mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-31 22:10:34 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			2844 lines
		
	
	
		
			87 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2844 lines
		
	
	
		
			87 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Run time dynamic linker.
 | ||
|    Copyright (C) 1995-2024 Free Software Foundation, Inc.
 | ||
|    This file is part of the GNU C Library.
 | ||
| 
 | ||
|    The GNU C Library is free software; you can redistribute it and/or
 | ||
|    modify it under the terms of the GNU Lesser General Public
 | ||
|    License as published by the Free Software Foundation; either
 | ||
|    version 2.1 of the License, or (at your option) any later version.
 | ||
| 
 | ||
|    The GNU C Library is distributed in the hope that it will be useful,
 | ||
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | ||
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | ||
|    Lesser General Public License for more details.
 | ||
| 
 | ||
|    You should have received a copy of the GNU Lesser General Public
 | ||
|    License along with the GNU C Library; if not, see
 | ||
|    <https://www.gnu.org/licenses/>.  */
 | ||
| 
 | ||
| #include <errno.h>
 | ||
| #include <dlfcn.h>
 | ||
| #include <fcntl.h>
 | ||
| #include <stdbool.h>
 | ||
| #include <stdlib.h>
 | ||
| #include <string.h>
 | ||
| #include <unistd.h>
 | ||
| #include <sys/mman.h>
 | ||
| #include <sys/param.h>
 | ||
| #include <sys/stat.h>
 | ||
| #include <ldsodefs.h>
 | ||
| #include <_itoa.h>
 | ||
| #include <entry.h>
 | ||
| #include <fpu_control.h>
 | ||
| #include <hp-timing.h>
 | ||
| #include <libc-lock.h>
 | ||
| #include <unsecvars.h>
 | ||
| #include <dl-cache.h>
 | ||
| #include <dl-osinfo.h>
 | ||
| #include <dl-procinfo.h>
 | ||
| #include <dl-prop.h>
 | ||
| #include <dl-vdso.h>
 | ||
| #include <dl-vdso-setup.h>
 | ||
| #include <tls.h>
 | ||
| #include <stap-probe.h>
 | ||
| #include <stackinfo.h>
 | ||
| #include <not-cancel.h>
 | ||
| #include <array_length.h>
 | ||
| #include <libc-early-init.h>
 | ||
| #include <dl-main.h>
 | ||
| #include <gnu/lib-names.h>
 | ||
| #include <dl-tunables.h>
 | ||
| #include <get-dynamic-info.h>
 | ||
| #include <dl-execve.h>
 | ||
| #include <dl-find_object.h>
 | ||
| #include <dl-audit-check.h>
 | ||
| #include <dl-call_tls_init_tp.h>
 | ||
| 
 | ||
| #include <assert.h>
 | ||
| 
 | ||
| /* This #define produces dynamic linking inline functions for
 | ||
|    bootstrap relocation instead of general-purpose relocation.
 | ||
|    Since ld.so must not have any undefined symbols the result
 | ||
|    is trivial: always the map of ld.so itself.  */
 | ||
| #define RTLD_BOOTSTRAP
 | ||
| #define RESOLVE_MAP(map, scope, sym, version, flags) map
 | ||
| #include "dynamic-link.h"
 | ||
| 
 | ||
| /* Must include after <dl-machine.h> for DT_MIPS definition.  */
 | ||
| #include <dl-debug.h>
 | ||
| 
 | ||
| /* Only enables rtld profiling for architectures which provides non generic
 | ||
|    hp-timing support.  The generic support requires either syscall
 | ||
|    (clock_gettime), which will incur in extra overhead on loading time.
 | ||
|    Using vDSO is also an option, but it will require extra support on loader
 | ||
|    to setup the vDSO pointer before its usage.  */
 | ||
| #if HP_TIMING_INLINE
 | ||
| # define RLTD_TIMING_DECLARE(var, classifier,...) \
 | ||
|   classifier hp_timing_t var __VA_ARGS__
 | ||
| # define RTLD_TIMING_VAR(var)        RLTD_TIMING_DECLARE (var, )
 | ||
| # define RTLD_TIMING_SET(var, value) (var) = (value)
 | ||
| # define RTLD_TIMING_REF(var)        &(var)
 | ||
| 
 | ||
| static inline void
 | ||
| rtld_timer_start (hp_timing_t *var)
 | ||
| {
 | ||
|   HP_TIMING_NOW (*var);
 | ||
| }
 | ||
| 
 | ||
| static inline void
 | ||
| rtld_timer_stop (hp_timing_t *var, hp_timing_t start)
 | ||
| {
 | ||
|   hp_timing_t stop;
 | ||
|   HP_TIMING_NOW (stop);
 | ||
|   HP_TIMING_DIFF (*var, start, stop);
 | ||
| }
 | ||
| 
 | ||
| static inline void
 | ||
| rtld_timer_accum (hp_timing_t *sum, hp_timing_t start)
 | ||
| {
 | ||
|   hp_timing_t stop;
 | ||
|   rtld_timer_stop (&stop, start);
 | ||
|   HP_TIMING_ACCUM_NT(*sum, stop);
 | ||
| }
 | ||
| #else
 | ||
| # define RLTD_TIMING_DECLARE(var, classifier...)
 | ||
| # define RTLD_TIMING_SET(var, value)
 | ||
| # define RTLD_TIMING_VAR(var)
 | ||
| # define RTLD_TIMING_REF(var)			 0
 | ||
| # define rtld_timer_start(var)
 | ||
| # define rtld_timer_stop(var, start)
 | ||
| # define rtld_timer_accum(sum, start)
 | ||
| #endif
 | ||
| 
 | ||
| /* Avoid PLT use for our local calls at startup.  */
 | ||
| extern __typeof (__mempcpy) __mempcpy attribute_hidden;
 | ||
| 
 | ||
| /* GCC has mental blocks about _exit.  */
 | ||
| extern __typeof (_exit) exit_internal asm ("_exit") attribute_hidden;
 | ||
| #define _exit exit_internal
 | ||
| 
 | ||
| /* Helper function to handle errors while resolving symbols.  */
 | ||
| static void print_unresolved (int errcode, const char *objname,
 | ||
| 			      const char *errsting);
 | ||
| 
 | ||
| /* Helper function to handle errors when a version is missing.  */
 | ||
| static void print_missing_version (int errcode, const char *objname,
 | ||
| 				   const char *errsting);
 | ||
| 
 | ||
| /* Print the various times we collected.  */
 | ||
| static void print_statistics (const hp_timing_t *total_timep);
 | ||
| 
 | ||
| /* Creates an empty audit list.  */
 | ||
| static void audit_list_init (struct audit_list *);
 | ||
| 
 | ||
| /* Add a string to the end of the audit list, for later parsing.  Must
 | ||
|    not be called after audit_list_next.  */
 | ||
| static void audit_list_add_string (struct audit_list *, const char *);
 | ||
| 
 | ||
| /* Add the audit strings from the link map, found in the dynamic
 | ||
|    segment at TG (either DT_AUDIT and DT_DEPAUDIT).  Must be called
 | ||
|    before audit_list_next.  */
 | ||
| static void audit_list_add_dynamic_tag (struct audit_list *,
 | ||
| 					struct link_map *,
 | ||
| 					unsigned int tag);
 | ||
| 
 | ||
| /* Extract the next audit module from the audit list.  Only modules
 | ||
|    for which dso_name_valid_for_suid is true are returned.  Must be
 | ||
|    called after all the audit_list_add_string,
 | ||
|    audit_list_add_dynamic_tags calls.  */
 | ||
| static const char *audit_list_next (struct audit_list *);
 | ||
| 
 | ||
| /* Initialize *STATE with the defaults.  */
 | ||
| static void dl_main_state_init (struct dl_main_state *state);
 | ||
| 
 | ||
| /* Process all environments variables the dynamic linker must recognize.
 | ||
|    Since all of them start with `LD_' we are a bit smarter while finding
 | ||
|    all the entries.  */
 | ||
| extern char **_environ attribute_hidden;
 | ||
| static void process_envvars (struct dl_main_state *state);
 | ||
| 
 | ||
| int _dl_argc attribute_relro attribute_hidden;
 | ||
| char **_dl_argv attribute_relro = NULL;
 | ||
| rtld_hidden_data_def (_dl_argv)
 | ||
| 
 | ||
| #ifndef THREAD_SET_STACK_GUARD
 | ||
| /* Only exported for architectures that don't store the stack guard canary
 | ||
|    in thread local area.  */
 | ||
| uintptr_t __stack_chk_guard attribute_relro;
 | ||
| #endif
 | ||
| 
 | ||
| /* Only exported for architectures that don't store the pointer guard
 | ||
|    value in thread local area.  */
 | ||
| uintptr_t __pointer_chk_guard_local attribute_relro attribute_hidden;
 | ||
| #ifndef THREAD_SET_POINTER_GUARD
 | ||
| strong_alias (__pointer_chk_guard_local, __pointer_chk_guard)
 | ||
| #endif
 | ||
| 
 | ||
| /* Check that AT_SECURE=0, or that the passed name does not contain
 | ||
|    directories and is not overly long.  Reject empty names
 | ||
|    unconditionally.  */
 | ||
| static bool
 | ||
| dso_name_valid_for_suid (const char *p)
 | ||
| {
 | ||
|   if (__glibc_unlikely (__libc_enable_secure))
 | ||
|     {
 | ||
|       /* Ignore pathnames with directories for AT_SECURE=1
 | ||
| 	 programs, and also skip overlong names.  */
 | ||
|       size_t len = strlen (p);
 | ||
|       if (len >= SECURE_NAME_LIMIT || memchr (p, '/', len) != NULL)
 | ||
| 	return false;
 | ||
|     }
 | ||
|   return *p != '\0';
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| audit_list_init (struct audit_list *list)
 | ||
| {
 | ||
|   list->length = 0;
 | ||
|   list->current_index = 0;
 | ||
|   list->current_tail = NULL;
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| audit_list_add_string (struct audit_list *list, const char *string)
 | ||
| {
 | ||
|   /* Empty strings do not load anything.  */
 | ||
|   if (*string == '\0')
 | ||
|     return;
 | ||
| 
 | ||
|   if (list->length == array_length (list->audit_strings))
 | ||
|     _dl_fatal_printf ("Fatal glibc error: Too many audit modules requested\n");
 | ||
| 
 | ||
|   list->audit_strings[list->length++] = string;
 | ||
| 
 | ||
|   /* Initialize processing of the first string for
 | ||
|      audit_list_next.  */
 | ||
|   if (list->length == 1)
 | ||
|     list->current_tail = string;
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| audit_list_add_dynamic_tag (struct audit_list *list, struct link_map *main_map,
 | ||
| 			    unsigned int tag)
 | ||
| {
 | ||
|   ElfW(Dyn) *info = main_map->l_info[ADDRIDX (tag)];
 | ||
|   const char *strtab = (const char *) D_PTR (main_map, l_info[DT_STRTAB]);
 | ||
|   if (info != NULL)
 | ||
|     audit_list_add_string (list, strtab + info->d_un.d_val);
 | ||
| }
 | ||
| 
 | ||
| static const char *
 | ||
| audit_list_next (struct audit_list *list)
 | ||
| {
 | ||
|   if (list->current_tail == NULL)
 | ||
|     return NULL;
 | ||
| 
 | ||
|   while (true)
 | ||
|     {
 | ||
|       /* Advance to the next string in audit_strings if the current
 | ||
| 	 string has been exhausted.  */
 | ||
|       while (*list->current_tail == '\0')
 | ||
| 	{
 | ||
| 	  ++list->current_index;
 | ||
| 	  if (list->current_index == list->length)
 | ||
| 	    {
 | ||
| 	      list->current_tail = NULL;
 | ||
| 	      return NULL;
 | ||
| 	    }
 | ||
| 	  list->current_tail = list->audit_strings[list->current_index];
 | ||
| 	}
 | ||
| 
 | ||
|       /* Split the in-string audit list at the next colon colon.  */
 | ||
|       size_t len = strcspn (list->current_tail, ":");
 | ||
|       if (len > 0 && len < sizeof (list->fname))
 | ||
| 	{
 | ||
| 	  memcpy (list->fname, list->current_tail, len);
 | ||
| 	  list->fname[len] = '\0';
 | ||
| 	}
 | ||
|       else
 | ||
| 	/* Mark the name as unusable for dso_name_valid_for_suid.  */
 | ||
| 	list->fname[0] = '\0';
 | ||
| 
 | ||
|       /* Skip over the substring and the following delimiter.  */
 | ||
|       list->current_tail += len;
 | ||
|       if (*list->current_tail == ':')
 | ||
| 	++list->current_tail;
 | ||
| 
 | ||
|       /* If the name is valid, return it.  */
 | ||
|       if (dso_name_valid_for_suid (list->fname))
 | ||
| 	return list->fname;
 | ||
| 
 | ||
|       /* Otherwise wrap around to find the next list element. .  */
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Count audit modules before they are loaded so GLRO(dl_naudit)
 | ||
|    is not yet usable.  */
 | ||
| static size_t
 | ||
| audit_list_count (struct audit_list *list)
 | ||
| {
 | ||
|   /* Restore the audit_list iterator state at the end.  */
 | ||
|   const char *saved_tail = list->current_tail;
 | ||
|   size_t naudit = 0;
 | ||
| 
 | ||
|   assert (list->current_index == 0);
 | ||
|   while (audit_list_next (list) != NULL)
 | ||
|     naudit++;
 | ||
|   list->current_tail = saved_tail;
 | ||
|   list->current_index = 0;
 | ||
|   return naudit;
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| dl_main_state_init (struct dl_main_state *state)
 | ||
| {
 | ||
|   audit_list_init (&state->audit_list);
 | ||
|   state->library_path = NULL;
 | ||
|   state->library_path_source = NULL;
 | ||
|   state->preloadlist = NULL;
 | ||
|   state->preloadarg = NULL;
 | ||
|   state->glibc_hwcaps_prepend = NULL;
 | ||
|   state->glibc_hwcaps_mask = NULL;
 | ||
|   state->mode = rtld_mode_normal;
 | ||
|   state->version_info = false;
 | ||
| }
 | ||
| 
 | ||
| #ifndef HAVE_INLINED_SYSCALLS
 | ||
| /* Set nonzero during loading and initialization of executable and
 | ||
|    libraries, cleared before the executable's entry point runs.  This
 | ||
|    must not be initialized to nonzero, because the unused dynamic
 | ||
|    linker loaded in for libc.so's "ld.so.1" dep will provide the
 | ||
|    definition seen by libc.so's initializer; that value must be zero,
 | ||
|    and will be since that dynamic linker's _dl_start and dl_main will
 | ||
|    never be called.  */
 | ||
| int _dl_starting_up = 0;
 | ||
| rtld_hidden_def (_dl_starting_up)
 | ||
| #endif
 | ||
| 
 | ||
| /* This is the structure which defines all variables global to ld.so
 | ||
|    (except those which cannot be added for some reason).  */
 | ||
| struct rtld_global _rtld_global =
 | ||
|   {
 | ||
|     /* Get architecture specific initializer.  */
 | ||
| #include <dl-procruntime.c>
 | ||
|     /* Generally the default presumption without further information is an
 | ||
|      * executable stack but this is not true for all platforms.  */
 | ||
|     ._dl_stack_flags = DEFAULT_STACK_PERMS,
 | ||
| #ifdef _LIBC_REENTRANT
 | ||
|     ._dl_load_lock = _RTLD_LOCK_RECURSIVE_INITIALIZER,
 | ||
|     ._dl_load_write_lock = _RTLD_LOCK_RECURSIVE_INITIALIZER,
 | ||
|     ._dl_load_tls_lock = _RTLD_LOCK_RECURSIVE_INITIALIZER,
 | ||
| #endif
 | ||
|     ._dl_nns = 1,
 | ||
|     ._dl_ns =
 | ||
|     {
 | ||
| #ifdef _LIBC_REENTRANT
 | ||
|       [LM_ID_BASE] = { ._ns_unique_sym_table
 | ||
| 		       = { .lock = _RTLD_LOCK_RECURSIVE_INITIALIZER } }
 | ||
| #endif
 | ||
|     }
 | ||
|   };
 | ||
| /* If we would use strong_alias here the compiler would see a
 | ||
|    non-hidden definition.  This would undo the effect of the previous
 | ||
|    declaration.  So spell out what strong_alias does plus add the
 | ||
|    visibility attribute.  */
 | ||
| extern struct rtld_global _rtld_local
 | ||
|     __attribute__ ((alias ("_rtld_global"), visibility ("hidden")));
 | ||
| 
 | ||
| 
 | ||
| /* This variable is similar to _rtld_local, but all values are
 | ||
|    read-only after relocation.  */
 | ||
| struct rtld_global_ro _rtld_global_ro attribute_relro =
 | ||
|   {
 | ||
|     /* Get architecture specific initializer.  */
 | ||
| #include <dl-procinfo.c>
 | ||
| #ifdef NEED_DL_SYSINFO
 | ||
|     ._dl_sysinfo = DL_SYSINFO_DEFAULT,
 | ||
| #endif
 | ||
|     ._dl_debug_fd = STDERR_FILENO,
 | ||
|     ._dl_lazy = 1,
 | ||
|     ._dl_fpu_control = _FPU_DEFAULT,
 | ||
|     ._dl_pagesize = EXEC_PAGESIZE,
 | ||
|     ._dl_inhibit_cache = 0,
 | ||
|     ._dl_profile_output = "/var/tmp",
 | ||
| 
 | ||
|     /* Function pointers.  */
 | ||
|     ._dl_debug_printf = _dl_debug_printf,
 | ||
|     ._dl_mcount = _dl_mcount,
 | ||
|     ._dl_lookup_symbol_x = _dl_lookup_symbol_x,
 | ||
|     ._dl_open = _dl_open,
 | ||
|     ._dl_close = _dl_close,
 | ||
|     ._dl_catch_error = _dl_catch_error,
 | ||
|     ._dl_error_free = _dl_error_free,
 | ||
|     ._dl_tls_get_addr_soft = _dl_tls_get_addr_soft,
 | ||
|     ._dl_libc_freeres = __rtld_libc_freeres,
 | ||
|   };
 | ||
| /* If we would use strong_alias here the compiler would see a
 | ||
|    non-hidden definition.  This would undo the effect of the previous
 | ||
|    declaration.  So spell out was strong_alias does plus add the
 | ||
|    visibility attribute.  */
 | ||
| extern struct rtld_global_ro _rtld_local_ro
 | ||
|     __attribute__ ((alias ("_rtld_global_ro"), visibility ("hidden")));
 | ||
| 
 | ||
| 
 | ||
| static void dl_main (const ElfW(Phdr) *phdr, ElfW(Word) phnum,
 | ||
| 		     ElfW(Addr) *user_entry, ElfW(auxv_t) *auxv);
 | ||
| 
 | ||
| /* These two variables cannot be moved into .data.rel.ro.  */
 | ||
| static struct libname_list _dl_rtld_libname;
 | ||
| static struct libname_list _dl_rtld_libname2;
 | ||
| 
 | ||
| /* Variable for statistics.  */
 | ||
| RLTD_TIMING_DECLARE (relocate_time, static);
 | ||
| RLTD_TIMING_DECLARE (load_time,     static, attribute_relro);
 | ||
| RLTD_TIMING_DECLARE (start_time,    static, attribute_relro);
 | ||
| 
 | ||
| /* Additional definitions needed by TLS initialization.  */
 | ||
| #ifdef TLS_INIT_HELPER
 | ||
| TLS_INIT_HELPER
 | ||
| #endif
 | ||
| 
 | ||
| /* Helper function for syscall implementation.  */
 | ||
| #ifdef DL_SYSINFO_IMPLEMENTATION
 | ||
| DL_SYSINFO_IMPLEMENTATION
 | ||
| #endif
 | ||
| 
 | ||
| /* Before ld.so is relocated we must not access variables which need
 | ||
|    relocations.  This means variables which are exported.  Variables
 | ||
|    declared as static are fine.  If we can mark a variable hidden this
 | ||
|    is fine, too.  The latter is important here.  We can avoid setting
 | ||
|    up a temporary link map for ld.so if we can mark _rtld_global as
 | ||
|    hidden.  */
 | ||
| #ifndef HIDDEN_VAR_NEEDS_DYNAMIC_RELOC
 | ||
| # define DONT_USE_BOOTSTRAP_MAP	1
 | ||
| #endif
 | ||
| 
 | ||
| #ifdef DONT_USE_BOOTSTRAP_MAP
 | ||
| static ElfW(Addr) _dl_start_final (void *arg);
 | ||
| #else
 | ||
| struct dl_start_final_info
 | ||
| {
 | ||
|   struct link_map l;
 | ||
|   RTLD_TIMING_VAR (start_time);
 | ||
| };
 | ||
| static ElfW(Addr) _dl_start_final (void *arg,
 | ||
| 				   struct dl_start_final_info *info);
 | ||
| #endif
 | ||
| 
 | ||
| /* These are defined magically by the linker.  */
 | ||
| extern const ElfW(Ehdr) __ehdr_start attribute_hidden;
 | ||
| extern char _etext[] attribute_hidden;
 | ||
| extern char _end[] attribute_hidden;
 | ||
| 
 | ||
| 
 | ||
| #ifdef RTLD_START
 | ||
| RTLD_START
 | ||
| #else
 | ||
| # error "sysdeps/MACHINE/dl-machine.h fails to define RTLD_START"
 | ||
| #endif
 | ||
| 
 | ||
| /* This is the second half of _dl_start (below).  It can be inlined safely
 | ||
|    under DONT_USE_BOOTSTRAP_MAP, where it is careful not to make any GOT
 | ||
|    references.  When the tools don't permit us to avoid using a GOT entry
 | ||
|    for _dl_rtld_global (no attribute_hidden support), we must make sure
 | ||
|    this function is not inlined (see below).  */
 | ||
| 
 | ||
| #ifdef DONT_USE_BOOTSTRAP_MAP
 | ||
| static inline ElfW(Addr) __attribute__ ((always_inline))
 | ||
| _dl_start_final (void *arg)
 | ||
| #else
 | ||
| static ElfW(Addr) __attribute__ ((noinline))
 | ||
| _dl_start_final (void *arg, struct dl_start_final_info *info)
 | ||
| #endif
 | ||
| {
 | ||
|   ElfW(Addr) start_addr;
 | ||
| 
 | ||
|   /* Do not use an initializer for these members because it would
 | ||
|      interfere with __rtld_static_init.  */
 | ||
|   GLRO (dl_find_object) = &_dl_find_object;
 | ||
| 
 | ||
|   /* If it hasn't happen yet record the startup time.  */
 | ||
|   rtld_timer_start (&start_time);
 | ||
| #if !defined DONT_USE_BOOTSTRAP_MAP
 | ||
|   RTLD_TIMING_SET (start_time, info->start_time);
 | ||
| #endif
 | ||
| 
 | ||
|   /* Transfer data about ourselves to the permanent link_map structure.  */
 | ||
| #ifndef DONT_USE_BOOTSTRAP_MAP
 | ||
|   GL(dl_rtld_map).l_addr = info->l.l_addr;
 | ||
|   GL(dl_rtld_map).l_ld = info->l.l_ld;
 | ||
|   GL(dl_rtld_map).l_ld_readonly = info->l.l_ld_readonly;
 | ||
|   memcpy (GL(dl_rtld_map).l_info, info->l.l_info,
 | ||
| 	  sizeof GL(dl_rtld_map).l_info);
 | ||
|   GL(dl_rtld_map).l_mach = info->l.l_mach;
 | ||
|   GL(dl_rtld_map).l_relocated = 1;
 | ||
| #endif
 | ||
|   _dl_setup_hash (&GL(dl_rtld_map));
 | ||
|   GL(dl_rtld_map).l_real = &GL(dl_rtld_map);
 | ||
|   GL(dl_rtld_map).l_map_start = (ElfW(Addr)) &__ehdr_start;
 | ||
|   GL(dl_rtld_map).l_map_end = (ElfW(Addr)) _end;
 | ||
|   /* Copy the TLS related data if necessary.  */
 | ||
| #ifndef DONT_USE_BOOTSTRAP_MAP
 | ||
| # if NO_TLS_OFFSET != 0
 | ||
|   GL(dl_rtld_map).l_tls_offset = NO_TLS_OFFSET;
 | ||
| # endif
 | ||
| #endif
 | ||
| 
 | ||
|   /* Initialize the stack end variable.  */
 | ||
|   __libc_stack_end = __builtin_frame_address (0);
 | ||
| 
 | ||
|   /* Call the OS-dependent function to set up life so we can do things like
 | ||
|      file access.  It will call `dl_main' (below) to do all the real work
 | ||
|      of the dynamic linker, and then unwind our frame and run the user
 | ||
|      entry point on the same stack we entered on.  */
 | ||
|   start_addr = _dl_sysdep_start (arg, &dl_main);
 | ||
| 
 | ||
|   if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_STATISTICS))
 | ||
|     {
 | ||
|       RTLD_TIMING_VAR (rtld_total_time);
 | ||
|       rtld_timer_stop (&rtld_total_time, start_time);
 | ||
|       print_statistics (RTLD_TIMING_REF(rtld_total_time));
 | ||
|     }
 | ||
| 
 | ||
| #ifndef ELF_MACHINE_START_ADDRESS
 | ||
| # define ELF_MACHINE_START_ADDRESS(map, start) (start)
 | ||
| #endif
 | ||
|   return ELF_MACHINE_START_ADDRESS (GL(dl_ns)[LM_ID_BASE]._ns_loaded, start_addr);
 | ||
| }
 | ||
| 
 | ||
| #ifdef DONT_USE_BOOTSTRAP_MAP
 | ||
| # define bootstrap_map GL(dl_rtld_map)
 | ||
| #else
 | ||
| # define bootstrap_map info.l
 | ||
| #endif
 | ||
| 
 | ||
| static ElfW(Addr) __attribute_used__
 | ||
| _dl_start (void *arg)
 | ||
| {
 | ||
| #ifdef DONT_USE_BOOTSTRAP_MAP
 | ||
|   rtld_timer_start (&start_time);
 | ||
| #else
 | ||
|   struct dl_start_final_info info;
 | ||
|   rtld_timer_start (&info.start_time);
 | ||
| #endif
 | ||
| 
 | ||
|   /* Partly clean the `bootstrap_map' structure up.  Don't use
 | ||
|      `memset' since it might not be built in or inlined and we cannot
 | ||
|      make function calls at this point.  Use '__builtin_memset' if we
 | ||
|      know it is available.  We do not have to clear the memory if we
 | ||
|      do not have to use the temporary bootstrap_map.  Global variables
 | ||
|      are initialized to zero by default.  */
 | ||
| #ifndef DONT_USE_BOOTSTRAP_MAP
 | ||
| # ifdef HAVE_BUILTIN_MEMSET
 | ||
|   __builtin_memset (bootstrap_map.l_info, '\0', sizeof (bootstrap_map.l_info));
 | ||
| # else
 | ||
|   for (size_t cnt = 0;
 | ||
|        cnt < sizeof (bootstrap_map.l_info) / sizeof (bootstrap_map.l_info[0]);
 | ||
|        ++cnt)
 | ||
|     bootstrap_map.l_info[cnt] = 0;
 | ||
| # endif
 | ||
| #endif
 | ||
| 
 | ||
|   /* Figure out the run-time load address of the dynamic linker itself.  */
 | ||
|   bootstrap_map.l_addr = elf_machine_load_address ();
 | ||
| 
 | ||
|   /* Read our own dynamic section and fill in the info array.  */
 | ||
|   bootstrap_map.l_ld = (void *) bootstrap_map.l_addr + elf_machine_dynamic ();
 | ||
|   bootstrap_map.l_ld_readonly = DL_RO_DYN_SECTION;
 | ||
|   elf_get_dynamic_info (&bootstrap_map, true, false);
 | ||
| 
 | ||
| #if NO_TLS_OFFSET != 0
 | ||
|   bootstrap_map.l_tls_offset = NO_TLS_OFFSET;
 | ||
| #endif
 | ||
| 
 | ||
| #ifdef ELF_MACHINE_BEFORE_RTLD_RELOC
 | ||
|   ELF_MACHINE_BEFORE_RTLD_RELOC (&bootstrap_map, bootstrap_map.l_info);
 | ||
| #endif
 | ||
| 
 | ||
|   if (bootstrap_map.l_addr)
 | ||
|     {
 | ||
|       /* Relocate ourselves so we can do normal function calls and
 | ||
| 	 data access using the global offset table.  */
 | ||
| 
 | ||
|       ELF_DYNAMIC_RELOCATE (&bootstrap_map, NULL, 0, 0, 0);
 | ||
|     }
 | ||
|   bootstrap_map.l_relocated = 1;
 | ||
| 
 | ||
|   /* Please note that we don't allow profiling of this object and
 | ||
|      therefore need not test whether we have to allocate the array
 | ||
|      for the relocation results (as done in dl-reloc.c).  */
 | ||
| 
 | ||
|   /* Now life is sane; we can call functions and access global data.
 | ||
|      Set up to use the operating system facilities, and find out from
 | ||
|      the operating system's program loader where to find the program
 | ||
|      header table in core.  Put the rest of _dl_start into a separate
 | ||
|      function, that way the compiler cannot put accesses to the GOT
 | ||
|      before ELF_DYNAMIC_RELOCATE.  */
 | ||
| 
 | ||
|   __rtld_malloc_init_stubs ();
 | ||
| 
 | ||
| #ifdef DONT_USE_BOOTSTRAP_MAP
 | ||
|   return _dl_start_final (arg);
 | ||
| #else
 | ||
|   return _dl_start_final (arg, &info);
 | ||
| #endif
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /* Now life is peachy; we can do all normal operations.
 | ||
|    On to the real work.  */
 | ||
| 
 | ||
| /* Some helper functions.  */
 | ||
| 
 | ||
| /* Arguments to relocate_doit.  */
 | ||
| struct relocate_args
 | ||
| {
 | ||
|   struct link_map *l;
 | ||
|   int reloc_mode;
 | ||
| };
 | ||
| 
 | ||
| struct map_args
 | ||
| {
 | ||
|   /* Argument to map_doit.  */
 | ||
|   const char *str;
 | ||
|   struct link_map *loader;
 | ||
|   int mode;
 | ||
|   /* Return value of map_doit.  */
 | ||
|   struct link_map *map;
 | ||
| };
 | ||
| 
 | ||
| struct dlmopen_args
 | ||
| {
 | ||
|   const char *fname;
 | ||
|   struct link_map *map;
 | ||
| };
 | ||
| 
 | ||
| struct lookup_args
 | ||
| {
 | ||
|   const char *name;
 | ||
|   struct link_map *map;
 | ||
|   void *result;
 | ||
| };
 | ||
| 
 | ||
| /* Arguments to version_check_doit.  */
 | ||
| struct version_check_args
 | ||
| {
 | ||
|   int doexit;
 | ||
|   int dotrace;
 | ||
| };
 | ||
| 
 | ||
| static void
 | ||
| relocate_doit (void *a)
 | ||
| {
 | ||
|   struct relocate_args *args = (struct relocate_args *) a;
 | ||
| 
 | ||
|   _dl_relocate_object (args->l, args->l->l_scope, args->reloc_mode, 0);
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| map_doit (void *a)
 | ||
| {
 | ||
|   struct map_args *args = (struct map_args *) a;
 | ||
|   int type = (args->mode == __RTLD_OPENEXEC) ? lt_executable : lt_library;
 | ||
|   args->map = _dl_map_object (args->loader, args->str, type, 0,
 | ||
| 			      args->mode, LM_ID_BASE);
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| dlmopen_doit (void *a)
 | ||
| {
 | ||
|   struct dlmopen_args *args = (struct dlmopen_args *) a;
 | ||
|   args->map = _dl_open (args->fname,
 | ||
| 			(RTLD_LAZY | __RTLD_DLOPEN | __RTLD_AUDIT
 | ||
| 			 | __RTLD_SECURE),
 | ||
| 			dl_main, LM_ID_NEWLM, _dl_argc, _dl_argv,
 | ||
| 			__environ);
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| lookup_doit (void *a)
 | ||
| {
 | ||
|   struct lookup_args *args = (struct lookup_args *) a;
 | ||
|   const ElfW(Sym) *ref = NULL;
 | ||
|   args->result = NULL;
 | ||
|   lookup_t l = _dl_lookup_symbol_x (args->name, args->map, &ref,
 | ||
| 				    args->map->l_local_scope, NULL, 0,
 | ||
| 				    DL_LOOKUP_RETURN_NEWEST, NULL);
 | ||
|   if (ref != NULL)
 | ||
|     args->result = DL_SYMBOL_ADDRESS (l, ref);
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| version_check_doit (void *a)
 | ||
| {
 | ||
|   struct version_check_args *args = (struct version_check_args *) a;
 | ||
|   if (_dl_check_all_versions (GL(dl_ns)[LM_ID_BASE]._ns_loaded, 1,
 | ||
| 			      args->dotrace) && args->doexit)
 | ||
|     /* We cannot start the application.  Abort now.  */
 | ||
|     _exit (1);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| static inline struct link_map *
 | ||
| find_needed (const char *name)
 | ||
| {
 | ||
|   struct r_scope_elem *scope = &GL(dl_ns)[LM_ID_BASE]._ns_loaded->l_searchlist;
 | ||
|   unsigned int n = scope->r_nlist;
 | ||
| 
 | ||
|   while (n-- > 0)
 | ||
|     if (_dl_name_match_p (name, scope->r_list[n]))
 | ||
|       return scope->r_list[n];
 | ||
| 
 | ||
|   /* Should never happen.  */
 | ||
|   return NULL;
 | ||
| }
 | ||
| 
 | ||
| static int
 | ||
| match_version (const char *string, struct link_map *map)
 | ||
| {
 | ||
|   const char *strtab = (const void *) D_PTR (map, l_info[DT_STRTAB]);
 | ||
|   ElfW(Verdef) *def;
 | ||
| 
 | ||
| #define VERDEFTAG (DT_NUM + DT_THISPROCNUM + DT_VERSIONTAGIDX (DT_VERDEF))
 | ||
|   if (map->l_info[VERDEFTAG] == NULL)
 | ||
|     /* The file has no symbol versioning.  */
 | ||
|     return 0;
 | ||
| 
 | ||
|   def = (ElfW(Verdef) *) ((char *) map->l_addr
 | ||
| 			  + map->l_info[VERDEFTAG]->d_un.d_ptr);
 | ||
|   while (1)
 | ||
|     {
 | ||
|       ElfW(Verdaux) *aux = (ElfW(Verdaux) *) ((char *) def + def->vd_aux);
 | ||
| 
 | ||
|       /* Compare the version strings.  */
 | ||
|       if (strcmp (string, strtab + aux->vda_name) == 0)
 | ||
| 	/* Bingo!  */
 | ||
| 	return 1;
 | ||
| 
 | ||
|       /* If no more definitions we failed to find what we want.  */
 | ||
|       if (def->vd_next == 0)
 | ||
| 	break;
 | ||
| 
 | ||
|       /* Next definition.  */
 | ||
|       def = (ElfW(Verdef) *) ((char *) def + def->vd_next);
 | ||
|     }
 | ||
| 
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| bool __rtld_tls_init_tp_called;
 | ||
| 
 | ||
| static void *
 | ||
| init_tls (size_t naudit)
 | ||
| {
 | ||
|   /* Number of elements in the static TLS block.  */
 | ||
|   GL(dl_tls_static_nelem) = GL(dl_tls_max_dtv_idx);
 | ||
| 
 | ||
|   /* Do not do this twice.  The audit interface might have required
 | ||
|      the DTV interfaces to be set up early.  */
 | ||
|   if (GL(dl_initial_dtv) != NULL)
 | ||
|     return NULL;
 | ||
| 
 | ||
|   /* Allocate the array which contains the information about the
 | ||
|      dtv slots.  We allocate a few entries more than needed to
 | ||
|      avoid the need for reallocation.  */
 | ||
|   size_t nelem = GL(dl_tls_max_dtv_idx) + 1 + TLS_SLOTINFO_SURPLUS;
 | ||
| 
 | ||
|   /* Allocate.  */
 | ||
|   GL(dl_tls_dtv_slotinfo_list) = (struct dtv_slotinfo_list *)
 | ||
|     calloc (sizeof (struct dtv_slotinfo_list)
 | ||
| 	    + nelem * sizeof (struct dtv_slotinfo), 1);
 | ||
|   /* No need to check the return value.  If memory allocation failed
 | ||
|      the program would have been terminated.  */
 | ||
| 
 | ||
|   struct dtv_slotinfo *slotinfo = GL(dl_tls_dtv_slotinfo_list)->slotinfo;
 | ||
|   GL(dl_tls_dtv_slotinfo_list)->len = nelem;
 | ||
|   GL(dl_tls_dtv_slotinfo_list)->next = NULL;
 | ||
| 
 | ||
|   /* Fill in the information from the loaded modules.  No namespace
 | ||
|      but the base one can be filled at this time.  */
 | ||
|   assert (GL(dl_ns)[LM_ID_BASE + 1]._ns_loaded == NULL);
 | ||
|   int i = 0;
 | ||
|   for (struct link_map *l = GL(dl_ns)[LM_ID_BASE]._ns_loaded; l != NULL;
 | ||
|        l = l->l_next)
 | ||
|     if (l->l_tls_blocksize != 0)
 | ||
|       {
 | ||
| 	/* This is a module with TLS data.  Store the map reference.
 | ||
| 	   The generation counter is zero.  */
 | ||
| 	slotinfo[i].map = l;
 | ||
| 	/* slotinfo[i].gen = 0; */
 | ||
| 	++i;
 | ||
|       }
 | ||
|   assert (i == GL(dl_tls_max_dtv_idx));
 | ||
| 
 | ||
|   /* Calculate the size of the static TLS surplus.  */
 | ||
|   _dl_tls_static_surplus_init (naudit);
 | ||
| 
 | ||
|   /* Compute the TLS offsets for the various blocks.  */
 | ||
|   _dl_determine_tlsoffset ();
 | ||
| 
 | ||
|   /* Construct the static TLS block and the dtv for the initial
 | ||
|      thread.  For some platforms this will include allocating memory
 | ||
|      for the thread descriptor.  The memory for the TLS block will
 | ||
|      never be freed.  It should be allocated accordingly.  The dtv
 | ||
|      array can be changed if dynamic loading requires it.  */
 | ||
|   void *tcbp = _dl_allocate_tls_storage ();
 | ||
|   if (tcbp == NULL)
 | ||
|     _dl_fatal_printf ("\
 | ||
| cannot allocate TLS data structures for initial thread\n");
 | ||
| 
 | ||
|   /* Store for detection of the special case by __tls_get_addr
 | ||
|      so it knows not to pass this dtv to the normal realloc.  */
 | ||
|   GL(dl_initial_dtv) = GET_DTV (tcbp);
 | ||
| 
 | ||
|   /* And finally install it for the main thread.  */
 | ||
|   call_tls_init_tp (tcbp);
 | ||
|   __rtld_tls_init_tp_called = true;
 | ||
| 
 | ||
|   return tcbp;
 | ||
| }
 | ||
| 
 | ||
| static unsigned int
 | ||
| do_preload (const char *fname, struct link_map *main_map, const char *where)
 | ||
| {
 | ||
|   const char *objname;
 | ||
|   const char *err_str = NULL;
 | ||
|   struct map_args args;
 | ||
|   bool malloced;
 | ||
| 
 | ||
|   args.str = fname;
 | ||
|   args.loader = main_map;
 | ||
|   args.mode = __RTLD_SECURE;
 | ||
| 
 | ||
|   unsigned int old_nloaded = GL(dl_ns)[LM_ID_BASE]._ns_nloaded;
 | ||
| 
 | ||
|   (void) _dl_catch_error (&objname, &err_str, &malloced, map_doit, &args);
 | ||
|   if (__glibc_unlikely (err_str != NULL))
 | ||
|     {
 | ||
|       _dl_error_printf ("\
 | ||
| ERROR: ld.so: object '%s' from %s cannot be preloaded (%s): ignored.\n",
 | ||
| 			fname, where, err_str);
 | ||
|       /* No need to call free, this is still before
 | ||
| 	 the libc's malloc is used.  */
 | ||
|     }
 | ||
|   else if (GL(dl_ns)[LM_ID_BASE]._ns_nloaded != old_nloaded)
 | ||
|     /* It is no duplicate.  */
 | ||
|     return 1;
 | ||
| 
 | ||
|   /* Nothing loaded.  */
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| security_init (void)
 | ||
| {
 | ||
|   /* Set up the stack checker's canary.  */
 | ||
|   uintptr_t stack_chk_guard = _dl_setup_stack_chk_guard (_dl_random);
 | ||
| #ifdef THREAD_SET_STACK_GUARD
 | ||
|   THREAD_SET_STACK_GUARD (stack_chk_guard);
 | ||
| #else
 | ||
|   __stack_chk_guard = stack_chk_guard;
 | ||
| #endif
 | ||
| 
 | ||
|   /* Set up the pointer guard as well, if necessary.  */
 | ||
|   uintptr_t pointer_chk_guard
 | ||
|     = _dl_setup_pointer_guard (_dl_random, stack_chk_guard);
 | ||
| #ifdef THREAD_SET_POINTER_GUARD
 | ||
|   THREAD_SET_POINTER_GUARD (pointer_chk_guard);
 | ||
| #endif
 | ||
|   __pointer_chk_guard_local = pointer_chk_guard;
 | ||
| 
 | ||
|   /* We do not need the _dl_random value anymore.  The less
 | ||
|      information we leave behind, the better, so clear the
 | ||
|      variable.  */
 | ||
|   _dl_random = NULL;
 | ||
| }
 | ||
| 
 | ||
| #include <setup-vdso.h>
 | ||
| 
 | ||
| /* The LD_PRELOAD environment variable gives list of libraries
 | ||
|    separated by white space or colons that are loaded before the
 | ||
|    executable's dependencies and prepended to the global scope list.
 | ||
|    (If the binary is running setuid all elements containing a '/' are
 | ||
|    ignored since it is insecure.)  Return the number of preloads
 | ||
|    performed.   Ditto for --preload command argument.  */
 | ||
| unsigned int
 | ||
| handle_preload_list (const char *preloadlist, struct link_map *main_map,
 | ||
| 		     const char *where)
 | ||
| {
 | ||
|   unsigned int npreloads = 0;
 | ||
|   const char *p = preloadlist;
 | ||
|   char fname[SECURE_PATH_LIMIT];
 | ||
| 
 | ||
|   while (*p != '\0')
 | ||
|     {
 | ||
|       /* Split preload list at space/colon.  */
 | ||
|       size_t len = strcspn (p, " :");
 | ||
|       if (len > 0 && len < sizeof (fname))
 | ||
| 	{
 | ||
| 	  memcpy (fname, p, len);
 | ||
| 	  fname[len] = '\0';
 | ||
| 	}
 | ||
|       else
 | ||
| 	fname[0] = '\0';
 | ||
| 
 | ||
|       /* Skip over the substring and the following delimiter.  */
 | ||
|       p += len;
 | ||
|       if (*p != '\0')
 | ||
| 	++p;
 | ||
| 
 | ||
|       if (dso_name_valid_for_suid (fname))
 | ||
| 	npreloads += do_preload (fname, main_map, where);
 | ||
|     }
 | ||
|   return npreloads;
 | ||
| }
 | ||
| 
 | ||
| /* Called if the audit DSO cannot be used: if it does not have the
 | ||
|    appropriate interfaces, or it expects a more recent version library
 | ||
|    version than what the dynamic linker provides.  */
 | ||
| static void
 | ||
| unload_audit_module (struct link_map *map, int original_tls_idx)
 | ||
| {
 | ||
| #ifndef NDEBUG
 | ||
|   Lmid_t ns = map->l_ns;
 | ||
| #endif
 | ||
|   _dl_close (map);
 | ||
| 
 | ||
|   /* Make sure the namespace has been cleared entirely.  */
 | ||
|   assert (GL(dl_ns)[ns]._ns_loaded == NULL);
 | ||
|   assert (GL(dl_ns)[ns]._ns_nloaded == 0);
 | ||
| 
 | ||
|   GL(dl_tls_max_dtv_idx) = original_tls_idx;
 | ||
| }
 | ||
| 
 | ||
| /* Called to print an error message if loading of an audit module
 | ||
|    failed.  */
 | ||
| static void
 | ||
| report_audit_module_load_error (const char *name, const char *err_str,
 | ||
| 				bool malloced)
 | ||
| {
 | ||
|   _dl_error_printf ("\
 | ||
| ERROR: ld.so: object '%s' cannot be loaded as audit interface: %s; ignored.\n",
 | ||
| 		    name, err_str);
 | ||
|   if (malloced)
 | ||
|     free ((char *) err_str);
 | ||
| }
 | ||
| 
 | ||
| /* Load one audit module.  */
 | ||
| static void
 | ||
| load_audit_module (const char *name, struct audit_ifaces **last_audit)
 | ||
| {
 | ||
|   int original_tls_idx = GL(dl_tls_max_dtv_idx);
 | ||
| 
 | ||
|   struct dlmopen_args dlmargs;
 | ||
|   dlmargs.fname = name;
 | ||
|   dlmargs.map = NULL;
 | ||
| 
 | ||
|   const char *objname;
 | ||
|   const char *err_str = NULL;
 | ||
|   bool malloced;
 | ||
|   _dl_catch_error (&objname, &err_str, &malloced, dlmopen_doit, &dlmargs);
 | ||
|   if (__glibc_unlikely (err_str != NULL))
 | ||
|     {
 | ||
|       report_audit_module_load_error (name, err_str, malloced);
 | ||
|       return;
 | ||
|     }
 | ||
| 
 | ||
|   struct lookup_args largs;
 | ||
|   largs.name = "la_version";
 | ||
|   largs.map = dlmargs.map;
 | ||
|   _dl_catch_error (&objname, &err_str, &malloced, lookup_doit, &largs);
 | ||
|   if (__glibc_likely (err_str != NULL))
 | ||
|     {
 | ||
|       unload_audit_module (dlmargs.map, original_tls_idx);
 | ||
|       report_audit_module_load_error (name, err_str, malloced);
 | ||
|       return;
 | ||
|     }
 | ||
| 
 | ||
|   unsigned int (*laversion) (unsigned int) = largs.result;
 | ||
| 
 | ||
|  /* A null symbol indicates that something is very wrong with the
 | ||
|     loaded object because defined symbols are supposed to have a
 | ||
|     valid, non-null address.  */
 | ||
|   assert (laversion != NULL);
 | ||
| 
 | ||
|   unsigned int lav = laversion (LAV_CURRENT);
 | ||
|   if (lav == 0)
 | ||
|     {
 | ||
|       /* Only print an error message if debugging because this can
 | ||
| 	 happen deliberately.  */
 | ||
|       if (GLRO(dl_debug_mask) & DL_DEBUG_FILES)
 | ||
| 	_dl_debug_printf ("\
 | ||
| file=%s [%lu]; audit interface function la_version returned zero; ignored.\n",
 | ||
| 			  dlmargs.map->l_name, dlmargs.map->l_ns);
 | ||
|       unload_audit_module (dlmargs.map, original_tls_idx);
 | ||
|       return;
 | ||
|     }
 | ||
| 
 | ||
|   if (!_dl_audit_check_version (lav))
 | ||
|     {
 | ||
|       _dl_debug_printf ("\
 | ||
| ERROR: audit interface '%s' requires version %d (maximum supported version %d); ignored.\n",
 | ||
| 			name, lav, LAV_CURRENT);
 | ||
|       unload_audit_module (dlmargs.map, original_tls_idx);
 | ||
|       return;
 | ||
|     }
 | ||
| 
 | ||
|   enum { naudit_ifaces = 8 };
 | ||
|   union
 | ||
|   {
 | ||
|     struct audit_ifaces ifaces;
 | ||
|     void (*fptr[naudit_ifaces]) (void);
 | ||
|   } *newp = malloc (sizeof (*newp));
 | ||
|   if (newp == NULL)
 | ||
|     _dl_fatal_printf ("Out of memory while loading audit modules\n");
 | ||
| 
 | ||
|   /* Names of the auditing interfaces.  All in one
 | ||
|      long string.  */
 | ||
|   static const char audit_iface_names[] =
 | ||
|     "la_activity\0"
 | ||
|     "la_objsearch\0"
 | ||
|     "la_objopen\0"
 | ||
|     "la_preinit\0"
 | ||
|     LA_SYMBIND "\0"
 | ||
| #define STRING(s) __STRING (s)
 | ||
|     "la_" STRING (ARCH_LA_PLTENTER) "\0"
 | ||
|     "la_" STRING (ARCH_LA_PLTEXIT) "\0"
 | ||
|     "la_objclose\0";
 | ||
|   unsigned int cnt = 0;
 | ||
|   const char *cp = audit_iface_names;
 | ||
|   do
 | ||
|     {
 | ||
|       largs.name = cp;
 | ||
|       _dl_catch_error (&objname, &err_str, &malloced, lookup_doit, &largs);
 | ||
| 
 | ||
|       /* Store the pointer.  */
 | ||
|       if (err_str == NULL && largs.result != NULL)
 | ||
| 	newp->fptr[cnt] = largs.result;
 | ||
|       else
 | ||
| 	newp->fptr[cnt] = NULL;
 | ||
|       ++cnt;
 | ||
| 
 | ||
|       cp = strchr (cp, '\0') + 1;
 | ||
|     }
 | ||
|   while (*cp != '\0');
 | ||
|   assert (cnt == naudit_ifaces);
 | ||
| 
 | ||
|   /* Now append the new auditing interface to the list.  */
 | ||
|   newp->ifaces.next = NULL;
 | ||
|   if (*last_audit == NULL)
 | ||
|     *last_audit = GLRO(dl_audit) = &newp->ifaces;
 | ||
|   else
 | ||
|     *last_audit = (*last_audit)->next = &newp->ifaces;
 | ||
| 
 | ||
|   /* The dynamic linker link map is statically allocated, so the
 | ||
|      cookie in _dl_new_object has not happened.  */
 | ||
|   link_map_audit_state (&GL (dl_rtld_map), GLRO (dl_naudit))->cookie
 | ||
|     = (intptr_t) &GL (dl_rtld_map);
 | ||
| 
 | ||
|   ++GLRO(dl_naudit);
 | ||
| 
 | ||
|   /* Mark the DSO as being used for auditing.  */
 | ||
|   dlmargs.map->l_auditing = 1;
 | ||
| }
 | ||
| 
 | ||
| /* Load all audit modules.  */
 | ||
| static void
 | ||
| load_audit_modules (struct link_map *main_map, struct audit_list *audit_list)
 | ||
| {
 | ||
|   struct audit_ifaces *last_audit = NULL;
 | ||
| 
 | ||
|   while (true)
 | ||
|     {
 | ||
|       const char *name = audit_list_next (audit_list);
 | ||
|       if (name == NULL)
 | ||
| 	break;
 | ||
|       load_audit_module (name, &last_audit);
 | ||
|     }
 | ||
| 
 | ||
|   /* Notify audit modules of the initially loaded modules (the main
 | ||
|      program and the dynamic linker itself).  */
 | ||
|   if (GLRO(dl_naudit) > 0)
 | ||
|     {
 | ||
|       _dl_audit_objopen (main_map, LM_ID_BASE);
 | ||
|       _dl_audit_objopen (&GL(dl_rtld_map), LM_ID_BASE);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Check if the executable is not actually dynamically linked, and
 | ||
|    invoke it directly in that case.  */
 | ||
| static void
 | ||
| rtld_chain_load (struct link_map *main_map, char *argv0)
 | ||
| {
 | ||
|   /* The dynamic loader run against itself.  */
 | ||
|   const char *rtld_soname
 | ||
|     = ((const char *) D_PTR (&GL(dl_rtld_map), l_info[DT_STRTAB])
 | ||
|        + GL(dl_rtld_map).l_info[DT_SONAME]->d_un.d_val);
 | ||
|   if (main_map->l_info[DT_SONAME] != NULL
 | ||
|       && strcmp (rtld_soname,
 | ||
| 		 ((const char *) D_PTR (main_map, l_info[DT_STRTAB])
 | ||
| 		  + main_map->l_info[DT_SONAME]->d_un.d_val)) == 0)
 | ||
|     _dl_fatal_printf ("%s: loader cannot load itself\n", rtld_soname);
 | ||
| 
 | ||
|   /* With DT_NEEDED dependencies, the executable is dynamically
 | ||
|      linked.  */
 | ||
|   if (__glibc_unlikely (main_map->l_info[DT_NEEDED] != NULL))
 | ||
|     return;
 | ||
| 
 | ||
|   /* If the executable has program interpreter, it is dynamically
 | ||
|      linked.  */
 | ||
|   for (size_t i = 0; i < main_map->l_phnum; ++i)
 | ||
|     if (main_map->l_phdr[i].p_type == PT_INTERP)
 | ||
|       return;
 | ||
| 
 | ||
|   const char *pathname = _dl_argv[0];
 | ||
|   if (argv0 != NULL)
 | ||
|     _dl_argv[0] = argv0;
 | ||
|   int errcode = __rtld_execve (pathname, _dl_argv, _environ);
 | ||
|   const char *errname = strerrorname_np (errcode);
 | ||
|   if (errname != NULL)
 | ||
|     _dl_fatal_printf("%s: cannot execute %s: %s\n",
 | ||
| 		     rtld_soname, pathname, errname);
 | ||
|   else
 | ||
|     _dl_fatal_printf("%s: cannot execute %s: %d\n",
 | ||
| 		     rtld_soname, pathname, errcode);
 | ||
| }
 | ||
| 
 | ||
| /* Called to complete the initialization of the link map for the main
 | ||
|    executable.  Returns true if there is a PT_INTERP segment.  */
 | ||
| static bool
 | ||
| rtld_setup_main_map (struct link_map *main_map)
 | ||
| {
 | ||
|   /* This have already been filled in right after _dl_new_object, or
 | ||
|      as part of _dl_map_object.  */
 | ||
|   const ElfW(Phdr) *phdr = main_map->l_phdr;
 | ||
|   ElfW(Word) phnum = main_map->l_phnum;
 | ||
| 
 | ||
|   bool has_interp = false;
 | ||
| 
 | ||
|   main_map->l_map_end = 0;
 | ||
|   /* Perhaps the executable has no PT_LOAD header entries at all.  */
 | ||
|   main_map->l_map_start = ~0;
 | ||
|   /* And it was opened directly.  */
 | ||
|   ++main_map->l_direct_opencount;
 | ||
|   main_map->l_contiguous = 1;
 | ||
| 
 | ||
|   /* A PT_LOAD segment at an unexpected address will clear the
 | ||
|      l_contiguous flag.  The ELF specification says that PT_LOAD
 | ||
|      segments need to be sorted in in increasing order, but perhaps
 | ||
|      not all executables follow this requirement.  Having l_contiguous
 | ||
|      equal to 1 is just an optimization, so the code below does not
 | ||
|      try to sort the segments in case they are unordered.
 | ||
| 
 | ||
|      There is one corner case in which l_contiguous is not set to 1,
 | ||
|      but where it could be set: If a PIE (ET_DYN) binary is loaded by
 | ||
|      glibc itself (not the kernel), it is always contiguous due to the
 | ||
|      way the glibc loader works.  However, the kernel loader may still
 | ||
|      create holes in this case, and the code here still uses 0
 | ||
|      conservatively for the glibc-loaded case, too.  */
 | ||
|   ElfW(Addr) expected_load_address = 0;
 | ||
| 
 | ||
|   /* Scan the program header table for the dynamic section.  */
 | ||
|   for (const ElfW(Phdr) *ph = phdr; ph < &phdr[phnum]; ++ph)
 | ||
|     switch (ph->p_type)
 | ||
|       {
 | ||
|       case PT_PHDR:
 | ||
| 	/* Find out the load address.  */
 | ||
| 	main_map->l_addr = (ElfW(Addr)) phdr - ph->p_vaddr;
 | ||
| 	break;
 | ||
|       case PT_DYNAMIC:
 | ||
| 	/* This tells us where to find the dynamic section,
 | ||
| 	   which tells us everything we need to do.  */
 | ||
| 	main_map->l_ld = (void *) main_map->l_addr + ph->p_vaddr;
 | ||
| 	main_map->l_ld_readonly = (ph->p_flags & PF_W) == 0;
 | ||
| 	break;
 | ||
|       case PT_INTERP:
 | ||
| 	/* This "interpreter segment" was used by the program loader to
 | ||
| 	   find the program interpreter, which is this program itself, the
 | ||
| 	   dynamic linker.  We note what name finds us, so that a future
 | ||
| 	   dlopen call or DT_NEEDED entry, for something that wants to link
 | ||
| 	   against the dynamic linker as a shared library, will know that
 | ||
| 	   the shared object is already loaded.  */
 | ||
| 	_dl_rtld_libname.name = ((const char *) main_map->l_addr
 | ||
| 				 + ph->p_vaddr);
 | ||
| 	/* _dl_rtld_libname.next = NULL;	Already zero.  */
 | ||
| 	GL(dl_rtld_map).l_libname = &_dl_rtld_libname;
 | ||
| 
 | ||
| 	/* Ordinarily, we would get additional names for the loader from
 | ||
| 	   our DT_SONAME.  This can't happen if we were actually linked as
 | ||
| 	   a static executable (detect this case when we have no DYNAMIC).
 | ||
| 	   If so, assume the filename component of the interpreter path to
 | ||
| 	   be our SONAME, and add it to our name list.  */
 | ||
| 	if (GL(dl_rtld_map).l_ld == NULL)
 | ||
| 	  {
 | ||
| 	    const char *p = NULL;
 | ||
| 	    const char *cp = _dl_rtld_libname.name;
 | ||
| 
 | ||
| 	    /* Find the filename part of the path.  */
 | ||
| 	    while (*cp != '\0')
 | ||
| 	      if (*cp++ == '/')
 | ||
| 		p = cp;
 | ||
| 
 | ||
| 	    if (p != NULL)
 | ||
| 	      {
 | ||
| 		_dl_rtld_libname2.name = p;
 | ||
| 		/* _dl_rtld_libname2.next = NULL;  Already zero.  */
 | ||
| 		_dl_rtld_libname.next = &_dl_rtld_libname2;
 | ||
| 	      }
 | ||
| 	  }
 | ||
| 
 | ||
| 	has_interp = true;
 | ||
| 	break;
 | ||
|       case PT_LOAD:
 | ||
| 	{
 | ||
| 	  ElfW(Addr) mapstart;
 | ||
| 	  ElfW(Addr) allocend;
 | ||
| 
 | ||
| 	  /* Remember where the main program starts in memory.  */
 | ||
| 	  mapstart = (main_map->l_addr
 | ||
| 		      + (ph->p_vaddr & ~(GLRO(dl_pagesize) - 1)));
 | ||
| 	  if (main_map->l_map_start > mapstart)
 | ||
| 	    main_map->l_map_start = mapstart;
 | ||
| 
 | ||
| 	  if (main_map->l_contiguous && expected_load_address != 0
 | ||
| 	      && expected_load_address != mapstart)
 | ||
| 	    main_map->l_contiguous = 0;
 | ||
| 
 | ||
| 	  /* Also where it ends.  */
 | ||
| 	  allocend = main_map->l_addr + ph->p_vaddr + ph->p_memsz;
 | ||
| 	  if (main_map->l_map_end < allocend)
 | ||
| 	    main_map->l_map_end = allocend;
 | ||
| 
 | ||
| 	  /* The next expected address is the page following this load
 | ||
| 	     segment.  */
 | ||
| 	  expected_load_address = ((allocend + GLRO(dl_pagesize) - 1)
 | ||
| 				   & ~(GLRO(dl_pagesize) - 1));
 | ||
| 	}
 | ||
| 	break;
 | ||
| 
 | ||
|       case PT_TLS:
 | ||
| 	if (ph->p_memsz > 0)
 | ||
| 	  {
 | ||
| 	    /* Note that in the case the dynamic linker we duplicate work
 | ||
| 	       here since we read the PT_TLS entry already in
 | ||
| 	       _dl_start_final.  But the result is repeatable so do not
 | ||
| 	       check for this special but unimportant case.  */
 | ||
| 	    main_map->l_tls_blocksize = ph->p_memsz;
 | ||
| 	    main_map->l_tls_align = ph->p_align;
 | ||
| 	    if (ph->p_align == 0)
 | ||
| 	      main_map->l_tls_firstbyte_offset = 0;
 | ||
| 	    else
 | ||
| 	      main_map->l_tls_firstbyte_offset = (ph->p_vaddr
 | ||
| 						  & (ph->p_align - 1));
 | ||
| 	    main_map->l_tls_initimage_size = ph->p_filesz;
 | ||
| 	    main_map->l_tls_initimage = (void *) ph->p_vaddr;
 | ||
| 
 | ||
| 	    /* This image gets the ID one.  */
 | ||
| 	    GL(dl_tls_max_dtv_idx) = main_map->l_tls_modid = 1;
 | ||
| 	  }
 | ||
| 	break;
 | ||
| 
 | ||
|       case PT_GNU_STACK:
 | ||
| 	GL(dl_stack_flags) = ph->p_flags;
 | ||
| 	break;
 | ||
| 
 | ||
|       case PT_GNU_RELRO:
 | ||
| 	main_map->l_relro_addr = ph->p_vaddr;
 | ||
| 	main_map->l_relro_size = ph->p_memsz;
 | ||
| 	break;
 | ||
|       }
 | ||
|   /* Process program headers again, but scan them backwards so
 | ||
|      that PT_NOTE can be skipped if PT_GNU_PROPERTY exits.  */
 | ||
|   for (const ElfW(Phdr) *ph = &phdr[phnum]; ph != phdr; --ph)
 | ||
|     switch (ph[-1].p_type)
 | ||
|       {
 | ||
|       case PT_NOTE:
 | ||
| 	_dl_process_pt_note (main_map, -1, &ph[-1]);
 | ||
| 	break;
 | ||
|       case PT_GNU_PROPERTY:
 | ||
| 	_dl_process_pt_gnu_property (main_map, -1, &ph[-1]);
 | ||
| 	break;
 | ||
|       }
 | ||
| 
 | ||
|   /* Adjust the address of the TLS initialization image in case
 | ||
|      the executable is actually an ET_DYN object.  */
 | ||
|   if (main_map->l_tls_initimage != NULL)
 | ||
|     main_map->l_tls_initimage
 | ||
|       = (char *) main_map->l_tls_initimage + main_map->l_addr;
 | ||
|   if (! main_map->l_map_end)
 | ||
|     main_map->l_map_end = ~0;
 | ||
|   if (! GL(dl_rtld_map).l_libname && GL(dl_rtld_map).l_name)
 | ||
|     {
 | ||
|       /* We were invoked directly, so the program might not have a
 | ||
| 	 PT_INTERP.  */
 | ||
|       _dl_rtld_libname.name = GL(dl_rtld_map).l_name;
 | ||
|       /* _dl_rtld_libname.next = NULL;	Already zero.  */
 | ||
|       GL(dl_rtld_map).l_libname =  &_dl_rtld_libname;
 | ||
|     }
 | ||
|   else
 | ||
|     assert (GL(dl_rtld_map).l_libname); /* How else did we get here?  */
 | ||
| 
 | ||
|   return has_interp;
 | ||
| }
 | ||
| 
 | ||
| /* Adjusts the contents of the stack and related globals for the user
 | ||
|    entry point.  The ld.so processed skip_args arguments and bumped
 | ||
|    _dl_argv and _dl_argc accordingly.  Those arguments are removed from
 | ||
|    argv here.  */
 | ||
| static void
 | ||
| _dl_start_args_adjust (int skip_args)
 | ||
| {
 | ||
|   void **sp = (void **) (_dl_argv - skip_args - 1);
 | ||
|   void **p = sp + skip_args;
 | ||
| 
 | ||
|   if (skip_args == 0)
 | ||
|     return;
 | ||
| 
 | ||
|   /* Sanity check.  */
 | ||
|   intptr_t argc __attribute__ ((unused)) = (intptr_t) sp[0] - skip_args;
 | ||
|   assert (argc == _dl_argc);
 | ||
| 
 | ||
|   /* Adjust argc on stack.  */
 | ||
|   sp[0] = (void *) (intptr_t) _dl_argc;
 | ||
| 
 | ||
|   /* Update globals in rtld.  */
 | ||
|   _dl_argv -= skip_args;
 | ||
|   _environ -= skip_args;
 | ||
| 
 | ||
|   /* Shuffle argv down.  */
 | ||
|   do
 | ||
|     *++sp = *++p;
 | ||
|   while (*p != NULL);
 | ||
| 
 | ||
|   assert (_environ == (char **) (sp + 1));
 | ||
| 
 | ||
|   /* Shuffle envp down.  */
 | ||
|   do
 | ||
|     *++sp = *++p;
 | ||
|   while (*p != NULL);
 | ||
| 
 | ||
| #ifdef HAVE_AUX_VECTOR
 | ||
|   void **auxv = (void **) GLRO(dl_auxv) - skip_args;
 | ||
|   GLRO(dl_auxv) = (ElfW(auxv_t) *) auxv; /* Aliasing violation.  */
 | ||
|   assert (auxv == sp + 1);
 | ||
| 
 | ||
|   /* Shuffle auxv down. */
 | ||
|   ElfW(auxv_t) ax;
 | ||
|   char *oldp = (char *) (p + 1);
 | ||
|   char *newp = (char *) (sp + 1);
 | ||
|   do
 | ||
|     {
 | ||
|       memcpy (&ax, oldp, sizeof (ax));
 | ||
|       memcpy (newp, &ax, sizeof (ax));
 | ||
|       oldp += sizeof (ax);
 | ||
|       newp += sizeof (ax);
 | ||
|     }
 | ||
|   while (ax.a_type != AT_NULL);
 | ||
| #endif
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| dl_main (const ElfW(Phdr) *phdr,
 | ||
| 	 ElfW(Word) phnum,
 | ||
| 	 ElfW(Addr) *user_entry,
 | ||
| 	 ElfW(auxv_t) *auxv)
 | ||
| {
 | ||
|   struct link_map *main_map;
 | ||
|   size_t file_size;
 | ||
|   char *file;
 | ||
|   unsigned int i;
 | ||
|   bool rtld_is_main = false;
 | ||
|   void *tcbp = NULL;
 | ||
| 
 | ||
|   struct dl_main_state state;
 | ||
|   dl_main_state_init (&state);
 | ||
| 
 | ||
|   __tls_pre_init_tp ();
 | ||
| 
 | ||
| #if !PTHREAD_IN_LIBC
 | ||
|   /* The explicit initialization here is cheaper than processing the reloc
 | ||
|      in the _rtld_local definition's initializer.  */
 | ||
|   GL(dl_make_stack_executable_hook) = &_dl_make_stack_executable;
 | ||
| #endif
 | ||
| 
 | ||
|   /* Process the environment variable which control the behaviour.  */
 | ||
|   process_envvars (&state);
 | ||
| 
 | ||
| #ifndef HAVE_INLINED_SYSCALLS
 | ||
|   /* Set up a flag which tells we are just starting.  */
 | ||
|   _dl_starting_up = 1;
 | ||
| #endif
 | ||
| 
 | ||
|   const char *ld_so_name = _dl_argv[0];
 | ||
|   if (*user_entry == (ElfW(Addr)) ENTRY_POINT)
 | ||
|     {
 | ||
|       /* Ho ho.  We are not the program interpreter!  We are the program
 | ||
| 	 itself!  This means someone ran ld.so as a command.  Well, that
 | ||
| 	 might be convenient to do sometimes.  We support it by
 | ||
| 	 interpreting the args like this:
 | ||
| 
 | ||
| 	 ld.so PROGRAM ARGS...
 | ||
| 
 | ||
| 	 The first argument is the name of a file containing an ELF
 | ||
| 	 executable we will load and run with the following arguments.
 | ||
| 	 To simplify life here, PROGRAM is searched for using the
 | ||
| 	 normal rules for shared objects, rather than $PATH or anything
 | ||
| 	 like that.  We just load it and use its entry point; we don't
 | ||
| 	 pay attention to its PT_INTERP command (we are the interpreter
 | ||
| 	 ourselves).  This is an easy way to test a new ld.so before
 | ||
| 	 installing it.  */
 | ||
|       rtld_is_main = true;
 | ||
| 
 | ||
|       char *argv0 = NULL;
 | ||
|       char **orig_argv = _dl_argv;
 | ||
| 
 | ||
|       /* Note the place where the dynamic linker actually came from.  */
 | ||
|       GL(dl_rtld_map).l_name = rtld_progname;
 | ||
| 
 | ||
|       while (_dl_argc > 1)
 | ||
| 	if (! strcmp (_dl_argv[1], "--list"))
 | ||
| 	  {
 | ||
| 	    if (state.mode != rtld_mode_help)
 | ||
| 	      {
 | ||
| 	       state.mode = rtld_mode_list;
 | ||
| 		/* This means do no dependency analysis.  */
 | ||
| 		GLRO(dl_lazy) = -1;
 | ||
| 	      }
 | ||
| 
 | ||
| 	    --_dl_argc;
 | ||
| 	    ++_dl_argv;
 | ||
| 	  }
 | ||
| 	else if (! strcmp (_dl_argv[1], "--verify"))
 | ||
| 	  {
 | ||
| 	    if (state.mode != rtld_mode_help)
 | ||
| 	      state.mode = rtld_mode_verify;
 | ||
| 
 | ||
| 	    --_dl_argc;
 | ||
| 	    ++_dl_argv;
 | ||
| 	  }
 | ||
| 	else if (! strcmp (_dl_argv[1], "--inhibit-cache"))
 | ||
| 	  {
 | ||
| 	    GLRO(dl_inhibit_cache) = 1;
 | ||
| 	    --_dl_argc;
 | ||
| 	    ++_dl_argv;
 | ||
| 	  }
 | ||
| 	else if (! strcmp (_dl_argv[1], "--library-path")
 | ||
| 		 && _dl_argc > 2)
 | ||
| 	  {
 | ||
| 	    state.library_path = _dl_argv[2];
 | ||
| 	    state.library_path_source = "--library-path";
 | ||
| 
 | ||
| 	    _dl_argc -= 2;
 | ||
| 	    _dl_argv += 2;
 | ||
| 	  }
 | ||
| 	else if (! strcmp (_dl_argv[1], "--inhibit-rpath")
 | ||
| 		 && _dl_argc > 2)
 | ||
| 	  {
 | ||
| 	    GLRO(dl_inhibit_rpath) = _dl_argv[2];
 | ||
| 
 | ||
| 	    _dl_argc -= 2;
 | ||
| 	    _dl_argv += 2;
 | ||
| 	  }
 | ||
| 	else if (! strcmp (_dl_argv[1], "--audit") && _dl_argc > 2)
 | ||
| 	  {
 | ||
| 	    audit_list_add_string (&state.audit_list, _dl_argv[2]);
 | ||
| 
 | ||
| 	    _dl_argc -= 2;
 | ||
| 	    _dl_argv += 2;
 | ||
| 	  }
 | ||
| 	else if (! strcmp (_dl_argv[1], "--preload") && _dl_argc > 2)
 | ||
| 	  {
 | ||
| 	    state.preloadarg = _dl_argv[2];
 | ||
| 	    _dl_argc -= 2;
 | ||
| 	    _dl_argv += 2;
 | ||
| 	  }
 | ||
| 	else if (! strcmp (_dl_argv[1], "--argv0") && _dl_argc > 2)
 | ||
| 	  {
 | ||
| 	    argv0 = _dl_argv[2];
 | ||
| 
 | ||
| 	    _dl_argc -= 2;
 | ||
| 	    _dl_argv += 2;
 | ||
| 	  }
 | ||
| 	else if (strcmp (_dl_argv[1], "--glibc-hwcaps-prepend") == 0
 | ||
| 		 && _dl_argc > 2)
 | ||
| 	  {
 | ||
| 	    state.glibc_hwcaps_prepend = _dl_argv[2];
 | ||
| 	    _dl_argc -= 2;
 | ||
| 	    _dl_argv += 2;
 | ||
| 	  }
 | ||
| 	else if (strcmp (_dl_argv[1], "--glibc-hwcaps-mask") == 0
 | ||
| 		 && _dl_argc > 2)
 | ||
| 	  {
 | ||
| 	    state.glibc_hwcaps_mask = _dl_argv[2];
 | ||
| 	    _dl_argc -= 2;
 | ||
| 	    _dl_argv += 2;
 | ||
| 	  }
 | ||
| 	else if (! strcmp (_dl_argv[1], "--list-tunables"))
 | ||
| 	  {
 | ||
| 	    state.mode = rtld_mode_list_tunables;
 | ||
| 
 | ||
| 	    --_dl_argc;
 | ||
| 	    ++_dl_argv;
 | ||
| 	  }
 | ||
| 	else if (! strcmp (_dl_argv[1], "--list-diagnostics"))
 | ||
| 	  {
 | ||
| 	    state.mode = rtld_mode_list_diagnostics;
 | ||
| 
 | ||
| 	    --_dl_argc;
 | ||
| 	    ++_dl_argv;
 | ||
| 	  }
 | ||
| 	else if (strcmp (_dl_argv[1], "--help") == 0)
 | ||
| 	  {
 | ||
| 	    state.mode = rtld_mode_help;
 | ||
| 	    --_dl_argc;
 | ||
| 	    ++_dl_argv;
 | ||
| 	  }
 | ||
| 	else if (strcmp (_dl_argv[1], "--version") == 0)
 | ||
| 	  _dl_version ();
 | ||
| 	else if (_dl_argv[1][0] == '-' && _dl_argv[1][1] == '-')
 | ||
| 	  {
 | ||
| 	   if (_dl_argv[1][1] == '\0')
 | ||
| 	     /* End of option list.  */
 | ||
| 	     break;
 | ||
| 	   else
 | ||
| 	     /* Unrecognized option.  */
 | ||
| 	     _dl_usage (ld_so_name, _dl_argv[1]);
 | ||
| 	  }
 | ||
| 	else
 | ||
| 	  break;
 | ||
| 
 | ||
|       if (__glibc_unlikely (state.mode == rtld_mode_list_tunables))
 | ||
| 	{
 | ||
| 	  __tunables_print ();
 | ||
| 	  _exit (0);
 | ||
| 	}
 | ||
| 
 | ||
|       if (state.mode == rtld_mode_list_diagnostics)
 | ||
| 	_dl_print_diagnostics (_environ);
 | ||
| 
 | ||
|       /* If we have no further argument the program was called incorrectly.
 | ||
| 	 Grant the user some education.  */
 | ||
|       if (_dl_argc < 2)
 | ||
| 	{
 | ||
| 	  if (state.mode == rtld_mode_help)
 | ||
| 	    /* --help without an executable is not an error.  */
 | ||
| 	    _dl_help (ld_so_name, &state);
 | ||
| 	  else
 | ||
| 	    _dl_usage (ld_so_name, NULL);
 | ||
| 	}
 | ||
| 
 | ||
|       --_dl_argc;
 | ||
|       ++_dl_argv;
 | ||
| 
 | ||
|       /* The initialization of _dl_stack_flags done below assumes the
 | ||
| 	 executable's PT_GNU_STACK may have been honored by the kernel, and
 | ||
| 	 so a PT_GNU_STACK with PF_X set means the stack started out with
 | ||
| 	 execute permission.  However, this is not really true if the
 | ||
| 	 dynamic linker is the executable the kernel loaded.  For this
 | ||
| 	 case, we must reinitialize _dl_stack_flags to match the dynamic
 | ||
| 	 linker itself.  If the dynamic linker was built with a
 | ||
| 	 PT_GNU_STACK, then the kernel may have loaded us with a
 | ||
| 	 nonexecutable stack that we will have to make executable when we
 | ||
| 	 load the program below unless it has a PT_GNU_STACK indicating
 | ||
| 	 nonexecutable stack is ok.  */
 | ||
| 
 | ||
|       for (const ElfW(Phdr) *ph = phdr; ph < &phdr[phnum]; ++ph)
 | ||
| 	if (ph->p_type == PT_GNU_STACK)
 | ||
| 	  {
 | ||
| 	    GL(dl_stack_flags) = ph->p_flags;
 | ||
| 	    break;
 | ||
| 	  }
 | ||
| 
 | ||
|       if (__glibc_unlikely (state.mode == rtld_mode_verify
 | ||
| 			    || state.mode == rtld_mode_help))
 | ||
| 	{
 | ||
| 	  const char *objname;
 | ||
| 	  const char *err_str = NULL;
 | ||
| 	  struct map_args args;
 | ||
| 	  bool malloced;
 | ||
| 
 | ||
| 	  args.str = rtld_progname;
 | ||
| 	  args.loader = NULL;
 | ||
| 	  args.mode = __RTLD_OPENEXEC;
 | ||
| 	  (void) _dl_catch_error (&objname, &err_str, &malloced, map_doit,
 | ||
| 				  &args);
 | ||
| 	  if (__glibc_unlikely (err_str != NULL))
 | ||
| 	    {
 | ||
| 	      /* We don't free the returned string, the programs stops
 | ||
| 		 anyway.  */
 | ||
| 	      if (state.mode == rtld_mode_help)
 | ||
| 		/* Mask the failure to load the main object.  The help
 | ||
| 		   message contains less information in this case.  */
 | ||
| 		_dl_help (ld_so_name, &state);
 | ||
| 	      else
 | ||
| 		_exit (EXIT_FAILURE);
 | ||
| 	    }
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  RTLD_TIMING_VAR (start);
 | ||
| 	  rtld_timer_start (&start);
 | ||
| 	  _dl_map_object (NULL, rtld_progname, lt_executable, 0,
 | ||
| 			  __RTLD_OPENEXEC, LM_ID_BASE);
 | ||
| 	  rtld_timer_stop (&load_time, start);
 | ||
| 	}
 | ||
| 
 | ||
|       /* Now the map for the main executable is available.  */
 | ||
|       main_map = GL(dl_ns)[LM_ID_BASE]._ns_loaded;
 | ||
| 
 | ||
|       if (__glibc_likely (state.mode == rtld_mode_normal))
 | ||
| 	rtld_chain_load (main_map, argv0);
 | ||
| 
 | ||
|       phdr = main_map->l_phdr;
 | ||
|       phnum = main_map->l_phnum;
 | ||
|       /* We overwrite here a pointer to a malloc()ed string.  But since
 | ||
| 	 the malloc() implementation used at this point is the dummy
 | ||
| 	 implementations which has no real free() function it does not
 | ||
| 	 makes sense to free the old string first.  */
 | ||
|       main_map->l_name = (char *) "";
 | ||
|       *user_entry = main_map->l_entry;
 | ||
| 
 | ||
|       /* Set bit indicating this is the main program map.  */
 | ||
|       main_map->l_main_map = 1;
 | ||
| 
 | ||
| #ifdef HAVE_AUX_VECTOR
 | ||
|       /* Adjust the on-stack auxiliary vector so that it looks like the
 | ||
| 	 binary was executed directly.  */
 | ||
|       for (ElfW(auxv_t) *av = auxv; av->a_type != AT_NULL; av++)
 | ||
| 	switch (av->a_type)
 | ||
| 	  {
 | ||
| 	  case AT_PHDR:
 | ||
| 	    av->a_un.a_val = (uintptr_t) phdr;
 | ||
| 	    break;
 | ||
| 	  case AT_PHNUM:
 | ||
| 	    av->a_un.a_val = phnum;
 | ||
| 	    break;
 | ||
| 	  case AT_ENTRY:
 | ||
| 	    av->a_un.a_val = *user_entry;
 | ||
| 	    break;
 | ||
| 	  case AT_EXECFN:
 | ||
| 	    av->a_un.a_val = (uintptr_t) _dl_argv[0];
 | ||
| 	    break;
 | ||
| 	  }
 | ||
| #endif
 | ||
| 
 | ||
|       /* Set the argv[0] string now that we've processed the executable.  */
 | ||
|       if (argv0 != NULL)
 | ||
|         _dl_argv[0] = argv0;
 | ||
| 
 | ||
|       /* Adjust arguments for the application entry point.  */
 | ||
|       _dl_start_args_adjust (_dl_argv - orig_argv);
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       /* Create a link_map for the executable itself.
 | ||
| 	 This will be what dlopen on "" returns.  */
 | ||
|       main_map = _dl_new_object ((char *) "", "", lt_executable, NULL,
 | ||
| 				 __RTLD_OPENEXEC, LM_ID_BASE);
 | ||
|       assert (main_map != NULL);
 | ||
|       main_map->l_phdr = phdr;
 | ||
|       main_map->l_phnum = phnum;
 | ||
|       main_map->l_entry = *user_entry;
 | ||
| 
 | ||
|       /* Even though the link map is not yet fully initialized we can add
 | ||
| 	 it to the map list since there are no possible users running yet.  */
 | ||
|       _dl_add_to_namespace_list (main_map, LM_ID_BASE);
 | ||
|       assert (main_map == GL(dl_ns)[LM_ID_BASE]._ns_loaded);
 | ||
| 
 | ||
|       /* At this point we are in a bit of trouble.  We would have to
 | ||
| 	 fill in the values for l_dev and l_ino.  But in general we
 | ||
| 	 do not know where the file is.  We also do not handle AT_EXECFD
 | ||
| 	 even if it would be passed up.
 | ||
| 
 | ||
| 	 We leave the values here defined to 0.  This is normally no
 | ||
| 	 problem as the program code itself is normally no shared
 | ||
| 	 object and therefore cannot be loaded dynamically.  Nothing
 | ||
| 	 prevent the use of dynamic binaries and in these situations
 | ||
| 	 we might get problems.  We might not be able to find out
 | ||
| 	 whether the object is already loaded.  But since there is no
 | ||
| 	 easy way out and because the dynamic binary must also not
 | ||
| 	 have an SONAME we ignore this program for now.  If it becomes
 | ||
| 	 a problem we can force people using SONAMEs.  */
 | ||
| 
 | ||
|       /* We delay initializing the path structure until we got the dynamic
 | ||
| 	 information for the program.  */
 | ||
|     }
 | ||
| 
 | ||
|   bool has_interp = rtld_setup_main_map (main_map);
 | ||
| 
 | ||
|   /* If the current libname is different from the SONAME, add the
 | ||
|      latter as well.  */
 | ||
|   if (GL(dl_rtld_map).l_info[DT_SONAME] != NULL
 | ||
|       && strcmp (GL(dl_rtld_map).l_libname->name,
 | ||
| 		 (const char *) D_PTR (&GL(dl_rtld_map), l_info[DT_STRTAB])
 | ||
| 		 + GL(dl_rtld_map).l_info[DT_SONAME]->d_un.d_val) != 0)
 | ||
|     {
 | ||
|       static struct libname_list newname;
 | ||
|       newname.name = ((char *) D_PTR (&GL(dl_rtld_map), l_info[DT_STRTAB])
 | ||
| 		      + GL(dl_rtld_map).l_info[DT_SONAME]->d_un.d_ptr);
 | ||
|       newname.next = NULL;
 | ||
|       newname.dont_free = 1;
 | ||
| 
 | ||
|       assert (GL(dl_rtld_map).l_libname->next == NULL);
 | ||
|       GL(dl_rtld_map).l_libname->next = &newname;
 | ||
|     }
 | ||
|   /* The ld.so must be relocated since otherwise loading audit modules
 | ||
|      will fail since they reuse the very same ld.so.  */
 | ||
|   assert (GL(dl_rtld_map).l_relocated);
 | ||
| 
 | ||
|   if (! rtld_is_main)
 | ||
|     {
 | ||
|       /* Extract the contents of the dynamic section for easy access.  */
 | ||
|       elf_get_dynamic_info (main_map, false, false);
 | ||
| 
 | ||
|       /* If the main map is libc.so, update the base namespace to
 | ||
| 	 refer to this map.  If libc.so is loaded later, this happens
 | ||
| 	 in _dl_map_object_from_fd.  */
 | ||
|       if (main_map->l_info[DT_SONAME] != NULL
 | ||
| 	  && (strcmp (((const char *) D_PTR (main_map, l_info[DT_STRTAB])
 | ||
| 		      + main_map->l_info[DT_SONAME]->d_un.d_val), LIBC_SO)
 | ||
| 	      == 0))
 | ||
| 	GL(dl_ns)[LM_ID_BASE].libc_map = main_map;
 | ||
| 
 | ||
|       /* Set up our cache of pointers into the hash table.  */
 | ||
|       _dl_setup_hash (main_map);
 | ||
|     }
 | ||
| 
 | ||
|   if (__glibc_unlikely (state.mode == rtld_mode_verify))
 | ||
|     {
 | ||
|       /* We were called just to verify that this is a dynamic
 | ||
| 	 executable using us as the program interpreter.  Exit with an
 | ||
| 	 error if we were not able to load the binary or no interpreter
 | ||
| 	 is specified (i.e., this is no dynamically linked binary.  */
 | ||
|       if (main_map->l_ld == NULL)
 | ||
| 	_exit (1);
 | ||
| 
 | ||
|       _exit (has_interp ? 0 : 2);
 | ||
|     }
 | ||
| 
 | ||
|   struct link_map **first_preload = &GL(dl_rtld_map).l_next;
 | ||
|   /* Set up the data structures for the system-supplied DSO early,
 | ||
|      so they can influence _dl_init_paths.  */
 | ||
|   setup_vdso (main_map, &first_preload);
 | ||
| 
 | ||
|   /* With vDSO setup we can initialize the function pointers.  */
 | ||
|   setup_vdso_pointers ();
 | ||
| 
 | ||
|   /* Initialize the data structures for the search paths for shared
 | ||
|      objects.  */
 | ||
|   call_init_paths (&state);
 | ||
| 
 | ||
|   /* Initialize _r_debug_extended.  */
 | ||
|   struct r_debug *r = _dl_debug_initialize (GL(dl_rtld_map).l_addr,
 | ||
| 					    LM_ID_BASE);
 | ||
|   r->r_state = RT_CONSISTENT;
 | ||
| 
 | ||
|   /* Put the link_map for ourselves on the chain so it can be found by
 | ||
|      name.  Note that at this point the global chain of link maps contains
 | ||
|      exactly one element, which is pointed to by dl_loaded.  */
 | ||
|   if (! GL(dl_rtld_map).l_name)
 | ||
|     /* If not invoked directly, the dynamic linker shared object file was
 | ||
|        found by the PT_INTERP name.  */
 | ||
|     GL(dl_rtld_map).l_name = (char *) GL(dl_rtld_map).l_libname->name;
 | ||
|   GL(dl_rtld_map).l_type = lt_library;
 | ||
|   main_map->l_next = &GL(dl_rtld_map);
 | ||
|   GL(dl_rtld_map).l_prev = main_map;
 | ||
|   ++GL(dl_ns)[LM_ID_BASE]._ns_nloaded;
 | ||
|   ++GL(dl_load_adds);
 | ||
| 
 | ||
|   /* Starting from binutils-2.23, the linker will define the magic symbol
 | ||
|      __ehdr_start to point to our own ELF header if it is visible in a
 | ||
|      segment that also includes the phdrs.  If that's not available, we use
 | ||
|      the old method that assumes the beginning of the file is part of the
 | ||
|      lowest-addressed PT_LOAD segment.  */
 | ||
| 
 | ||
|   /* Set up the program header information for the dynamic linker
 | ||
|      itself.  It is needed in the dl_iterate_phdr callbacks.  */
 | ||
|   const ElfW(Ehdr) *rtld_ehdr = &__ehdr_start;
 | ||
|   assert (rtld_ehdr->e_ehsize == sizeof *rtld_ehdr);
 | ||
|   assert (rtld_ehdr->e_phentsize == sizeof (ElfW(Phdr)));
 | ||
| 
 | ||
|   const ElfW(Phdr) *rtld_phdr = (const void *) rtld_ehdr + rtld_ehdr->e_phoff;
 | ||
| 
 | ||
|   GL(dl_rtld_map).l_phdr = rtld_phdr;
 | ||
|   GL(dl_rtld_map).l_phnum = rtld_ehdr->e_phnum;
 | ||
| 
 | ||
| 
 | ||
|   /* PT_GNU_RELRO is usually the last phdr.  */
 | ||
|   size_t cnt = rtld_ehdr->e_phnum;
 | ||
|   while (cnt-- > 0)
 | ||
|     if (rtld_phdr[cnt].p_type == PT_GNU_RELRO)
 | ||
|       {
 | ||
| 	GL(dl_rtld_map).l_relro_addr = rtld_phdr[cnt].p_vaddr;
 | ||
| 	GL(dl_rtld_map).l_relro_size = rtld_phdr[cnt].p_memsz;
 | ||
| 	break;
 | ||
|       }
 | ||
| 
 | ||
|   /* Add the dynamic linker to the TLS list if it also uses TLS.  */
 | ||
|   if (GL(dl_rtld_map).l_tls_blocksize != 0)
 | ||
|     /* Assign a module ID.  Do this before loading any audit modules.  */
 | ||
|     _dl_assign_tls_modid (&GL(dl_rtld_map));
 | ||
| 
 | ||
|   audit_list_add_dynamic_tag (&state.audit_list, main_map, DT_AUDIT);
 | ||
|   audit_list_add_dynamic_tag (&state.audit_list, main_map, DT_DEPAUDIT);
 | ||
| 
 | ||
|   /* At this point, all data has been obtained that is included in the
 | ||
|      --help output.  */
 | ||
|   if (__glibc_unlikely (state.mode == rtld_mode_help))
 | ||
|     _dl_help (ld_so_name, &state);
 | ||
| 
 | ||
|   /* If we have auditing DSOs to load, do it now.  */
 | ||
|   bool need_security_init = true;
 | ||
|   if (state.audit_list.length > 0)
 | ||
|     {
 | ||
|       size_t naudit = audit_list_count (&state.audit_list);
 | ||
| 
 | ||
|       /* Since we start using the auditing DSOs right away we need to
 | ||
| 	 initialize the data structures now.  */
 | ||
|       tcbp = init_tls (naudit);
 | ||
| 
 | ||
|       /* Initialize security features.  We need to do it this early
 | ||
| 	 since otherwise the constructors of the audit libraries will
 | ||
| 	 use different values (especially the pointer guard) and will
 | ||
| 	 fail later on.  */
 | ||
|       security_init ();
 | ||
|       need_security_init = false;
 | ||
| 
 | ||
|       load_audit_modules (main_map, &state.audit_list);
 | ||
| 
 | ||
|       /* The count based on audit strings may overestimate the number
 | ||
| 	 of audit modules that got loaded, but not underestimate.  */
 | ||
|       assert (GLRO(dl_naudit) <= naudit);
 | ||
|     }
 | ||
| 
 | ||
|   /* Keep track of the currently loaded modules to count how many
 | ||
|      non-audit modules which use TLS are loaded.  */
 | ||
|   size_t count_modids = _dl_count_modids ();
 | ||
| 
 | ||
|   /* Set up debugging before the debugger is notified for the first time.  */
 | ||
|   elf_setup_debug_entry (main_map, r);
 | ||
| 
 | ||
|   /* We start adding objects.  */
 | ||
|   r->r_state = RT_ADD;
 | ||
|   _dl_debug_state ();
 | ||
|   LIBC_PROBE (init_start, 2, LM_ID_BASE, r);
 | ||
| 
 | ||
|   /* Auditing checkpoint: we are ready to signal that the initial map
 | ||
|      is being constructed.  */
 | ||
|   _dl_audit_activity_map (main_map, LA_ACT_ADD);
 | ||
| 
 | ||
|   /* We have two ways to specify objects to preload: via environment
 | ||
|      variable and via the file /etc/ld.so.preload.  The latter can also
 | ||
|      be used when security is enabled.  */
 | ||
|   assert (*first_preload == NULL);
 | ||
|   struct link_map **preloads = NULL;
 | ||
|   unsigned int npreloads = 0;
 | ||
| 
 | ||
|   if (__glibc_unlikely (state.preloadlist != NULL))
 | ||
|     {
 | ||
|       RTLD_TIMING_VAR (start);
 | ||
|       rtld_timer_start (&start);
 | ||
|       npreloads += handle_preload_list (state.preloadlist, main_map,
 | ||
| 					"LD_PRELOAD");
 | ||
|       rtld_timer_accum (&load_time, start);
 | ||
|     }
 | ||
| 
 | ||
|   if (__glibc_unlikely (state.preloadarg != NULL))
 | ||
|     {
 | ||
|       RTLD_TIMING_VAR (start);
 | ||
|       rtld_timer_start (&start);
 | ||
|       npreloads += handle_preload_list (state.preloadarg, main_map,
 | ||
| 					"--preload");
 | ||
|       rtld_timer_accum (&load_time, start);
 | ||
|     }
 | ||
| 
 | ||
|   /* There usually is no ld.so.preload file, it should only be used
 | ||
|      for emergencies and testing.  So the open call etc should usually
 | ||
|      fail.  Using access() on a non-existing file is faster than using
 | ||
|      open().  So we do this first.  If it succeeds we do almost twice
 | ||
|      the work but this does not matter, since it is not for production
 | ||
|      use.  */
 | ||
|   static const char preload_file[] = "/etc/ld.so.preload";
 | ||
|   if (__glibc_unlikely (__access (preload_file, R_OK) == 0))
 | ||
|     {
 | ||
|       /* Read the contents of the file.  */
 | ||
|       file = _dl_sysdep_read_whole_file (preload_file, &file_size,
 | ||
| 					 PROT_READ | PROT_WRITE);
 | ||
|       if (__glibc_unlikely (file != MAP_FAILED))
 | ||
| 	{
 | ||
| 	  /* Parse the file.  It contains names of libraries to be loaded,
 | ||
| 	     separated by white spaces or `:'.  It may also contain
 | ||
| 	     comments introduced by `#'.  */
 | ||
| 	  char *problem;
 | ||
| 	  char *runp;
 | ||
| 	  size_t rest;
 | ||
| 
 | ||
| 	  /* Eliminate comments.  */
 | ||
| 	  runp = file;
 | ||
| 	  rest = file_size;
 | ||
| 	  while (rest > 0)
 | ||
| 	    {
 | ||
| 	      char *comment = memchr (runp, '#', rest);
 | ||
| 	      if (comment == NULL)
 | ||
| 		break;
 | ||
| 
 | ||
| 	      rest -= comment - runp;
 | ||
| 	      do
 | ||
| 		*comment = ' ';
 | ||
| 	      while (--rest > 0 && *++comment != '\n');
 | ||
| 	    }
 | ||
| 
 | ||
| 	  /* We have one problematic case: if we have a name at the end of
 | ||
| 	     the file without a trailing terminating characters, we cannot
 | ||
| 	     place the \0.  Handle the case separately.  */
 | ||
| 	  if (file[file_size - 1] != ' ' && file[file_size - 1] != '\t'
 | ||
| 	      && file[file_size - 1] != '\n' && file[file_size - 1] != ':')
 | ||
| 	    {
 | ||
| 	      problem = &file[file_size];
 | ||
| 	      while (problem > file && problem[-1] != ' '
 | ||
| 		     && problem[-1] != '\t'
 | ||
| 		     && problem[-1] != '\n' && problem[-1] != ':')
 | ||
| 		--problem;
 | ||
| 
 | ||
| 	      if (problem > file)
 | ||
| 		problem[-1] = '\0';
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      problem = NULL;
 | ||
| 	      file[file_size - 1] = '\0';
 | ||
| 	    }
 | ||
| 
 | ||
| 	  RTLD_TIMING_VAR (start);
 | ||
| 	  rtld_timer_start (&start);
 | ||
| 
 | ||
| 	  if (file != problem)
 | ||
| 	    {
 | ||
| 	      char *p;
 | ||
| 	      runp = file;
 | ||
| 	      while ((p = strsep (&runp, ": \t\n")) != NULL)
 | ||
| 		if (p[0] != '\0')
 | ||
| 		  npreloads += do_preload (p, main_map, preload_file);
 | ||
| 	    }
 | ||
| 
 | ||
| 	  if (problem != NULL)
 | ||
| 	    {
 | ||
| 	      char *p = strndupa (problem, file_size - (problem - file));
 | ||
| 
 | ||
| 	      npreloads += do_preload (p, main_map, preload_file);
 | ||
| 	    }
 | ||
| 
 | ||
| 	  rtld_timer_accum (&load_time, start);
 | ||
| 
 | ||
| 	  /* We don't need the file anymore.  */
 | ||
| 	  __munmap (file, file_size);
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   if (__glibc_unlikely (*first_preload != NULL))
 | ||
|     {
 | ||
|       /* Set up PRELOADS with a vector of the preloaded libraries.  */
 | ||
|       struct link_map *l = *first_preload;
 | ||
|       preloads = __alloca (npreloads * sizeof preloads[0]);
 | ||
|       i = 0;
 | ||
|       do
 | ||
| 	{
 | ||
| 	  preloads[i++] = l;
 | ||
| 	  l = l->l_next;
 | ||
| 	} while (l);
 | ||
|       assert (i == npreloads);
 | ||
|     }
 | ||
| 
 | ||
| #ifdef NEED_DL_SYSINFO_DSO
 | ||
|   /* Now that the audit modules are opened, call la_objopen for the vDSO.  */
 | ||
|   if (GLRO(dl_sysinfo_map) != NULL)
 | ||
|     _dl_audit_objopen (GLRO(dl_sysinfo_map), LM_ID_BASE);
 | ||
| #endif
 | ||
| 
 | ||
|   /* Load all the libraries specified by DT_NEEDED entries.  If LD_PRELOAD
 | ||
|      specified some libraries to load, these are inserted before the actual
 | ||
|      dependencies in the executable's searchlist for symbol resolution.  */
 | ||
|   {
 | ||
|     RTLD_TIMING_VAR (start);
 | ||
|     rtld_timer_start (&start);
 | ||
|     _dl_map_object_deps (main_map, preloads, npreloads,
 | ||
| 			 state.mode == rtld_mode_trace, 0);
 | ||
|     rtld_timer_accum (&load_time, start);
 | ||
|   }
 | ||
| 
 | ||
|   /* Mark all objects as being in the global scope.  */
 | ||
|   for (i = main_map->l_searchlist.r_nlist; i > 0; )
 | ||
|     main_map->l_searchlist.r_list[--i]->l_global = 1;
 | ||
| 
 | ||
|   /* Remove _dl_rtld_map from the chain.  */
 | ||
|   GL(dl_rtld_map).l_prev->l_next = GL(dl_rtld_map).l_next;
 | ||
|   if (GL(dl_rtld_map).l_next != NULL)
 | ||
|     GL(dl_rtld_map).l_next->l_prev = GL(dl_rtld_map).l_prev;
 | ||
| 
 | ||
|   for (i = 1; i < main_map->l_searchlist.r_nlist; ++i)
 | ||
|     if (main_map->l_searchlist.r_list[i] == &GL(dl_rtld_map))
 | ||
|       break;
 | ||
| 
 | ||
|   bool rtld_multiple_ref = false;
 | ||
|   if (__glibc_likely (i < main_map->l_searchlist.r_nlist))
 | ||
|     {
 | ||
|       /* Some DT_NEEDED entry referred to the interpreter object itself, so
 | ||
| 	 put it back in the list of visible objects.  We insert it into the
 | ||
| 	 chain in symbol search order because gdb uses the chain's order as
 | ||
| 	 its symbol search order.  */
 | ||
|       rtld_multiple_ref = true;
 | ||
| 
 | ||
|       GL(dl_rtld_map).l_prev = main_map->l_searchlist.r_list[i - 1];
 | ||
|       if (__glibc_likely (state.mode == rtld_mode_normal))
 | ||
| 	{
 | ||
| 	  GL(dl_rtld_map).l_next = (i + 1 < main_map->l_searchlist.r_nlist
 | ||
| 				    ? main_map->l_searchlist.r_list[i + 1]
 | ||
| 				    : NULL);
 | ||
| #ifdef NEED_DL_SYSINFO_DSO
 | ||
| 	  if (GLRO(dl_sysinfo_map) != NULL
 | ||
| 	      && GL(dl_rtld_map).l_prev->l_next == GLRO(dl_sysinfo_map)
 | ||
| 	      && GL(dl_rtld_map).l_next != GLRO(dl_sysinfo_map))
 | ||
| 	    GL(dl_rtld_map).l_prev = GLRO(dl_sysinfo_map);
 | ||
| #endif
 | ||
| 	}
 | ||
|       else
 | ||
| 	/* In trace mode there might be an invisible object (which we
 | ||
| 	   could not find) after the previous one in the search list.
 | ||
| 	   In this case it doesn't matter much where we put the
 | ||
| 	   interpreter object, so we just initialize the list pointer so
 | ||
| 	   that the assertion below holds.  */
 | ||
| 	GL(dl_rtld_map).l_next = GL(dl_rtld_map).l_prev->l_next;
 | ||
| 
 | ||
|       assert (GL(dl_rtld_map).l_prev->l_next == GL(dl_rtld_map).l_next);
 | ||
|       GL(dl_rtld_map).l_prev->l_next = &GL(dl_rtld_map);
 | ||
|       if (GL(dl_rtld_map).l_next != NULL)
 | ||
| 	{
 | ||
| 	  assert (GL(dl_rtld_map).l_next->l_prev == GL(dl_rtld_map).l_prev);
 | ||
| 	  GL(dl_rtld_map).l_next->l_prev = &GL(dl_rtld_map);
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   /* Now let us see whether all libraries are available in the
 | ||
|      versions we need.  */
 | ||
|   {
 | ||
|     struct version_check_args args;
 | ||
|     args.doexit = state.mode == rtld_mode_normal;
 | ||
|     args.dotrace = state.mode == rtld_mode_trace;
 | ||
|     _dl_receive_error (print_missing_version, version_check_doit, &args);
 | ||
|   }
 | ||
| 
 | ||
|   /* We do not initialize any of the TLS functionality unless any of the
 | ||
|      initial modules uses TLS.  This makes dynamic loading of modules with
 | ||
|      TLS impossible, but to support it requires either eagerly doing setup
 | ||
|      now or lazily doing it later.  Doing it now makes us incompatible with
 | ||
|      an old kernel that can't perform TLS_INIT_TP, even if no TLS is ever
 | ||
|      used.  Trying to do it lazily is too hairy to try when there could be
 | ||
|      multiple threads (from a non-TLS-using libpthread).  */
 | ||
|   bool was_tls_init_tp_called = __rtld_tls_init_tp_called;
 | ||
|   if (tcbp == NULL)
 | ||
|     tcbp = init_tls (0);
 | ||
| 
 | ||
|   if (__glibc_likely (need_security_init))
 | ||
|     /* Initialize security features.  But only if we have not done it
 | ||
|        earlier.  */
 | ||
|     security_init ();
 | ||
| 
 | ||
|   if (__glibc_unlikely (state.mode != rtld_mode_normal))
 | ||
|     {
 | ||
|       /* We were run just to list the shared libraries.  It is
 | ||
| 	 important that we do this before real relocation, because the
 | ||
| 	 functions we call below for output may no longer work properly
 | ||
| 	 after relocation.  */
 | ||
|       struct link_map *l;
 | ||
| 
 | ||
|       if (GLRO(dl_debug_mask) & DL_DEBUG_UNUSED)
 | ||
| 	{
 | ||
| 	  /* Look through the dependencies of the main executable
 | ||
| 	     and determine which of them is not actually
 | ||
| 	     required.  */
 | ||
| 	  struct link_map *l = main_map;
 | ||
| 
 | ||
| 	  /* Relocate the main executable.  */
 | ||
| 	  struct relocate_args args = { .l = l,
 | ||
| 					.reloc_mode = ((GLRO(dl_lazy)
 | ||
| 						       ? RTLD_LAZY : 0)
 | ||
| 						       | __RTLD_NOIFUNC) };
 | ||
| 	  _dl_receive_error (print_unresolved, relocate_doit, &args);
 | ||
| 
 | ||
| 	  /* This loop depends on the dependencies of the executable to
 | ||
| 	     correspond in number and order to the DT_NEEDED entries.  */
 | ||
| 	  ElfW(Dyn) *dyn = main_map->l_ld;
 | ||
| 	  bool first = true;
 | ||
| 	  while (dyn->d_tag != DT_NULL)
 | ||
| 	    {
 | ||
| 	      if (dyn->d_tag == DT_NEEDED)
 | ||
| 		{
 | ||
| 		  l = l->l_next;
 | ||
| #ifdef NEED_DL_SYSINFO_DSO
 | ||
| 		  /* Skip the VDSO since it's not part of the list
 | ||
| 		     of objects we brought in via DT_NEEDED entries.  */
 | ||
| 		  if (l == GLRO(dl_sysinfo_map))
 | ||
| 		    l = l->l_next;
 | ||
| #endif
 | ||
| 		  if (!l->l_used)
 | ||
| 		    {
 | ||
| 		      if (first)
 | ||
| 			{
 | ||
| 			  _dl_printf ("Unused direct dependencies:\n");
 | ||
| 			  first = false;
 | ||
| 			}
 | ||
| 
 | ||
| 		      _dl_printf ("\t%s\n", l->l_name);
 | ||
| 		    }
 | ||
| 		}
 | ||
| 
 | ||
| 	      ++dyn;
 | ||
| 	    }
 | ||
| 
 | ||
| 	  _exit (first != true);
 | ||
| 	}
 | ||
|       else if (! main_map->l_info[DT_NEEDED])
 | ||
| 	_dl_printf ("\tstatically linked\n");
 | ||
|       else
 | ||
| 	{
 | ||
| 	  for (l = state.mode_trace_program ? main_map : main_map->l_next;
 | ||
| 	       l; l = l->l_next) {
 | ||
| 	    if (l->l_faked)
 | ||
| 	      /* The library was not found.  */
 | ||
| 	      _dl_printf ("\t%s => not found\n",  l->l_libname->name);
 | ||
| 	    else if (strcmp (l->l_libname->name, l->l_name) == 0)
 | ||
| 	      /* Print vDSO like libraries without duplicate name.  Some
 | ||
| 		 consumers depend of this format.  */
 | ||
| 	      _dl_printf ("\t%s (0x%0*zx)\n", l->l_libname->name,
 | ||
| 			  (int) sizeof l->l_map_start * 2,
 | ||
| 			  (size_t) l->l_map_start);
 | ||
| 	    else
 | ||
| 	      _dl_printf ("\t%s => %s (0x%0*zx)\n",
 | ||
| 			  DSO_FILENAME (l->l_libname->name),
 | ||
| 			  DSO_FILENAME (l->l_name),
 | ||
| 			  (int) sizeof l->l_map_start * 2,
 | ||
| 			  (size_t) l->l_map_start);
 | ||
| 	  }
 | ||
| 	}
 | ||
| 
 | ||
|       if (__glibc_unlikely (state.mode != rtld_mode_trace))
 | ||
| 	for (i = 1; i < (unsigned int) _dl_argc; ++i)
 | ||
| 	  {
 | ||
| 	    const ElfW(Sym) *ref = NULL;
 | ||
| 	    ElfW(Addr) loadbase;
 | ||
| 	    lookup_t result;
 | ||
| 
 | ||
| 	    result = _dl_lookup_symbol_x (_dl_argv[i], main_map,
 | ||
| 					  &ref, main_map->l_scope,
 | ||
| 					  NULL, ELF_RTYPE_CLASS_PLT,
 | ||
| 					  DL_LOOKUP_ADD_DEPENDENCY, NULL);
 | ||
| 
 | ||
| 	    loadbase = LOOKUP_VALUE_ADDRESS (result, false);
 | ||
| 
 | ||
| 	    _dl_printf ("%s found at 0x%0*zd in object at 0x%0*zd\n",
 | ||
| 			_dl_argv[i],
 | ||
| 			(int) sizeof ref->st_value * 2,
 | ||
| 			(size_t) ref->st_value,
 | ||
| 			(int) sizeof loadbase * 2, (size_t) loadbase);
 | ||
| 	  }
 | ||
|       else
 | ||
| 	{
 | ||
| 	  /* If LD_WARN is set, warn about undefined symbols.  */
 | ||
| 	  if (GLRO(dl_lazy) >= 0 && GLRO(dl_verbose))
 | ||
| 	    {
 | ||
| 	      /* We have to do symbol dependency testing.  */
 | ||
| 	      struct relocate_args args;
 | ||
| 	      unsigned int i;
 | ||
| 
 | ||
| 	      args.reloc_mode = ((GLRO(dl_lazy) ? RTLD_LAZY : 0)
 | ||
| 				 | __RTLD_NOIFUNC);
 | ||
| 
 | ||
| 	      i = main_map->l_searchlist.r_nlist;
 | ||
| 	      while (i-- > 0)
 | ||
| 		{
 | ||
| 		  struct link_map *l = main_map->l_initfini[i];
 | ||
| 		  if (l != &GL(dl_rtld_map) && ! l->l_faked)
 | ||
| 		    {
 | ||
| 		      args.l = l;
 | ||
| 		      _dl_receive_error (print_unresolved, relocate_doit,
 | ||
| 					 &args);
 | ||
| 		    }
 | ||
| 		}
 | ||
| 
 | ||
| 	    }
 | ||
| #define VERNEEDTAG (DT_NUM + DT_THISPROCNUM + DT_VERSIONTAGIDX (DT_VERNEED))
 | ||
| 	  if (state.version_info)
 | ||
| 	    {
 | ||
| 	      /* Print more information.  This means here, print information
 | ||
| 		 about the versions needed.  */
 | ||
| 	      int first = 1;
 | ||
| 	      struct link_map *map;
 | ||
| 
 | ||
| 	      for (map = main_map; map != NULL; map = map->l_next)
 | ||
| 		{
 | ||
| 		  const char *strtab;
 | ||
| 		  ElfW(Dyn) *dyn = map->l_info[VERNEEDTAG];
 | ||
| 		  ElfW(Verneed) *ent;
 | ||
| 
 | ||
| 		  if (dyn == NULL)
 | ||
| 		    continue;
 | ||
| 
 | ||
| 		  strtab = (const void *) D_PTR (map, l_info[DT_STRTAB]);
 | ||
| 		  ent = (ElfW(Verneed) *) (map->l_addr + dyn->d_un.d_ptr);
 | ||
| 
 | ||
| 		  if (first)
 | ||
| 		    {
 | ||
| 		      _dl_printf ("\n\tVersion information:\n");
 | ||
| 		      first = 0;
 | ||
| 		    }
 | ||
| 
 | ||
| 		  _dl_printf ("\t%s:\n", DSO_FILENAME (map->l_name));
 | ||
| 
 | ||
| 		  while (1)
 | ||
| 		    {
 | ||
| 		      ElfW(Vernaux) *aux;
 | ||
| 		      struct link_map *needed;
 | ||
| 
 | ||
| 		      needed = find_needed (strtab + ent->vn_file);
 | ||
| 		      aux = (ElfW(Vernaux) *) ((char *) ent + ent->vn_aux);
 | ||
| 
 | ||
| 		      while (1)
 | ||
| 			{
 | ||
| 			  const char *fname = NULL;
 | ||
| 
 | ||
| 			  if (needed != NULL
 | ||
| 			      && match_version (strtab + aux->vna_name,
 | ||
| 						needed))
 | ||
| 			    fname = needed->l_name;
 | ||
| 
 | ||
| 			  _dl_printf ("\t\t%s (%s) %s=> %s\n",
 | ||
| 				      strtab + ent->vn_file,
 | ||
| 				      strtab + aux->vna_name,
 | ||
| 				      aux->vna_flags & VER_FLG_WEAK
 | ||
| 				      ? "[WEAK] " : "",
 | ||
| 				      fname ?: "not found");
 | ||
| 
 | ||
| 			  if (aux->vna_next == 0)
 | ||
| 			    /* No more symbols.  */
 | ||
| 			    break;
 | ||
| 
 | ||
| 			  /* Next symbol.  */
 | ||
| 			  aux = (ElfW(Vernaux) *) ((char *) aux
 | ||
| 						   + aux->vna_next);
 | ||
| 			}
 | ||
| 
 | ||
| 		      if (ent->vn_next == 0)
 | ||
| 			/* No more dependencies.  */
 | ||
| 			break;
 | ||
| 
 | ||
| 		      /* Next dependency.  */
 | ||
| 		      ent = (ElfW(Verneed) *) ((char *) ent + ent->vn_next);
 | ||
| 		    }
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	}
 | ||
| 
 | ||
|       _exit (0);
 | ||
|     }
 | ||
| 
 | ||
|   /* Now set up the variable which helps the assembler startup code.  */
 | ||
|   GL(dl_ns)[LM_ID_BASE]._ns_main_searchlist = &main_map->l_searchlist;
 | ||
| 
 | ||
|   /* Save the information about the original global scope list since
 | ||
|      we need it in the memory handling later.  */
 | ||
|   GLRO(dl_initial_searchlist) = *GL(dl_ns)[LM_ID_BASE]._ns_main_searchlist;
 | ||
| 
 | ||
|   /* Remember the last search directory added at startup, now that
 | ||
|      malloc will no longer be the one from dl-minimal.c.  As a side
 | ||
|      effect, this marks ld.so as initialized, so that the rtld_active
 | ||
|      function returns true from now on.  */
 | ||
|   GLRO(dl_init_all_dirs) = GL(dl_all_dirs);
 | ||
| 
 | ||
|   /* Print scope information.  */
 | ||
|   if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_SCOPES))
 | ||
|     {
 | ||
|       _dl_debug_printf ("\nInitial object scopes\n");
 | ||
| 
 | ||
|       for (struct link_map *l = main_map; l != NULL; l = l->l_next)
 | ||
| 	_dl_show_scope (l, 0);
 | ||
|     }
 | ||
| 
 | ||
|   _rtld_main_check (main_map, _dl_argv[0]);
 | ||
| 
 | ||
|   /* Now we have all the objects loaded.  Relocate them all except for
 | ||
|      the dynamic linker itself.  We do this in reverse order so that copy
 | ||
|      relocs of earlier objects overwrite the data written by later
 | ||
|      objects.  We do not re-relocate the dynamic linker itself in this
 | ||
|      loop because that could result in the GOT entries for functions we
 | ||
|      call being changed, and that would break us.  It is safe to relocate
 | ||
|      the dynamic linker out of order because it has no copy relocations.
 | ||
|      Likewise for libc, which is relocated early to ensure that IFUNC
 | ||
|      resolvers in libc work.  */
 | ||
| 
 | ||
|   int consider_profiling = GLRO(dl_profile) != NULL;
 | ||
| 
 | ||
|   /* If we are profiling we also must do lazy reloaction.  */
 | ||
|   GLRO(dl_lazy) |= consider_profiling;
 | ||
| 
 | ||
|   if (GL(dl_ns)[LM_ID_BASE].libc_map != NULL)
 | ||
|     _dl_relocate_object (GL(dl_ns)[LM_ID_BASE].libc_map,
 | ||
| 			 GL(dl_ns)[LM_ID_BASE].libc_map->l_scope,
 | ||
| 			 GLRO(dl_lazy) ? RTLD_LAZY : 0, consider_profiling);
 | ||
| 
 | ||
|   RTLD_TIMING_VAR (start);
 | ||
|   rtld_timer_start (&start);
 | ||
|   {
 | ||
|     unsigned i = main_map->l_searchlist.r_nlist;
 | ||
|     while (i-- > 0)
 | ||
|       {
 | ||
| 	struct link_map *l = main_map->l_initfini[i];
 | ||
| 
 | ||
| 	/* While we are at it, help the memory handling a bit.  We have to
 | ||
| 	   mark some data structures as allocated with the fake malloc()
 | ||
| 	   implementation in ld.so.  */
 | ||
| 	struct libname_list *lnp = l->l_libname->next;
 | ||
| 
 | ||
| 	while (__builtin_expect (lnp != NULL, 0))
 | ||
| 	  {
 | ||
| 	    lnp->dont_free = 1;
 | ||
| 	    lnp = lnp->next;
 | ||
| 	  }
 | ||
| 	/* Also allocated with the fake malloc().  */
 | ||
| 	l->l_free_initfini = 0;
 | ||
| 
 | ||
| 	if (l != &GL(dl_rtld_map))
 | ||
| 	  _dl_relocate_object (l, l->l_scope, GLRO(dl_lazy) ? RTLD_LAZY : 0,
 | ||
| 			       consider_profiling);
 | ||
| 
 | ||
| 	/* Add object to slot information data if necessasy.  */
 | ||
| 	if (l->l_tls_blocksize != 0 && __rtld_tls_init_tp_called)
 | ||
| 	  _dl_add_to_slotinfo (l, true);
 | ||
|       }
 | ||
|   }
 | ||
|   rtld_timer_stop (&relocate_time, start);
 | ||
| 
 | ||
|   /* Now enable profiling if needed.  Like the previous call,
 | ||
|      this has to go here because the calls it makes should use the
 | ||
|      rtld versions of the functions (particularly calloc()), but it
 | ||
|      needs to have _dl_profile_map set up by the relocator.  */
 | ||
|   if (__glibc_unlikely (GL(dl_profile_map) != NULL))
 | ||
|     /* We must prepare the profiling.  */
 | ||
|     _dl_start_profile ();
 | ||
| 
 | ||
|   if ((!was_tls_init_tp_called && GL(dl_tls_max_dtv_idx) > 0)
 | ||
|       || count_modids != _dl_count_modids ())
 | ||
|     ++GL(dl_tls_generation);
 | ||
| 
 | ||
|   /* Now that we have completed relocation, the initializer data
 | ||
|      for the TLS blocks has its final values and we can copy them
 | ||
|      into the main thread's TLS area, which we allocated above.
 | ||
|      Note: thread-local variables must only be accessed after completing
 | ||
|      the next step.  */
 | ||
|   _dl_allocate_tls_init (tcbp, false);
 | ||
| 
 | ||
|   /* And finally install it for the main thread.  */
 | ||
|   if (! __rtld_tls_init_tp_called)
 | ||
|     call_tls_init_tp (tcbp);
 | ||
| 
 | ||
|   /* Make sure no new search directories have been added.  */
 | ||
|   assert (GLRO(dl_init_all_dirs) == GL(dl_all_dirs));
 | ||
| 
 | ||
|   if (rtld_multiple_ref)
 | ||
|     {
 | ||
|       /* There was an explicit ref to the dynamic linker as a shared lib.
 | ||
| 	 Re-relocate ourselves with user-controlled symbol definitions.
 | ||
| 
 | ||
| 	 We must do this after TLS initialization in case after this
 | ||
| 	 re-relocation, we might call a user-supplied function
 | ||
| 	 (e.g. calloc from _dl_relocate_object) that uses TLS data.  */
 | ||
| 
 | ||
|       /* Set up the object lookup structures.  */
 | ||
|       _dl_find_object_init ();
 | ||
| 
 | ||
|       /* The malloc implementation has been relocated, so resolving
 | ||
| 	 its symbols (and potentially calling IFUNC resolvers) is safe
 | ||
| 	 at this point.  */
 | ||
|       __rtld_malloc_init_real (main_map);
 | ||
| 
 | ||
|       /* Likewise for the locking implementation.  */
 | ||
|       __rtld_mutex_init ();
 | ||
| 
 | ||
|       RTLD_TIMING_VAR (start);
 | ||
|       rtld_timer_start (&start);
 | ||
| 
 | ||
|       /* Mark the link map as not yet relocated again.  */
 | ||
|       GL(dl_rtld_map).l_relocated = 0;
 | ||
|       _dl_relocate_object (&GL(dl_rtld_map), main_map->l_scope, 0, 0);
 | ||
| 
 | ||
|       rtld_timer_accum (&relocate_time, start);
 | ||
|     }
 | ||
| 
 | ||
|   /* Relocation is complete.  Perform early libc initialization.  This
 | ||
|      is the initial libc, even if audit modules have been loaded with
 | ||
|      other libcs.  */
 | ||
|   _dl_call_libc_early_init (GL(dl_ns)[LM_ID_BASE].libc_map, true);
 | ||
| 
 | ||
|   /* Do any necessary cleanups for the startup OS interface code.
 | ||
|      We do these now so that no calls are made after rtld re-relocation
 | ||
|      which might be resolved to different functions than we expect.
 | ||
|      We cannot do this before relocating the other objects because
 | ||
|      _dl_relocate_object might need to call `mprotect' for DT_TEXTREL.  */
 | ||
|   _dl_sysdep_start_cleanup ();
 | ||
| 
 | ||
|   /* Auditing checkpoint: we have added all objects.  */
 | ||
|   _dl_audit_activity_nsid (LM_ID_BASE, LA_ACT_CONSISTENT);
 | ||
| 
 | ||
|   /* Notify the debugger all new objects are now ready to go.  We must re-get
 | ||
|      the address since by now the variable might be in another object.  */
 | ||
|   r = _dl_debug_update (LM_ID_BASE);
 | ||
|   r->r_state = RT_CONSISTENT;
 | ||
|   _dl_debug_state ();
 | ||
|   LIBC_PROBE (init_complete, 2, LM_ID_BASE, r);
 | ||
| 
 | ||
| #if defined USE_LDCONFIG && !defined MAP_COPY
 | ||
|   /* We must munmap() the cache file.  */
 | ||
|   _dl_unload_cache ();
 | ||
| #endif
 | ||
| 
 | ||
|   /* Once we return, _dl_sysdep_start will invoke
 | ||
|      the DT_INIT functions and then *USER_ENTRY.  */
 | ||
| }
 | ||
| 
 | ||
| /* This is a little helper function for resolving symbols while
 | ||
|    tracing the binary.  */
 | ||
| static void
 | ||
| print_unresolved (int errcode __attribute__ ((unused)), const char *objname,
 | ||
| 		  const char *errstring)
 | ||
| {
 | ||
|   if (objname[0] == '\0')
 | ||
|     objname = RTLD_PROGNAME;
 | ||
|   _dl_error_printf ("%s	(%s)\n", errstring, objname);
 | ||
| }
 | ||
| 
 | ||
| /* This is a little helper function for resolving symbols while
 | ||
|    tracing the binary.  */
 | ||
| static void
 | ||
| print_missing_version (int errcode __attribute__ ((unused)),
 | ||
| 		       const char *objname, const char *errstring)
 | ||
| {
 | ||
|   _dl_error_printf ("%s: %s: %s\n", RTLD_PROGNAME,
 | ||
| 		    objname, errstring);
 | ||
| }
 | ||
| 
 | ||
| /* Process the string given as the parameter which explains which debugging
 | ||
|    options are enabled.  */
 | ||
| static void
 | ||
| process_dl_debug (struct dl_main_state *state, const char *dl_debug)
 | ||
| {
 | ||
|   /* When adding new entries make sure that the maximal length of a name
 | ||
|      is correctly handled in the LD_DEBUG_HELP code below.  */
 | ||
|   static const struct
 | ||
|   {
 | ||
|     unsigned char len;
 | ||
|     const char name[10];
 | ||
|     const char helptext[41];
 | ||
|     unsigned short int mask;
 | ||
|   } debopts[] =
 | ||
|     {
 | ||
| #define LEN_AND_STR(str) sizeof (str) - 1, str
 | ||
|       { LEN_AND_STR ("libs"), "display library search paths",
 | ||
| 	DL_DEBUG_LIBS | DL_DEBUG_IMPCALLS },
 | ||
|       { LEN_AND_STR ("reloc"), "display relocation processing",
 | ||
| 	DL_DEBUG_RELOC | DL_DEBUG_IMPCALLS },
 | ||
|       { LEN_AND_STR ("files"), "display progress for input file",
 | ||
| 	DL_DEBUG_FILES | DL_DEBUG_IMPCALLS },
 | ||
|       { LEN_AND_STR ("symbols"), "display symbol table processing",
 | ||
| 	DL_DEBUG_SYMBOLS | DL_DEBUG_IMPCALLS },
 | ||
|       { LEN_AND_STR ("bindings"), "display information about symbol binding",
 | ||
| 	DL_DEBUG_BINDINGS | DL_DEBUG_IMPCALLS },
 | ||
|       { LEN_AND_STR ("versions"), "display version dependencies",
 | ||
| 	DL_DEBUG_VERSIONS | DL_DEBUG_IMPCALLS },
 | ||
|       { LEN_AND_STR ("scopes"), "display scope information",
 | ||
| 	DL_DEBUG_SCOPES },
 | ||
|       { LEN_AND_STR ("all"), "all previous options combined",
 | ||
| 	DL_DEBUG_LIBS | DL_DEBUG_RELOC | DL_DEBUG_FILES | DL_DEBUG_SYMBOLS
 | ||
| 	| DL_DEBUG_BINDINGS | DL_DEBUG_VERSIONS | DL_DEBUG_IMPCALLS
 | ||
| 	| DL_DEBUG_SCOPES },
 | ||
|       { LEN_AND_STR ("statistics"), "display relocation statistics",
 | ||
| 	DL_DEBUG_STATISTICS },
 | ||
|       { LEN_AND_STR ("unused"), "determined unused DSOs",
 | ||
| 	DL_DEBUG_UNUSED },
 | ||
|       { LEN_AND_STR ("help"), "display this help message and exit",
 | ||
| 	DL_DEBUG_HELP },
 | ||
|     };
 | ||
| #define ndebopts (sizeof (debopts) / sizeof (debopts[0]))
 | ||
| 
 | ||
|   /* Skip separating white spaces and commas.  */
 | ||
|   while (*dl_debug != '\0')
 | ||
|     {
 | ||
|       if (*dl_debug != ' ' && *dl_debug != ',' && *dl_debug != ':')
 | ||
| 	{
 | ||
| 	  size_t cnt;
 | ||
| 	  size_t len = 1;
 | ||
| 
 | ||
| 	  while (dl_debug[len] != '\0' && dl_debug[len] != ' '
 | ||
| 		 && dl_debug[len] != ',' && dl_debug[len] != ':')
 | ||
| 	    ++len;
 | ||
| 
 | ||
| 	  for (cnt = 0; cnt < ndebopts; ++cnt)
 | ||
| 	    if (debopts[cnt].len == len
 | ||
| 		&& memcmp (dl_debug, debopts[cnt].name, len) == 0)
 | ||
| 	      {
 | ||
| 		GLRO(dl_debug_mask) |= debopts[cnt].mask;
 | ||
| 		break;
 | ||
| 	      }
 | ||
| 
 | ||
| 	  if (cnt == ndebopts)
 | ||
| 	    {
 | ||
| 	      /* Display a warning and skip everything until next
 | ||
| 		 separator.  */
 | ||
| 	      char *copy = strndupa (dl_debug, len);
 | ||
| 	      _dl_error_printf ("\
 | ||
| warning: debug option `%s' unknown; try LD_DEBUG=help\n", copy);
 | ||
| 	    }
 | ||
| 
 | ||
| 	  dl_debug += len;
 | ||
| 	  continue;
 | ||
| 	}
 | ||
| 
 | ||
|       ++dl_debug;
 | ||
|     }
 | ||
| 
 | ||
|   if (GLRO(dl_debug_mask) & DL_DEBUG_UNUSED)
 | ||
|     {
 | ||
|       /* In order to get an accurate picture of whether a particular
 | ||
| 	 DT_NEEDED entry is actually used we have to process both
 | ||
| 	 the PLT and non-PLT relocation entries.  */
 | ||
|       GLRO(dl_lazy) = 0;
 | ||
|     }
 | ||
| 
 | ||
|   if (GLRO(dl_debug_mask) & DL_DEBUG_HELP)
 | ||
|     {
 | ||
|       size_t cnt;
 | ||
| 
 | ||
|       _dl_printf ("\
 | ||
| Valid options for the LD_DEBUG environment variable are:\n\n");
 | ||
| 
 | ||
|       for (cnt = 0; cnt < ndebopts; ++cnt)
 | ||
| 	_dl_printf ("  %.*s%s%s\n", debopts[cnt].len, debopts[cnt].name,
 | ||
| 		    "         " + debopts[cnt].len - 3,
 | ||
| 		    debopts[cnt].helptext);
 | ||
| 
 | ||
|       _dl_printf ("\n\
 | ||
| To direct the debugging output into a file instead of standard output\n\
 | ||
| a filename can be specified using the LD_DEBUG_OUTPUT environment variable.\n");
 | ||
|       _exit (0);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| process_envvars_secure (struct dl_main_state *state)
 | ||
| {
 | ||
|   char **runp = _environ;
 | ||
|   char *envline;
 | ||
| 
 | ||
|   while ((envline = _dl_next_ld_env_entry (&runp)) != NULL)
 | ||
|     {
 | ||
|       size_t len = 0;
 | ||
| 
 | ||
|       while (envline[len] != '\0' && envline[len] != '=')
 | ||
| 	++len;
 | ||
| 
 | ||
|       if (envline[len] != '=')
 | ||
| 	/* This is a "LD_" variable at the end of the string without
 | ||
| 	   a '=' character.  Ignore it since otherwise we will access
 | ||
| 	   invalid memory below.  */
 | ||
| 	continue;
 | ||
| 
 | ||
|       switch (len)
 | ||
| 	{
 | ||
| 	case 5:
 | ||
| 	  /* For __libc_enable_secure mode, audit pathnames containing slashes
 | ||
| 	     are ignored.  Also, shared audit objects are only loaded only from
 | ||
| 	     the standard search directories and only if they have set-user-ID
 | ||
| 	     mode bit enabled.  */
 | ||
| 	  if (memcmp (envline, "AUDIT", 5) == 0)
 | ||
| 	    audit_list_add_string (&state->audit_list, &envline[6]);
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case 7:
 | ||
| 	  /* For __libc_enable_secure mode, preload pathnames containing slashes
 | ||
| 	     are ignored.  Also, shared objects are only preloaded from the
 | ||
| 	     standard search directories and only if they have set-user-ID mode
 | ||
| 	     bit enabled.  */
 | ||
| 	  if (memcmp (envline, "PRELOAD", 7) == 0)
 | ||
| 	    state->preloadlist = &envline[8];
 | ||
| 	  break;
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   /* Extra security for SUID binaries.  Remove all dangerous environment
 | ||
|      variables.  */
 | ||
|   const char *nextp = UNSECURE_ENVVARS;
 | ||
|   do
 | ||
|     {
 | ||
|       unsetenv (nextp);
 | ||
|       nextp = strchr (nextp, '\0') + 1;
 | ||
|     }
 | ||
|   while (*nextp != '\0');
 | ||
| 
 | ||
|   if (GLRO(dl_debug_mask) != 0
 | ||
|       || GLRO(dl_verbose) != 0
 | ||
|       || GLRO(dl_lazy) != 1
 | ||
|       || GLRO(dl_bind_not) != 0
 | ||
|       || state->mode != rtld_mode_normal
 | ||
|       || state->version_info)
 | ||
|     _exit (5);
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| process_envvars_default (struct dl_main_state *state)
 | ||
| {
 | ||
|   char **runp = _environ;
 | ||
|   char *envline;
 | ||
|   char *debug_output = NULL;
 | ||
| 
 | ||
|   while ((envline = _dl_next_ld_env_entry (&runp)) != NULL)
 | ||
|     {
 | ||
|       size_t len = 0;
 | ||
| 
 | ||
|       while (envline[len] != '\0' && envline[len] != '=')
 | ||
| 	++len;
 | ||
| 
 | ||
|       if (envline[len] != '=')
 | ||
| 	/* This is a "LD_" variable at the end of the string without
 | ||
| 	   a '=' character.  Ignore it since otherwise we will access
 | ||
| 	   invalid memory below.  */
 | ||
| 	continue;
 | ||
| 
 | ||
|       switch (len)
 | ||
| 	{
 | ||
| 	case 4:
 | ||
| 	  /* Warning level, verbose or not.  */
 | ||
| 	  if (memcmp (envline, "WARN", 4) == 0)
 | ||
| 	    GLRO(dl_verbose) = envline[5] != '\0';
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case 5:
 | ||
| 	  /* Debugging of the dynamic linker?  */
 | ||
| 	  if (memcmp (envline, "DEBUG", 5) == 0)
 | ||
| 	    {
 | ||
| 	      process_dl_debug (state, &envline[6]);
 | ||
| 	      break;
 | ||
| 	    }
 | ||
| 	  /* For __libc_enable_secure mode, audit pathnames containing slashes
 | ||
| 	     are ignored.  Also, shared audit objects are only loaded only from
 | ||
| 	     the standard search directories and only if they have set-user-ID
 | ||
| 	     mode bit enabled.  */
 | ||
| 	  if (memcmp (envline, "AUDIT", 5) == 0)
 | ||
| 	    audit_list_add_string (&state->audit_list, &envline[6]);
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case 7:
 | ||
| 	  /* Print information about versions.  */
 | ||
| 	  if (memcmp (envline, "VERBOSE", 7) == 0)
 | ||
| 	    {
 | ||
| 	      state->version_info = envline[8] != '\0';
 | ||
| 	      break;
 | ||
| 	    }
 | ||
| 
 | ||
| 	  /* For __libc_enable_secure mode, preload pathnames containing slashes
 | ||
| 	     are ignored.  Also, shared objects are only preloaded from the
 | ||
| 	     standard search directories and only if they have set-user-ID mode
 | ||
| 	     bit enabled.  */
 | ||
| 	  if (memcmp (envline, "PRELOAD", 7) == 0)
 | ||
| 	    {
 | ||
| 	      state->preloadlist = &envline[8];
 | ||
| 	      break;
 | ||
| 	    }
 | ||
| 
 | ||
| 	  /* Which shared object shall be profiled.  */
 | ||
| 	  if (memcmp (envline, "PROFILE", 7) == 0 && envline[8] != '\0')
 | ||
| 	    GLRO(dl_profile) = &envline[8];
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case 8:
 | ||
| 	  /* Do we bind early?  */
 | ||
| 	  if (memcmp (envline, "BIND_NOW", 8) == 0)
 | ||
| 	    {
 | ||
| 	      GLRO(dl_lazy) = envline[9] == '\0';
 | ||
| 	      break;
 | ||
| 	    }
 | ||
| 	  if (memcmp (envline, "BIND_NOT", 8) == 0)
 | ||
| 	    GLRO(dl_bind_not) = envline[9] != '\0';
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case 9:
 | ||
| 	  /* Test whether we want to see the content of the auxiliary
 | ||
| 	     array passed up from the kernel.  */
 | ||
| 	  if (memcmp (envline, "SHOW_AUXV", 9) == 0)
 | ||
| 	    _dl_show_auxv ();
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case 11:
 | ||
| 	  /* Path where the binary is found.  */
 | ||
| 	  if (memcmp (envline, "ORIGIN_PATH", 11) == 0)
 | ||
| 	    GLRO(dl_origin_path) = &envline[12];
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case 12:
 | ||
| 	  /* The library search path.  */
 | ||
| 	  if (memcmp (envline, "LIBRARY_PATH", 12) == 0)
 | ||
| 	    {
 | ||
| 	      state->library_path = &envline[13];
 | ||
| 	      state->library_path_source = "LD_LIBRARY_PATH";
 | ||
| 	      break;
 | ||
| 	    }
 | ||
| 
 | ||
| 	  /* Where to place the profiling data file.  */
 | ||
| 	  if (memcmp (envline, "DEBUG_OUTPUT", 12) == 0)
 | ||
| 	    {
 | ||
| 	      debug_output = &envline[13];
 | ||
| 	      break;
 | ||
| 	    }
 | ||
| 
 | ||
| 	  if (memcmp (envline, "DYNAMIC_WEAK", 12) == 0)
 | ||
| 	    GLRO(dl_dynamic_weak) = 1;
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case 14:
 | ||
| 	  /* Where to place the profiling data file.  */
 | ||
| 	  if (memcmp (envline, "PROFILE_OUTPUT", 14) == 0
 | ||
| 	      && envline[15] != '\0')
 | ||
| 	    GLRO(dl_profile_output) = &envline[15];
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case 20:
 | ||
| 	  /* The mode of the dynamic linker can be set.  */
 | ||
| 	  if (memcmp (envline, "TRACE_LOADED_OBJECTS", 20) == 0)
 | ||
| 	    {
 | ||
| 	      state->mode = rtld_mode_trace;
 | ||
| 	      state->mode_trace_program
 | ||
| 		= _dl_strtoul (&envline[21], NULL) > 1;
 | ||
| 	    }
 | ||
| 	  break;
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   /* If we have to run the dynamic linker in debugging mode and the
 | ||
|      LD_DEBUG_OUTPUT environment variable is given, we write the debug
 | ||
|      messages to this file.  */
 | ||
|   if (GLRO(dl_debug_mask) != 0 && debug_output != NULL)
 | ||
|     {
 | ||
|       const int flags = O_WRONLY | O_APPEND | O_CREAT | O_NOFOLLOW;
 | ||
|       size_t name_len = strlen (debug_output);
 | ||
|       char buf[name_len + 12];
 | ||
|       char *startp;
 | ||
| 
 | ||
|       buf[name_len + 11] = '\0';
 | ||
|       startp = _itoa (__getpid (), &buf[name_len + 11], 10, 0);
 | ||
|       *--startp = '.';
 | ||
|       startp = memcpy (startp - name_len, debug_output, name_len);
 | ||
| 
 | ||
|       GLRO(dl_debug_fd) = __open64_nocancel (startp, flags, DEFFILEMODE);
 | ||
|       if (GLRO(dl_debug_fd) == -1)
 | ||
| 	/* We use standard output if opening the file failed.  */
 | ||
| 	GLRO(dl_debug_fd) = STDOUT_FILENO;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| process_envvars (struct dl_main_state *state)
 | ||
| {
 | ||
|   if (__glibc_unlikely (__libc_enable_secure))
 | ||
|     process_envvars_secure (state);
 | ||
|   else
 | ||
|     process_envvars_default (state);
 | ||
| }
 | ||
| 
 | ||
| #if HP_TIMING_INLINE
 | ||
| static void
 | ||
| print_statistics_item (const char *title, hp_timing_t time,
 | ||
| 		       hp_timing_t total)
 | ||
| {
 | ||
|   char cycles[HP_TIMING_PRINT_SIZE];
 | ||
|   HP_TIMING_PRINT (cycles, sizeof (cycles), time);
 | ||
| 
 | ||
|   char relative[3 * sizeof (hp_timing_t) + 2];
 | ||
|   char *cp = _itoa ((1000ULL * time) / total, relative + sizeof (relative),
 | ||
| 		    10, 0);
 | ||
|   /* Sets the decimal point.  */
 | ||
|   char *wp = relative;
 | ||
|   switch (relative + sizeof (relative) - cp)
 | ||
|     {
 | ||
|     case 3:
 | ||
|       *wp++ = *cp++;
 | ||
|       /* Fall through.  */
 | ||
|     case 2:
 | ||
|       *wp++ = *cp++;
 | ||
|       /* Fall through.  */
 | ||
|     case 1:
 | ||
|       *wp++ = '.';
 | ||
|       *wp++ = *cp++;
 | ||
|     }
 | ||
|   *wp = '\0';
 | ||
|   _dl_debug_printf ("%s: %s cycles (%s%%)\n", title, cycles, relative);
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| /* Print the various times we collected.  */
 | ||
| static void
 | ||
| __attribute ((noinline))
 | ||
| print_statistics (const hp_timing_t *rtld_total_timep)
 | ||
| {
 | ||
| #if HP_TIMING_INLINE
 | ||
|   {
 | ||
|     char cycles[HP_TIMING_PRINT_SIZE];
 | ||
|     HP_TIMING_PRINT (cycles, sizeof (cycles), *rtld_total_timep);
 | ||
|     _dl_debug_printf ("\nruntime linker statistics:\n"
 | ||
| 		      "  total startup time in dynamic loader: %s cycles\n",
 | ||
| 		      cycles);
 | ||
|     print_statistics_item ("            time needed for relocation",
 | ||
| 			   relocate_time, *rtld_total_timep);
 | ||
|   }
 | ||
| #endif
 | ||
| 
 | ||
|   unsigned long int num_relative_relocations = 0;
 | ||
|   for (Lmid_t ns = 0; ns < GL(dl_nns); ++ns)
 | ||
|     {
 | ||
|       if (GL(dl_ns)[ns]._ns_loaded == NULL)
 | ||
| 	continue;
 | ||
| 
 | ||
|       struct r_scope_elem *scope = &GL(dl_ns)[ns]._ns_loaded->l_searchlist;
 | ||
| 
 | ||
|       for (unsigned int i = 0; i < scope->r_nlist; i++)
 | ||
| 	{
 | ||
| 	  struct link_map *l = scope->r_list [i];
 | ||
| 
 | ||
| 	  if (l->l_addr != 0 && l->l_info[VERSYMIDX (DT_RELCOUNT)])
 | ||
| 	    num_relative_relocations
 | ||
| 	      += l->l_info[VERSYMIDX (DT_RELCOUNT)]->d_un.d_val;
 | ||
| #ifndef ELF_MACHINE_REL_RELATIVE
 | ||
| 	  /* Relative relocations are processed on these architectures if
 | ||
| 	     library is loaded to different address than p_vaddr.  */
 | ||
| 	  if ((l->l_addr != 0)
 | ||
| 	      && l->l_info[VERSYMIDX (DT_RELACOUNT)])
 | ||
| #else
 | ||
| 	  /* On e.g. IA-64 or Alpha, relative relocations are processed
 | ||
| 	     only if library is loaded to different address than p_vaddr.  */
 | ||
| 	  if (l->l_addr != 0 && l->l_info[VERSYMIDX (DT_RELACOUNT)])
 | ||
| #endif
 | ||
| 	    num_relative_relocations
 | ||
| 	      += l->l_info[VERSYMIDX (DT_RELACOUNT)]->d_un.d_val;
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   _dl_debug_printf ("                 number of relocations: %lu\n"
 | ||
| 		    "      number of relocations from cache: %lu\n"
 | ||
| 		    "        number of relative relocations: %lu\n",
 | ||
| 		    GL(dl_num_relocations),
 | ||
| 		    GL(dl_num_cache_relocations),
 | ||
| 		    num_relative_relocations);
 | ||
| 
 | ||
| #if HP_TIMING_INLINE
 | ||
|   print_statistics_item ("           time needed to load objects",
 | ||
| 			 load_time, *rtld_total_timep);
 | ||
| #endif
 | ||
| }
 |