
 | 
						|
		}
 | 
						|
	      ++newlink;
 | 
						|
	    }
 | 
						|
	  else if (nlh->nlmsg_type == RTM_NEWADDR)
 | 
						|
	    ++newaddr;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
  /* Return if no interface is up.  */
 | 
						|
  if ((newlink + newaddr) == 0)
 | 
						|
    goto exit_free;
 | 
						|
 | 
						|
  /* Allocate memory for all entries we have and initialize next
 | 
						|
     pointer.  */
 | 
						|
  ifas = (struct ifaddrs_storage *) calloc (1,
 | 
						|
					    (newlink + newaddr)
 | 
						|
					    * sizeof (struct ifaddrs_storage)
 | 
						|
					    + ifa_data_size);
 | 
						|
  if (ifas == NULL)
 | 
						|
    {
 | 
						|
      result = -1;
 | 
						|
      goto exit_free;
 | 
						|
    }
 | 
						|
 | 
						|
  /* Table for mapping kernel index to entry in our list.  */
 | 
						|
  map_newlink_data = alloca (newlink * sizeof (int));
 | 
						|
  memset (map_newlink_data, '\xff', newlink * sizeof (int));
 | 
						|
 | 
						|
  ifa_data_ptr = (char *) &ifas[newlink + newaddr];
 | 
						|
  newaddr_idx = 0;		/* Counter for newaddr index.  */
 | 
						|
 | 
						|
  /* Walk through the list of data we got from the kernel.  */
 | 
						|
  for (nlp = nh.nlm_list; nlp; nlp = nlp->next)
 | 
						|
    {
 | 
						|
      struct nlmsghdr *nlh;
 | 
						|
      size_t size = nlp->size;
 | 
						|
 | 
						|
      if (nlp->nlh == NULL)
 | 
						|
	continue;
 | 
						|
 | 
						|
      /* Walk through one message and look at the type: If it is our
 | 
						|
	 message, we need RTM_NEWLINK/RTM_NEWADDR and stop if we reach
 | 
						|
	 the end or we find the end marker (in this case we ignore the
 | 
						|
	 following data.  */
 | 
						|
      for (nlh = nlp->nlh; NLMSG_OK (nlh, size); nlh = NLMSG_NEXT (nlh, size))
 | 
						|
	{
 | 
						|
	  int ifa_index = 0;
 | 
						|
 | 
						|
	  /* Check if the message is the one we want */
 | 
						|
	  if ((pid_t) nlh->nlmsg_pid != nh.pid || nlh->nlmsg_seq != nlp->seq)
 | 
						|
	    continue;
 | 
						|
 | 
						|
	  if (nlh->nlmsg_type == NLMSG_DONE)
 | 
						|
	    break;		/* ok */
 | 
						|
 | 
						|
	  if (nlh->nlmsg_type == RTM_NEWLINK)
 | 
						|
	    {
 | 
						|
	      /* We found a new interface. Now extract everything from the
 | 
						|
		 interface data we got and need.  */
 | 
						|
	      struct ifinfomsg *ifim = (struct ifinfomsg *) NLMSG_DATA (nlh);
 | 
						|
	      struct rtattr *rta = IFLA_RTA (ifim);
 | 
						|
	      size_t rtasize = IFLA_PAYLOAD (nlh);
 | 
						|
 | 
						|
	      /* Interfaces are stored in the first "newlink" entries
 | 
						|
		 of our list, starting in the order as we got from the
 | 
						|
		 kernel.  */
 | 
						|
	      ifa_index = map_newlink (ifim->ifi_index - 1, ifas,
 | 
						|
				       map_newlink_data, newlink);
 | 
						|
	      if (__glibc_unlikely (ifa_index == -1))
 | 
						|
		{
 | 
						|
		try_again:
 | 
						|
		  result = -EAGAIN;
 | 
						|
		  free (ifas);
 | 
						|
		  goto exit_free;
 | 
						|
		}
 | 
						|
	      ifas[ifa_index].ifa.ifa_flags = ifim->ifi_flags;
 | 
						|
 | 
						|
	      while (RTA_OK (rta, rtasize))
 | 
						|
		{
 | 
						|
		  char *rta_data = RTA_DATA (rta);
 | 
						|
		  size_t rta_payload = RTA_PAYLOAD (rta);
 | 
						|
 | 
						|
		  switch (rta->rta_type)
 | 
						|
		    {
 | 
						|
		    case IFLA_ADDRESS:
 | 
						|
		      if (rta_payload <= sizeof (ifas[ifa_index].addr))
 | 
						|
			{
 | 
						|
			  ifas[ifa_index].addr.sl.sll_family = AF_PACKET;
 | 
						|
			  memcpy (ifas[ifa_index].addr.sl.sll_addr,
 | 
						|
				  (char *) rta_data, rta_payload);
 | 
						|
			  ifas[ifa_index].addr.sl.sll_halen = rta_payload;
 | 
						|
			  ifas[ifa_index].addr.sl.sll_ifindex
 | 
						|
			    = ifim->ifi_index;
 | 
						|
			  ifas[ifa_index].addr.sl.sll_hatype = ifim->ifi_type;
 | 
						|
 | 
						|
			  ifas[ifa_index].ifa.ifa_addr
 | 
						|
			    = &ifas[ifa_index].addr.sa;
 | 
						|
			}
 | 
						|
		      break;
 | 
						|
 | 
						|
		    case IFLA_BROADCAST:
 | 
						|
		      if (rta_payload <= sizeof (ifas[ifa_index].broadaddr))
 | 
						|
			{
 | 
						|
			  ifas[ifa_index].broadaddr.sl.sll_family = AF_PACKET;
 | 
						|
			  memcpy (ifas[ifa_index].broadaddr.sl.sll_addr,
 | 
						|
				  (char *) rta_data, rta_payload);
 | 
						|
			  ifas[ifa_index].broadaddr.sl.sll_halen = rta_payload;
 | 
						|
			  ifas[ifa_index].broadaddr.sl.sll_ifindex
 | 
						|
			    = ifim->ifi_index;
 | 
						|
			  ifas[ifa_index].broadaddr.sl.sll_hatype
 | 
						|
			    = ifim->ifi_type;
 | 
						|
 | 
						|
			  ifas[ifa_index].ifa.ifa_broadaddr
 | 
						|
			    = &ifas[ifa_index].broadaddr.sa;
 | 
						|
			}
 | 
						|
		      break;
 | 
						|
 | 
						|
		    case IFLA_IFNAME:	/* Name of Interface */
 | 
						|
		      if ((rta_payload + 1) <= sizeof (ifas[ifa_index].name))
 | 
						|
			{
 | 
						|
			  ifas[ifa_index].ifa.ifa_name = ifas[ifa_index].name;
 | 
						|
			  *(char *) __mempcpy (ifas[ifa_index].name, rta_data,
 | 
						|
					       rta_payload) = '\0';
 | 
						|
			}
 | 
						|
		      break;
 | 
						|
 | 
						|
		    case IFLA_STATS:	/* Statistics of Interface */
 | 
						|
		      ifas[ifa_index].ifa.ifa_data = ifa_data_ptr;
 | 
						|
		      ifa_data_ptr += rta_payload;
 | 
						|
		      memcpy (ifas[ifa_index].ifa.ifa_data, rta_data,
 | 
						|
			      rta_payload);
 | 
						|
		      break;
 | 
						|
 | 
						|
		    case IFLA_UNSPEC:
 | 
						|
		      break;
 | 
						|
		    case IFLA_MTU:
 | 
						|
		      break;
 | 
						|
		    case IFLA_LINK:
 | 
						|
		      break;
 | 
						|
		    case IFLA_QDISC:
 | 
						|
		      break;
 | 
						|
		    default:
 | 
						|
		      break;
 | 
						|
		    }
 | 
						|
 | 
						|
		  rta = RTA_NEXT (rta, rtasize);
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	  else if (nlh->nlmsg_type == RTM_NEWADDR)
 | 
						|
	    {
 | 
						|
	      struct ifaddrmsg *ifam = (struct ifaddrmsg *) NLMSG_DATA (nlh);
 | 
						|
	      struct rtattr *rta = IFA_RTA (ifam);
 | 
						|
	      size_t rtasize = IFA_PAYLOAD (nlh);
 | 
						|
 | 
						|
	      /* New Addresses are stored in the order we got them from
 | 
						|
		 the kernel after the interfaces. Theoretically it is possible
 | 
						|
		 that we have holes in the interface part of the list,
 | 
						|
		 but we always have already the interface for this address.  */
 | 
						|
	      ifa_index = newlink + newaddr_idx;
 | 
						|
	      int idx = map_newlink (ifam->ifa_index - 1, ifas,
 | 
						|
				     map_newlink_data, newlink);
 | 
						|
	      if (__glibc_unlikely (idx == -1))
 | 
						|
		goto try_again;
 | 
						|
	      ifas[ifa_index].ifa.ifa_flags = ifas[idx].ifa.ifa_flags;
 | 
						|
	      if (ifa_index > 0)
 | 
						|
		ifas[ifa_index - 1].ifa.ifa_next = &ifas[ifa_index].ifa;
 | 
						|
	      ++newaddr_idx;
 | 
						|
 | 
						|
	      while (RTA_OK (rta, rtasize))
 | 
						|
		{
 | 
						|
		  char *rta_data = RTA_DATA (rta);
 | 
						|
		  size_t rta_payload = RTA_PAYLOAD (rta);
 | 
						|
 | 
						|
		  switch (rta->rta_type)
 | 
						|
		    {
 | 
						|
		    case IFA_ADDRESS:
 | 
						|
		      {
 | 
						|
			struct sockaddr *sa;
 | 
						|
 | 
						|
			if (ifas[ifa_index].ifa.ifa_addr != NULL)
 | 
						|
			  {
 | 
						|
			    /* In a point-to-poing network IFA_ADDRESS
 | 
						|
			       contains the destination address, local
 | 
						|
			       address is supplied in IFA_LOCAL attribute.
 | 
						|
			       destination address and broadcast address
 | 
						|
			       are stored in an union, so it doesn't matter
 | 
						|
			       which name we use.  */
 | 
						|
			    ifas[ifa_index].ifa.ifa_broadaddr
 | 
						|
			      = &ifas[ifa_index].broadaddr.sa;
 | 
						|
			    sa = &ifas[ifa_index].broadaddr.sa;
 | 
						|
			  }
 | 
						|
			else
 | 
						|
			  {
 | 
						|
			    ifas[ifa_index].ifa.ifa_addr
 | 
						|
			      = &ifas[ifa_index].addr.sa;
 | 
						|
			    sa = &ifas[ifa_index].addr.sa;
 | 
						|
			  }
 | 
						|
 | 
						|
			sa->sa_family = ifam->ifa_family;
 | 
						|
 | 
						|
			switch (ifam->ifa_family)
 | 
						|
			  {
 | 
						|
			  case AF_INET:
 | 
						|
			    /* Size must match that of an address for IPv4.  */
 | 
						|
			    if (rta_payload == 4)
 | 
						|
			      memcpy (&((struct sockaddr_in *) sa)->sin_addr,
 | 
						|
				      rta_data, rta_payload);
 | 
						|
			    break;
 | 
						|
 | 
						|
			  case AF_INET6:
 | 
						|
			    /* Size must match that of an address for IPv6.  */
 | 
						|
			    if (rta_payload == 16)
 | 
						|
			      {
 | 
						|
				memcpy (&((struct sockaddr_in6 *) sa)->sin6_addr,
 | 
						|
					rta_data, rta_payload);
 | 
						|
				if (IN6_IS_ADDR_LINKLOCAL (rta_data)
 | 
						|
				    || IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
 | 
						|
				  ((struct sockaddr_in6 *) sa)->sin6_scope_id
 | 
						|
				    = ifam->ifa_index;
 | 
						|
			      }
 | 
						|
			    break;
 | 
						|
 | 
						|
			  default:
 | 
						|
			    if (rta_payload <= sizeof (ifas[ifa_index].addr))
 | 
						|
			      memcpy (sa->sa_data, rta_data, rta_payload);
 | 
						|
			    break;
 | 
						|
			  }
 | 
						|
		      }
 | 
						|
		      break;
 | 
						|
 | 
						|
		    case IFA_LOCAL:
 | 
						|
		      if (ifas[ifa_index].ifa.ifa_addr != NULL)
 | 
						|
			{
 | 
						|
			  /* If ifa_addr is set and we get IFA_LOCAL,
 | 
						|
			     assume we have a point-to-point network.
 | 
						|
			     Move address to correct field.  */
 | 
						|
			  ifas[ifa_index].broadaddr = ifas[ifa_index].addr;
 | 
						|
			  ifas[ifa_index].ifa.ifa_broadaddr
 | 
						|
			    = &ifas[ifa_index].broadaddr.sa;
 | 
						|
			  memset (&ifas[ifa_index].addr, '\0',
 | 
						|
				  sizeof (ifas[ifa_index].addr));
 | 
						|
			}
 | 
						|
 | 
						|
		      ifas[ifa_index].ifa.ifa_addr = &ifas[ifa_index].addr.sa;
 | 
						|
		      ifas[ifa_index].ifa.ifa_addr->sa_family
 | 
						|
			= ifam->ifa_family;
 | 
						|
 | 
						|
		      switch (ifam->ifa_family)
 | 
						|
			{
 | 
						|
			case AF_INET:
 | 
						|
			  /* Size must match that of an address for IPv4.  */
 | 
						|
			  if (rta_payload == 4)
 | 
						|
			    memcpy (&ifas[ifa_index].addr.s4.sin_addr,
 | 
						|
				  rta_data, rta_payload);
 | 
						|
			  break;
 | 
						|
 | 
						|
			case AF_INET6:
 | 
						|
			  /* Size must match that of an address for IPv6.  */
 | 
						|
			  if (rta_payload == 16)
 | 
						|
			    {
 | 
						|
			      memcpy (&ifas[ifa_index].addr.s6.sin6_addr,
 | 
						|
				      rta_data, rta_payload);
 | 
						|
			      if (IN6_IS_ADDR_LINKLOCAL (rta_data)
 | 
						|
				  || IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
 | 
						|
				ifas[ifa_index].addr.s6.sin6_scope_id =
 | 
						|
				  ifam->ifa_index;
 | 
						|
			    }
 | 
						|
			  break;
 | 
						|
 | 
						|
			default:
 | 
						|
			  if (rta_payload <= sizeof (ifas[ifa_index].addr))
 | 
						|
			    memcpy (ifas[ifa_index].addr.sa.sa_data,
 | 
						|
				    rta_data, rta_payload);
 | 
						|
			  break;
 | 
						|
			}
 | 
						|
		      break;
 | 
						|
 | 
						|
		    case IFA_BROADCAST:
 | 
						|
		      /* We get IFA_BROADCAST, so IFA_LOCAL was too much.  */
 | 
						|
		      if (ifas[ifa_index].ifa.ifa_broadaddr != NULL)
 | 
						|
			memset (&ifas[ifa_index].broadaddr, '\0',
 | 
						|
				sizeof (ifas[ifa_index].broadaddr));
 | 
						|
 | 
						|
		      ifas[ifa_index].ifa.ifa_broadaddr
 | 
						|
			= &ifas[ifa_index].broadaddr.sa;
 | 
						|
		      ifas[ifa_index].ifa.ifa_broadaddr->sa_family
 | 
						|
			= ifam->ifa_family;
 | 
						|
 | 
						|
		      switch (ifam->ifa_family)
 | 
						|
			{
 | 
						|
			case AF_INET:
 | 
						|
			  /* Size must match that of an address for IPv4.  */
 | 
						|
			  if (rta_payload == 4)
 | 
						|
			    memcpy (&ifas[ifa_index].broadaddr.s4.sin_addr,
 | 
						|
				    rta_data, rta_payload);
 | 
						|
			  break;
 | 
						|
 | 
						|
			case AF_INET6:
 | 
						|
			  /* Size must match that of an address for IPv6.  */
 | 
						|
			  if (rta_payload == 16)
 | 
						|
			    {
 | 
						|
			      memcpy (&ifas[ifa_index].broadaddr.s6.sin6_addr,
 | 
						|
				      rta_data, rta_payload);
 | 
						|
			      if (IN6_IS_ADDR_LINKLOCAL (rta_data)
 | 
						|
				  || IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
 | 
						|
				ifas[ifa_index].broadaddr.s6.sin6_scope_id
 | 
						|
				  = ifam->ifa_index;
 | 
						|
			    }
 | 
						|
			  break;
 | 
						|
 | 
						|
			default:
 | 
						|
			  if (rta_payload <= sizeof (ifas[ifa_index].addr))
 | 
						|
			    memcpy (&ifas[ifa_index].broadaddr.sa.sa_data,
 | 
						|
				    rta_data, rta_payload);
 | 
						|
			  break;
 | 
						|
			}
 | 
						|
		      break;
 | 
						|
 | 
						|
		    case IFA_LABEL:
 | 
						|
		      if (rta_payload + 1 <= sizeof (ifas[ifa_index].name))
 | 
						|
			{
 | 
						|
			  ifas[ifa_index].ifa.ifa_name = ifas[ifa_index].name;
 | 
						|
			  *(char *) __mempcpy (ifas[ifa_index].name, rta_data,
 | 
						|
					       rta_payload) = '\0';
 | 
						|
			}
 | 
						|
		      else
 | 
						|
			abort ();
 | 
						|
		      break;
 | 
						|
 | 
						|
		    case IFA_UNSPEC:
 | 
						|
		      break;
 | 
						|
		    case IFA_CACHEINFO:
 | 
						|
		      break;
 | 
						|
		    default:
 | 
						|
		      break;
 | 
						|
		    }
 | 
						|
 | 
						|
		  rta = RTA_NEXT (rta, rtasize);
 | 
						|
		}
 | 
						|
 | 
						|
	      /* If we didn't get the interface name with the
 | 
						|
		 address, use the name from the interface entry.  */
 | 
						|
	      if (ifas[ifa_index].ifa.ifa_name == NULL)
 | 
						|
		{
 | 
						|
		  int idx = map_newlink (ifam->ifa_index - 1, ifas,
 | 
						|
					 map_newlink_data, newlink);
 | 
						|
		  if (__glibc_unlikely (idx == -1))
 | 
						|
		    goto try_again;
 | 
						|
		  ifas[ifa_index].ifa.ifa_name = ifas[idx].ifa.ifa_name;
 | 
						|
		}
 | 
						|
 | 
						|
	      /* Calculate the netmask.  */
 | 
						|
	      if (ifas[ifa_index].ifa.ifa_addr
 | 
						|
		  && ifas[ifa_index].ifa.ifa_addr->sa_family != AF_UNSPEC
 | 
						|
		  && ifas[ifa_index].ifa.ifa_addr->sa_family != AF_PACKET)
 | 
						|
		{
 | 
						|
		  uint32_t max_prefixlen = 0;
 | 
						|
		  char *cp = NULL;
 | 
						|
 | 
						|
		  ifas[ifa_index].ifa.ifa_netmask
 | 
						|
		    = &ifas[ifa_index].netmask.sa;
 | 
						|
 | 
						|
		  switch (ifas[ifa_index].ifa.ifa_addr->sa_family)
 | 
						|
		    {
 | 
						|
		    case AF_INET:
 | 
						|
		      cp = (char *) &ifas[ifa_index].netmask.s4.sin_addr;
 | 
						|
		      max_prefixlen = 32;
 | 
						|
		      break;
 | 
						|
 | 
						|
		    case AF_INET6:
 | 
						|
		      cp = (char *) &ifas[ifa_index].netmask.s6.sin6_addr;
 | 
						|
		      max_prefixlen = 128;
 | 
						|
		      break;
 | 
						|
		    }
 | 
						|
 | 
						|
		  ifas[ifa_index].ifa.ifa_netmask->sa_family
 | 
						|
		    = ifas[ifa_index].ifa.ifa_addr->sa_family;
 | 
						|
 | 
						|
		  if (cp != NULL)
 | 
						|
		    {
 | 
						|
		      unsigned int preflen;
 | 
						|
 | 
						|
		      if (ifam->ifa_prefixlen > max_prefixlen)
 | 
						|
			preflen = max_prefixlen;
 | 
						|
		      else
 | 
						|
			preflen = ifam->ifa_prefixlen;
 | 
						|
 | 
						|
		      for (i = 0; i < preflen / 8; i++)
 | 
						|
			*cp++ = 0xff;
 | 
						|
		      if (preflen % 8)
 | 
						|
			*cp = 0xff << (8 - preflen % 8);
 | 
						|
		    }
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
  assert (ifa_data_ptr <= (char *) &ifas[newlink + newaddr] + ifa_data_size);
 | 
						|
 | 
						|
  if (newaddr_idx > 0)
 | 
						|
    {
 | 
						|
      for (i = 0; i < newlink; ++i)
 | 
						|
	if (map_newlink_data[i] == -1)
 | 
						|
	  {
 | 
						|
	    /* We have fewer links then we anticipated.  Adjust the
 | 
						|
	       forward pointer to the first address entry.  */
 | 
						|
	    ifas[i - 1].ifa.ifa_next = &ifas[newlink].ifa;
 | 
						|
	  }
 | 
						|
 | 
						|
      if (i == 0 && newlink > 0)
 | 
						|
	/* No valid link, but we allocated memory.  We have to
 | 
						|
	   populate the first entry.  */
 | 
						|
	memmove (ifas, &ifas[newlink], sizeof (struct ifaddrs_storage));
 | 
						|
    }
 | 
						|
 | 
						|
  *ifap = &ifas[0].ifa;
 | 
						|
 | 
						|
 exit_free:
 | 
						|
  __netlink_free_handle (&nh);
 | 
						|
  __netlink_close (&nh);
 | 
						|
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Create a linked list of `struct ifaddrs' structures, one for each
 | 
						|
   network interface on the host machine.  If successful, store the
 | 
						|
   list in *IFAP and return 0.  On errors, return -1 and set `errno'.  */
 | 
						|
int
 | 
						|
__getifaddrs (struct ifaddrs **ifap)
 | 
						|
{
 | 
						|
  int res;
 | 
						|
 | 
						|
  do
 | 
						|
    res = getifaddrs_internal (ifap);
 | 
						|
  while (res == -EAGAIN);
 | 
						|
 | 
						|
  return res;
 | 
						|
}
 | 
						|
weak_alias (__getifaddrs, getifaddrs)
 | 
						|
libc_hidden_weak (getifaddrs)
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
__freeifaddrs (struct ifaddrs *ifa)
 | 
						|
{
 | 
						|
  free (ifa);
 | 
						|
}
 | 
						|
weak_alias (__freeifaddrs, freeifaddrs)
 | 
						|
libc_hidden_weak (freeifaddrs)
 |