mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-31 22:10:34 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			3859 lines
		
	
	
		
			109 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3859 lines
		
	
	
		
			109 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Extended regular expression matching and search library.
 | ||
|    Copyright (C) 2002-2017 Free Software Foundation, Inc.
 | ||
|    This file is part of the GNU C Library.
 | ||
|    Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
 | ||
| 
 | ||
|    The GNU C Library is free software; you can redistribute it and/or
 | ||
|    modify it under the terms of the GNU Lesser General Public
 | ||
|    License as published by the Free Software Foundation; either
 | ||
|    version 2.1 of the License, or (at your option) any later version.
 | ||
| 
 | ||
|    The GNU C Library is distributed in the hope that it will be useful,
 | ||
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | ||
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | ||
|    Lesser General Public License for more details.
 | ||
| 
 | ||
|    You should have received a copy of the GNU Lesser General Public
 | ||
|    License along with the GNU C Library; if not, see
 | ||
|    <http://www.gnu.org/licenses/>.  */
 | ||
| 
 | ||
| #include <stdint.h>
 | ||
| 
 | ||
| #ifdef _LIBC
 | ||
| # include <locale/weight.h>
 | ||
| #endif
 | ||
| 
 | ||
| static reg_errcode_t re_compile_internal (regex_t *preg, const char * pattern,
 | ||
| 					  size_t length, reg_syntax_t syntax);
 | ||
| static void re_compile_fastmap_iter (regex_t *bufp,
 | ||
| 				     const re_dfastate_t *init_state,
 | ||
| 				     char *fastmap);
 | ||
| static reg_errcode_t init_dfa (re_dfa_t *dfa, size_t pat_len);
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| static void free_charset (re_charset_t *cset);
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| static void free_workarea_compile (regex_t *preg);
 | ||
| static reg_errcode_t create_initial_state (re_dfa_t *dfa);
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| static void optimize_utf8 (re_dfa_t *dfa);
 | ||
| #endif
 | ||
| static reg_errcode_t analyze (regex_t *preg);
 | ||
| static reg_errcode_t preorder (bin_tree_t *root,
 | ||
| 			       reg_errcode_t (fn (void *, bin_tree_t *)),
 | ||
| 			       void *extra);
 | ||
| static reg_errcode_t postorder (bin_tree_t *root,
 | ||
| 				reg_errcode_t (fn (void *, bin_tree_t *)),
 | ||
| 				void *extra);
 | ||
| static reg_errcode_t optimize_subexps (void *extra, bin_tree_t *node);
 | ||
| static reg_errcode_t lower_subexps (void *extra, bin_tree_t *node);
 | ||
| static bin_tree_t *lower_subexp (reg_errcode_t *err, regex_t *preg,
 | ||
| 				 bin_tree_t *node);
 | ||
| static reg_errcode_t calc_first (void *extra, bin_tree_t *node);
 | ||
| static reg_errcode_t calc_next (void *extra, bin_tree_t *node);
 | ||
| static reg_errcode_t link_nfa_nodes (void *extra, bin_tree_t *node);
 | ||
| static int duplicate_node (re_dfa_t *dfa, int org_idx, unsigned int constraint);
 | ||
| static int search_duplicated_node (const re_dfa_t *dfa, int org_node,
 | ||
| 				   unsigned int constraint);
 | ||
| static reg_errcode_t calc_eclosure (re_dfa_t *dfa);
 | ||
| static reg_errcode_t calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa,
 | ||
| 					 int node, int root);
 | ||
| static reg_errcode_t calc_inveclosure (re_dfa_t *dfa);
 | ||
| static int fetch_number (re_string_t *input, re_token_t *token,
 | ||
| 			 reg_syntax_t syntax);
 | ||
| static int peek_token (re_token_t *token, re_string_t *input,
 | ||
| 			reg_syntax_t syntax) internal_function;
 | ||
| static bin_tree_t *parse (re_string_t *regexp, regex_t *preg,
 | ||
| 			  reg_syntax_t syntax, reg_errcode_t *err);
 | ||
| static bin_tree_t *parse_reg_exp (re_string_t *regexp, regex_t *preg,
 | ||
| 				  re_token_t *token, reg_syntax_t syntax,
 | ||
| 				  int nest, reg_errcode_t *err);
 | ||
| static bin_tree_t *parse_branch (re_string_t *regexp, regex_t *preg,
 | ||
| 				 re_token_t *token, reg_syntax_t syntax,
 | ||
| 				 int nest, reg_errcode_t *err);
 | ||
| static bin_tree_t *parse_expression (re_string_t *regexp, regex_t *preg,
 | ||
| 				     re_token_t *token, reg_syntax_t syntax,
 | ||
| 				     int nest, reg_errcode_t *err);
 | ||
| static bin_tree_t *parse_sub_exp (re_string_t *regexp, regex_t *preg,
 | ||
| 				  re_token_t *token, reg_syntax_t syntax,
 | ||
| 				  int nest, reg_errcode_t *err);
 | ||
| static bin_tree_t *parse_dup_op (bin_tree_t *dup_elem, re_string_t *regexp,
 | ||
| 				 re_dfa_t *dfa, re_token_t *token,
 | ||
| 				 reg_syntax_t syntax, reg_errcode_t *err);
 | ||
| static bin_tree_t *parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa,
 | ||
| 				      re_token_t *token, reg_syntax_t syntax,
 | ||
| 				      reg_errcode_t *err);
 | ||
| static reg_errcode_t parse_bracket_element (bracket_elem_t *elem,
 | ||
| 					    re_string_t *regexp,
 | ||
| 					    re_token_t *token, int token_len,
 | ||
| 					    re_dfa_t *dfa,
 | ||
| 					    reg_syntax_t syntax,
 | ||
| 					    int accept_hyphen);
 | ||
| static reg_errcode_t parse_bracket_symbol (bracket_elem_t *elem,
 | ||
| 					  re_string_t *regexp,
 | ||
| 					  re_token_t *token);
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| static reg_errcode_t build_equiv_class (bitset_t sbcset,
 | ||
| 					re_charset_t *mbcset,
 | ||
| 					int *equiv_class_alloc,
 | ||
| 					const unsigned char *name);
 | ||
| static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans,
 | ||
| 				      bitset_t sbcset,
 | ||
| 				      re_charset_t *mbcset,
 | ||
| 				      int *char_class_alloc,
 | ||
| 				      const unsigned char *class_name,
 | ||
| 				      reg_syntax_t syntax);
 | ||
| #else  /* not RE_ENABLE_I18N */
 | ||
| static reg_errcode_t build_equiv_class (bitset_t sbcset,
 | ||
| 					const unsigned char *name);
 | ||
| static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans,
 | ||
| 				      bitset_t sbcset,
 | ||
| 				      const unsigned char *class_name,
 | ||
| 				      reg_syntax_t syntax);
 | ||
| #endif /* not RE_ENABLE_I18N */
 | ||
| static bin_tree_t *build_charclass_op (re_dfa_t *dfa,
 | ||
| 				       RE_TRANSLATE_TYPE trans,
 | ||
| 				       const unsigned char *class_name,
 | ||
| 				       const unsigned char *extra,
 | ||
| 				       int non_match, reg_errcode_t *err);
 | ||
| static bin_tree_t *create_tree (re_dfa_t *dfa,
 | ||
| 				bin_tree_t *left, bin_tree_t *right,
 | ||
| 				re_token_type_t type);
 | ||
| static bin_tree_t *create_token_tree (re_dfa_t *dfa,
 | ||
| 				      bin_tree_t *left, bin_tree_t *right,
 | ||
| 				      const re_token_t *token);
 | ||
| static bin_tree_t *duplicate_tree (const bin_tree_t *src, re_dfa_t *dfa);
 | ||
| static void free_token (re_token_t *node);
 | ||
| static reg_errcode_t free_tree (void *extra, bin_tree_t *node);
 | ||
| static reg_errcode_t mark_opt_subexp (void *extra, bin_tree_t *node);
 | ||
| 
 | ||
| /* This table gives an error message for each of the error codes listed
 | ||
|    in regex.h.  Obviously the order here has to be same as there.
 | ||
|    POSIX doesn't require that we do anything for REG_NOERROR,
 | ||
|    but why not be nice?  */
 | ||
| 
 | ||
| const char __re_error_msgid[] attribute_hidden =
 | ||
|   {
 | ||
| #define REG_NOERROR_IDX	0
 | ||
|     gettext_noop ("Success")	/* REG_NOERROR */
 | ||
|     "\0"
 | ||
| #define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
 | ||
|     gettext_noop ("No match")	/* REG_NOMATCH */
 | ||
|     "\0"
 | ||
| #define REG_BADPAT_IDX	(REG_NOMATCH_IDX + sizeof "No match")
 | ||
|     gettext_noop ("Invalid regular expression") /* REG_BADPAT */
 | ||
|     "\0"
 | ||
| #define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
 | ||
|     gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
 | ||
|     "\0"
 | ||
| #define REG_ECTYPE_IDX	(REG_ECOLLATE_IDX + sizeof "Invalid collation character")
 | ||
|     gettext_noop ("Invalid character class name") /* REG_ECTYPE */
 | ||
|     "\0"
 | ||
| #define REG_EESCAPE_IDX	(REG_ECTYPE_IDX + sizeof "Invalid character class name")
 | ||
|     gettext_noop ("Trailing backslash") /* REG_EESCAPE */
 | ||
|     "\0"
 | ||
| #define REG_ESUBREG_IDX	(REG_EESCAPE_IDX + sizeof "Trailing backslash")
 | ||
|     gettext_noop ("Invalid back reference") /* REG_ESUBREG */
 | ||
|     "\0"
 | ||
| #define REG_EBRACK_IDX	(REG_ESUBREG_IDX + sizeof "Invalid back reference")
 | ||
|     gettext_noop ("Unmatched [ or [^")	/* REG_EBRACK */
 | ||
|     "\0"
 | ||
| #define REG_EPAREN_IDX	(REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
 | ||
|     gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
 | ||
|     "\0"
 | ||
| #define REG_EBRACE_IDX	(REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
 | ||
|     gettext_noop ("Unmatched \\{") /* REG_EBRACE */
 | ||
|     "\0"
 | ||
| #define REG_BADBR_IDX	(REG_EBRACE_IDX + sizeof "Unmatched \\{")
 | ||
|     gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
 | ||
|     "\0"
 | ||
| #define REG_ERANGE_IDX	(REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
 | ||
|     gettext_noop ("Invalid range end")	/* REG_ERANGE */
 | ||
|     "\0"
 | ||
| #define REG_ESPACE_IDX	(REG_ERANGE_IDX + sizeof "Invalid range end")
 | ||
|     gettext_noop ("Memory exhausted") /* REG_ESPACE */
 | ||
|     "\0"
 | ||
| #define REG_BADRPT_IDX	(REG_ESPACE_IDX + sizeof "Memory exhausted")
 | ||
|     gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
 | ||
|     "\0"
 | ||
| #define REG_EEND_IDX	(REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
 | ||
|     gettext_noop ("Premature end of regular expression") /* REG_EEND */
 | ||
|     "\0"
 | ||
| #define REG_ESIZE_IDX	(REG_EEND_IDX + sizeof "Premature end of regular expression")
 | ||
|     gettext_noop ("Regular expression too big") /* REG_ESIZE */
 | ||
|     "\0"
 | ||
| #define REG_ERPAREN_IDX	(REG_ESIZE_IDX + sizeof "Regular expression too big")
 | ||
|     gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
 | ||
|   };
 | ||
| 
 | ||
| const size_t __re_error_msgid_idx[] attribute_hidden =
 | ||
|   {
 | ||
|     REG_NOERROR_IDX,
 | ||
|     REG_NOMATCH_IDX,
 | ||
|     REG_BADPAT_IDX,
 | ||
|     REG_ECOLLATE_IDX,
 | ||
|     REG_ECTYPE_IDX,
 | ||
|     REG_EESCAPE_IDX,
 | ||
|     REG_ESUBREG_IDX,
 | ||
|     REG_EBRACK_IDX,
 | ||
|     REG_EPAREN_IDX,
 | ||
|     REG_EBRACE_IDX,
 | ||
|     REG_BADBR_IDX,
 | ||
|     REG_ERANGE_IDX,
 | ||
|     REG_ESPACE_IDX,
 | ||
|     REG_BADRPT_IDX,
 | ||
|     REG_EEND_IDX,
 | ||
|     REG_ESIZE_IDX,
 | ||
|     REG_ERPAREN_IDX
 | ||
|   };
 | ||
| 
 | ||
| /* Entry points for GNU code.  */
 | ||
| 
 | ||
| /* re_compile_pattern is the GNU regular expression compiler: it
 | ||
|    compiles PATTERN (of length LENGTH) and puts the result in BUFP.
 | ||
|    Returns 0 if the pattern was valid, otherwise an error string.
 | ||
| 
 | ||
|    Assumes the 'allocated' (and perhaps 'buffer') and 'translate' fields
 | ||
|    are set in BUFP on entry.  */
 | ||
| 
 | ||
| const char *
 | ||
| re_compile_pattern (const char *pattern, size_t length,
 | ||
| 		    struct re_pattern_buffer *bufp)
 | ||
| {
 | ||
|   reg_errcode_t ret;
 | ||
| 
 | ||
|   /* And GNU code determines whether or not to get register information
 | ||
|      by passing null for the REGS argument to re_match, etc., not by
 | ||
|      setting no_sub, unless RE_NO_SUB is set.  */
 | ||
|   bufp->no_sub = !!(re_syntax_options & RE_NO_SUB);
 | ||
| 
 | ||
|   /* Match anchors at newline.  */
 | ||
|   bufp->newline_anchor = 1;
 | ||
| 
 | ||
|   ret = re_compile_internal (bufp, pattern, length, re_syntax_options);
 | ||
| 
 | ||
|   if (!ret)
 | ||
|     return NULL;
 | ||
|   return gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]);
 | ||
| }
 | ||
| #ifdef _LIBC
 | ||
| weak_alias (__re_compile_pattern, re_compile_pattern)
 | ||
| #endif
 | ||
| 
 | ||
| /* Set by 're_set_syntax' to the current regexp syntax to recognize.  Can
 | ||
|    also be assigned to arbitrarily: each pattern buffer stores its own
 | ||
|    syntax, so it can be changed between regex compilations.  */
 | ||
| /* This has no initializer because initialized variables in Emacs
 | ||
|    become read-only after dumping.  */
 | ||
| reg_syntax_t re_syntax_options;
 | ||
| 
 | ||
| 
 | ||
| /* Specify the precise syntax of regexps for compilation.  This provides
 | ||
|    for compatibility for various utilities which historically have
 | ||
|    different, incompatible syntaxes.
 | ||
| 
 | ||
|    The argument SYNTAX is a bit mask comprised of the various bits
 | ||
|    defined in regex.h.  We return the old syntax.  */
 | ||
| 
 | ||
| reg_syntax_t
 | ||
| re_set_syntax (reg_syntax_t syntax)
 | ||
| {
 | ||
|   reg_syntax_t ret = re_syntax_options;
 | ||
| 
 | ||
|   re_syntax_options = syntax;
 | ||
|   return ret;
 | ||
| }
 | ||
| #ifdef _LIBC
 | ||
| weak_alias (__re_set_syntax, re_set_syntax)
 | ||
| #endif
 | ||
| 
 | ||
| int
 | ||
| re_compile_fastmap (struct re_pattern_buffer *bufp)
 | ||
| {
 | ||
|   re_dfa_t *dfa = (re_dfa_t *) bufp->buffer;
 | ||
|   char *fastmap = bufp->fastmap;
 | ||
| 
 | ||
|   memset (fastmap, '\0', sizeof (char) * SBC_MAX);
 | ||
|   re_compile_fastmap_iter (bufp, dfa->init_state, fastmap);
 | ||
|   if (dfa->init_state != dfa->init_state_word)
 | ||
|     re_compile_fastmap_iter (bufp, dfa->init_state_word, fastmap);
 | ||
|   if (dfa->init_state != dfa->init_state_nl)
 | ||
|     re_compile_fastmap_iter (bufp, dfa->init_state_nl, fastmap);
 | ||
|   if (dfa->init_state != dfa->init_state_begbuf)
 | ||
|     re_compile_fastmap_iter (bufp, dfa->init_state_begbuf, fastmap);
 | ||
|   bufp->fastmap_accurate = 1;
 | ||
|   return 0;
 | ||
| }
 | ||
| #ifdef _LIBC
 | ||
| weak_alias (__re_compile_fastmap, re_compile_fastmap)
 | ||
| #endif
 | ||
| 
 | ||
| static inline void
 | ||
| __attribute__ ((always_inline))
 | ||
| re_set_fastmap (char *fastmap, bool icase, int ch)
 | ||
| {
 | ||
|   fastmap[ch] = 1;
 | ||
|   if (icase)
 | ||
|     fastmap[tolower (ch)] = 1;
 | ||
| }
 | ||
| 
 | ||
| /* Helper function for re_compile_fastmap.
 | ||
|    Compile fastmap for the initial_state INIT_STATE.  */
 | ||
| 
 | ||
| static void
 | ||
| re_compile_fastmap_iter (regex_t *bufp, const re_dfastate_t *init_state,
 | ||
| 			 char *fastmap)
 | ||
| {
 | ||
|   re_dfa_t *dfa = (re_dfa_t *) bufp->buffer;
 | ||
|   int node_cnt;
 | ||
|   int icase = (dfa->mb_cur_max == 1 && (bufp->syntax & RE_ICASE));
 | ||
|   for (node_cnt = 0; node_cnt < init_state->nodes.nelem; ++node_cnt)
 | ||
|     {
 | ||
|       int node = init_state->nodes.elems[node_cnt];
 | ||
|       re_token_type_t type = dfa->nodes[node].type;
 | ||
| 
 | ||
|       if (type == CHARACTER)
 | ||
| 	{
 | ||
| 	  re_set_fastmap (fastmap, icase, dfa->nodes[node].opr.c);
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| 	  if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1)
 | ||
| 	    {
 | ||
| 	      unsigned char *buf = alloca (dfa->mb_cur_max), *p;
 | ||
| 	      wchar_t wc;
 | ||
| 	      mbstate_t state;
 | ||
| 
 | ||
| 	      p = buf;
 | ||
| 	      *p++ = dfa->nodes[node].opr.c;
 | ||
| 	      while (++node < dfa->nodes_len
 | ||
| 		     &&	dfa->nodes[node].type == CHARACTER
 | ||
| 		     && dfa->nodes[node].mb_partial)
 | ||
| 		*p++ = dfa->nodes[node].opr.c;
 | ||
| 	      memset (&state, '\0', sizeof (state));
 | ||
| 	      if (__mbrtowc (&wc, (const char *) buf, p - buf,
 | ||
| 			     &state) == p - buf
 | ||
| 		  && (__wcrtomb ((char *) buf, __towlower (wc), &state)
 | ||
| 		      != (size_t) -1))
 | ||
| 		re_set_fastmap (fastmap, 0, buf[0]);
 | ||
| 	    }
 | ||
| #endif
 | ||
| 	}
 | ||
|       else if (type == SIMPLE_BRACKET)
 | ||
| 	{
 | ||
| 	  int i, ch;
 | ||
| 	  for (i = 0, ch = 0; i < BITSET_WORDS; ++i)
 | ||
| 	    {
 | ||
| 	      int j;
 | ||
| 	      bitset_word_t w = dfa->nodes[node].opr.sbcset[i];
 | ||
| 	      for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch)
 | ||
| 		if (w & ((bitset_word_t) 1 << j))
 | ||
| 		  re_set_fastmap (fastmap, icase, ch);
 | ||
| 	    }
 | ||
| 	}
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|       else if (type == COMPLEX_BRACKET)
 | ||
| 	{
 | ||
| 	  re_charset_t *cset = dfa->nodes[node].opr.mbcset;
 | ||
| 	  int i;
 | ||
| 
 | ||
| # ifdef _LIBC
 | ||
| 	  /* See if we have to try all bytes which start multiple collation
 | ||
| 	     elements.
 | ||
| 	     e.g. In da_DK, we want to catch 'a' since "aa" is a valid
 | ||
| 		  collation element, and don't catch 'b' since 'b' is
 | ||
| 		  the only collation element which starts from 'b' (and
 | ||
| 		  it is caught by SIMPLE_BRACKET).  */
 | ||
| 	      if (_NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES) != 0
 | ||
| 		  && (cset->ncoll_syms || cset->nranges))
 | ||
| 		{
 | ||
| 		  const int32_t *table = (const int32_t *)
 | ||
| 		    _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
 | ||
| 		  for (i = 0; i < SBC_MAX; ++i)
 | ||
| 		    if (table[i] < 0)
 | ||
| 		      re_set_fastmap (fastmap, icase, i);
 | ||
| 		}
 | ||
| # endif /* _LIBC */
 | ||
| 
 | ||
| 	  /* See if we have to start the match at all multibyte characters,
 | ||
| 	     i.e. where we would not find an invalid sequence.  This only
 | ||
| 	     applies to multibyte character sets; for single byte character
 | ||
| 	     sets, the SIMPLE_BRACKET again suffices.  */
 | ||
| 	  if (dfa->mb_cur_max > 1
 | ||
| 	      && (cset->nchar_classes || cset->non_match || cset->nranges
 | ||
| # ifdef _LIBC
 | ||
| 		  || cset->nequiv_classes
 | ||
| # endif /* _LIBC */
 | ||
| 		 ))
 | ||
| 	    {
 | ||
| 	      unsigned char c = 0;
 | ||
| 	      do
 | ||
| 		{
 | ||
| 		  mbstate_t mbs;
 | ||
| 		  memset (&mbs, 0, sizeof (mbs));
 | ||
| 		  if (__mbrtowc (NULL, (char *) &c, 1, &mbs) == (size_t) -2)
 | ||
| 		    re_set_fastmap (fastmap, false, (int) c);
 | ||
| 		}
 | ||
| 	      while (++c != 0);
 | ||
| 	    }
 | ||
| 
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      /* ... Else catch all bytes which can start the mbchars.  */
 | ||
| 	      for (i = 0; i < cset->nmbchars; ++i)
 | ||
| 		{
 | ||
| 		  char buf[256];
 | ||
| 		  mbstate_t state;
 | ||
| 		  memset (&state, '\0', sizeof (state));
 | ||
| 		  if (__wcrtomb (buf, cset->mbchars[i], &state) != (size_t) -1)
 | ||
| 		    re_set_fastmap (fastmap, icase, *(unsigned char *) buf);
 | ||
| 		  if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1)
 | ||
| 		    {
 | ||
| 		      if (__wcrtomb (buf, __towlower (cset->mbchars[i]), &state)
 | ||
| 			  != (size_t) -1)
 | ||
| 			re_set_fastmap (fastmap, false, *(unsigned char *) buf);
 | ||
| 		    }
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	}
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
|       else if (type == OP_PERIOD
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| 	       || type == OP_UTF8_PERIOD
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| 	       || type == END_OF_RE)
 | ||
| 	{
 | ||
| 	  memset (fastmap, '\1', sizeof (char) * SBC_MAX);
 | ||
| 	  if (type == END_OF_RE)
 | ||
| 	    bufp->can_be_null = 1;
 | ||
| 	  return;
 | ||
| 	}
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Entry point for POSIX code.  */
 | ||
| /* regcomp takes a regular expression as a string and compiles it.
 | ||
| 
 | ||
|    PREG is a regex_t *.  We do not expect any fields to be initialized,
 | ||
|    since POSIX says we shouldn't.  Thus, we set
 | ||
| 
 | ||
|      'buffer' to the compiled pattern;
 | ||
|      'used' to the length of the compiled pattern;
 | ||
|      'syntax' to RE_SYNTAX_POSIX_EXTENDED if the
 | ||
|        REG_EXTENDED bit in CFLAGS is set; otherwise, to
 | ||
|        RE_SYNTAX_POSIX_BASIC;
 | ||
|      'newline_anchor' to REG_NEWLINE being set in CFLAGS;
 | ||
|      'fastmap' to an allocated space for the fastmap;
 | ||
|      'fastmap_accurate' to zero;
 | ||
|      're_nsub' to the number of subexpressions in PATTERN.
 | ||
| 
 | ||
|    PATTERN is the address of the pattern string.
 | ||
| 
 | ||
|    CFLAGS is a series of bits which affect compilation.
 | ||
| 
 | ||
|      If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
 | ||
|      use POSIX basic syntax.
 | ||
| 
 | ||
|      If REG_NEWLINE is set, then . and [^...] don't match newline.
 | ||
|      Also, regexec will try a match beginning after every newline.
 | ||
| 
 | ||
|      If REG_ICASE is set, then we considers upper- and lowercase
 | ||
|      versions of letters to be equivalent when matching.
 | ||
| 
 | ||
|      If REG_NOSUB is set, then when PREG is passed to regexec, that
 | ||
|      routine will report only success or failure, and nothing about the
 | ||
|      registers.
 | ||
| 
 | ||
|    It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
 | ||
|    the return codes and their meanings.)  */
 | ||
| 
 | ||
| int
 | ||
| regcomp (regex_t *__restrict preg, const char *__restrict pattern, int cflags)
 | ||
| {
 | ||
|   reg_errcode_t ret;
 | ||
|   reg_syntax_t syntax = ((cflags & REG_EXTENDED) ? RE_SYNTAX_POSIX_EXTENDED
 | ||
| 			 : RE_SYNTAX_POSIX_BASIC);
 | ||
| 
 | ||
|   preg->buffer = NULL;
 | ||
|   preg->allocated = 0;
 | ||
|   preg->used = 0;
 | ||
| 
 | ||
|   /* Try to allocate space for the fastmap.  */
 | ||
|   preg->fastmap = re_malloc (char, SBC_MAX);
 | ||
|   if (BE (preg->fastmap == NULL, 0))
 | ||
|     return REG_ESPACE;
 | ||
| 
 | ||
|   syntax |= (cflags & REG_ICASE) ? RE_ICASE : 0;
 | ||
| 
 | ||
|   /* If REG_NEWLINE is set, newlines are treated differently.  */
 | ||
|   if (cflags & REG_NEWLINE)
 | ||
|     { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
 | ||
|       syntax &= ~RE_DOT_NEWLINE;
 | ||
|       syntax |= RE_HAT_LISTS_NOT_NEWLINE;
 | ||
|       /* It also changes the matching behavior.  */
 | ||
|       preg->newline_anchor = 1;
 | ||
|     }
 | ||
|   else
 | ||
|     preg->newline_anchor = 0;
 | ||
|   preg->no_sub = !!(cflags & REG_NOSUB);
 | ||
|   preg->translate = NULL;
 | ||
| 
 | ||
|   ret = re_compile_internal (preg, pattern, strlen (pattern), syntax);
 | ||
| 
 | ||
|   /* POSIX doesn't distinguish between an unmatched open-group and an
 | ||
|      unmatched close-group: both are REG_EPAREN.  */
 | ||
|   if (ret == REG_ERPAREN)
 | ||
|     ret = REG_EPAREN;
 | ||
| 
 | ||
|   /* We have already checked preg->fastmap != NULL.  */
 | ||
|   if (BE (ret == REG_NOERROR, 1))
 | ||
|     /* Compute the fastmap now, since regexec cannot modify the pattern
 | ||
|        buffer.  This function never fails in this implementation.  */
 | ||
|     (void) re_compile_fastmap (preg);
 | ||
|   else
 | ||
|     {
 | ||
|       /* Some error occurred while compiling the expression.  */
 | ||
|       re_free (preg->fastmap);
 | ||
|       preg->fastmap = NULL;
 | ||
|     }
 | ||
| 
 | ||
|   return (int) ret;
 | ||
| }
 | ||
| #ifdef _LIBC
 | ||
| weak_alias (__regcomp, regcomp)
 | ||
| #endif
 | ||
| 
 | ||
| /* Returns a message corresponding to an error code, ERRCODE, returned
 | ||
|    from either regcomp or regexec.   We don't use PREG here.  */
 | ||
| 
 | ||
| size_t
 | ||
| regerror (int errcode, const regex_t *__restrict preg, char *__restrict errbuf,
 | ||
| 	  size_t errbuf_size)
 | ||
| {
 | ||
|   const char *msg;
 | ||
|   size_t msg_size;
 | ||
| 
 | ||
|   if (BE (errcode < 0
 | ||
| 	  || errcode >= (int) (sizeof (__re_error_msgid_idx)
 | ||
| 			       / sizeof (__re_error_msgid_idx[0])), 0))
 | ||
|     /* Only error codes returned by the rest of the code should be passed
 | ||
|        to this routine.  If we are given anything else, or if other regex
 | ||
|        code generates an invalid error code, then the program has a bug.
 | ||
|        Dump core so we can fix it.  */
 | ||
|     abort ();
 | ||
| 
 | ||
|   msg = gettext (__re_error_msgid + __re_error_msgid_idx[errcode]);
 | ||
| 
 | ||
|   msg_size = strlen (msg) + 1; /* Includes the null.  */
 | ||
| 
 | ||
|   if (BE (errbuf_size != 0, 1))
 | ||
|     {
 | ||
|       if (BE (msg_size > errbuf_size, 0))
 | ||
| 	{
 | ||
| #if defined HAVE_MEMPCPY || defined _LIBC
 | ||
| 	  *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
 | ||
| #else
 | ||
| 	  memcpy (errbuf, msg, errbuf_size - 1);
 | ||
| 	  errbuf[errbuf_size - 1] = 0;
 | ||
| #endif
 | ||
| 	}
 | ||
|       else
 | ||
| 	memcpy (errbuf, msg, msg_size);
 | ||
|     }
 | ||
| 
 | ||
|   return msg_size;
 | ||
| }
 | ||
| #ifdef _LIBC
 | ||
| weak_alias (__regerror, regerror)
 | ||
| #endif
 | ||
| 
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| /* This static array is used for the map to single-byte characters when
 | ||
|    UTF-8 is used.  Otherwise we would allocate memory just to initialize
 | ||
|    it the same all the time.  UTF-8 is the preferred encoding so this is
 | ||
|    a worthwhile optimization.  */
 | ||
| static const bitset_t utf8_sb_map =
 | ||
| {
 | ||
|   /* Set the first 128 bits.  */
 | ||
|   [0 ... 0x80 / BITSET_WORD_BITS - 1] = BITSET_WORD_MAX
 | ||
| };
 | ||
| #endif
 | ||
| 
 | ||
| 
 | ||
| static void
 | ||
| free_dfa_content (re_dfa_t *dfa)
 | ||
| {
 | ||
|   int i, j;
 | ||
| 
 | ||
|   if (dfa->nodes)
 | ||
|     for (i = 0; i < dfa->nodes_len; ++i)
 | ||
|       free_token (dfa->nodes + i);
 | ||
|   re_free (dfa->nexts);
 | ||
|   for (i = 0; i < dfa->nodes_len; ++i)
 | ||
|     {
 | ||
|       if (dfa->eclosures != NULL)
 | ||
| 	re_node_set_free (dfa->eclosures + i);
 | ||
|       if (dfa->inveclosures != NULL)
 | ||
| 	re_node_set_free (dfa->inveclosures + i);
 | ||
|       if (dfa->edests != NULL)
 | ||
| 	re_node_set_free (dfa->edests + i);
 | ||
|     }
 | ||
|   re_free (dfa->edests);
 | ||
|   re_free (dfa->eclosures);
 | ||
|   re_free (dfa->inveclosures);
 | ||
|   re_free (dfa->nodes);
 | ||
| 
 | ||
|   if (dfa->state_table)
 | ||
|     for (i = 0; i <= dfa->state_hash_mask; ++i)
 | ||
|       {
 | ||
| 	struct re_state_table_entry *entry = dfa->state_table + i;
 | ||
| 	for (j = 0; j < entry->num; ++j)
 | ||
| 	  {
 | ||
| 	    re_dfastate_t *state = entry->array[j];
 | ||
| 	    free_state (state);
 | ||
| 	  }
 | ||
| 	re_free (entry->array);
 | ||
|       }
 | ||
|   re_free (dfa->state_table);
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   if (dfa->sb_char != utf8_sb_map)
 | ||
|     re_free (dfa->sb_char);
 | ||
| #endif
 | ||
|   re_free (dfa->subexp_map);
 | ||
| #ifdef DEBUG
 | ||
|   re_free (dfa->re_str);
 | ||
| #endif
 | ||
| 
 | ||
|   re_free (dfa);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Free dynamically allocated space used by PREG.  */
 | ||
| 
 | ||
| void
 | ||
| regfree (regex_t *preg)
 | ||
| {
 | ||
|   re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
 | ||
|   if (BE (dfa != NULL, 1))
 | ||
|     free_dfa_content (dfa);
 | ||
|   preg->buffer = NULL;
 | ||
|   preg->allocated = 0;
 | ||
| 
 | ||
|   re_free (preg->fastmap);
 | ||
|   preg->fastmap = NULL;
 | ||
| 
 | ||
|   re_free (preg->translate);
 | ||
|   preg->translate = NULL;
 | ||
| }
 | ||
| #ifdef _LIBC
 | ||
| weak_alias (__regfree, regfree)
 | ||
| #endif
 | ||
| 
 | ||
| /* Entry points compatible with 4.2 BSD regex library.  We don't define
 | ||
|    them unless specifically requested.  */
 | ||
| 
 | ||
| #if defined _REGEX_RE_COMP || defined _LIBC
 | ||
| 
 | ||
| /* BSD has one and only one pattern buffer.  */
 | ||
| static struct re_pattern_buffer re_comp_buf;
 | ||
| 
 | ||
| char *
 | ||
| # ifdef _LIBC
 | ||
| /* Make these definitions weak in libc, so POSIX programs can redefine
 | ||
|    these names if they don't use our functions, and still use
 | ||
|    regcomp/regexec above without link errors.  */
 | ||
| weak_function
 | ||
| # endif
 | ||
| re_comp (const char *s)
 | ||
| {
 | ||
|   reg_errcode_t ret;
 | ||
|   char *fastmap;
 | ||
| 
 | ||
|   if (!s)
 | ||
|     {
 | ||
|       if (!re_comp_buf.buffer)
 | ||
| 	return gettext ("No previous regular expression");
 | ||
|       return 0;
 | ||
|     }
 | ||
| 
 | ||
|   if (re_comp_buf.buffer)
 | ||
|     {
 | ||
|       fastmap = re_comp_buf.fastmap;
 | ||
|       re_comp_buf.fastmap = NULL;
 | ||
|       __regfree (&re_comp_buf);
 | ||
|       memset (&re_comp_buf, '\0', sizeof (re_comp_buf));
 | ||
|       re_comp_buf.fastmap = fastmap;
 | ||
|     }
 | ||
| 
 | ||
|   if (re_comp_buf.fastmap == NULL)
 | ||
|     {
 | ||
|       re_comp_buf.fastmap = (char *) malloc (SBC_MAX);
 | ||
|       if (re_comp_buf.fastmap == NULL)
 | ||
| 	return (char *) gettext (__re_error_msgid
 | ||
| 				 + __re_error_msgid_idx[(int) REG_ESPACE]);
 | ||
|     }
 | ||
| 
 | ||
|   /* Since 're_exec' always passes NULL for the 'regs' argument, we
 | ||
|      don't need to initialize the pattern buffer fields which affect it.  */
 | ||
| 
 | ||
|   /* Match anchors at newlines.  */
 | ||
|   re_comp_buf.newline_anchor = 1;
 | ||
| 
 | ||
|   ret = re_compile_internal (&re_comp_buf, s, strlen (s), re_syntax_options);
 | ||
| 
 | ||
|   if (!ret)
 | ||
|     return NULL;
 | ||
| 
 | ||
|   /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
 | ||
|   return (char *) gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]);
 | ||
| }
 | ||
| 
 | ||
| #ifdef _LIBC
 | ||
| libc_freeres_fn (free_mem)
 | ||
| {
 | ||
|   __regfree (&re_comp_buf);
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| #endif /* _REGEX_RE_COMP */
 | ||
| 
 | ||
| /* Internal entry point.
 | ||
|    Compile the regular expression PATTERN, whose length is LENGTH.
 | ||
|    SYNTAX indicate regular expression's syntax.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| re_compile_internal (regex_t *preg, const char * pattern, size_t length,
 | ||
| 		     reg_syntax_t syntax)
 | ||
| {
 | ||
|   reg_errcode_t err = REG_NOERROR;
 | ||
|   re_dfa_t *dfa;
 | ||
|   re_string_t regexp;
 | ||
| 
 | ||
|   /* Initialize the pattern buffer.  */
 | ||
|   preg->fastmap_accurate = 0;
 | ||
|   preg->syntax = syntax;
 | ||
|   preg->not_bol = preg->not_eol = 0;
 | ||
|   preg->used = 0;
 | ||
|   preg->re_nsub = 0;
 | ||
|   preg->can_be_null = 0;
 | ||
|   preg->regs_allocated = REGS_UNALLOCATED;
 | ||
| 
 | ||
|   /* Initialize the dfa.  */
 | ||
|   dfa = (re_dfa_t *) preg->buffer;
 | ||
|   if (BE (preg->allocated < sizeof (re_dfa_t), 0))
 | ||
|     {
 | ||
|       /* If zero allocated, but buffer is non-null, try to realloc
 | ||
| 	 enough space.  This loses if buffer's address is bogus, but
 | ||
| 	 that is the user's responsibility.  If ->buffer is NULL this
 | ||
| 	 is a simple allocation.  */
 | ||
|       dfa = re_realloc (preg->buffer, re_dfa_t, 1);
 | ||
|       if (dfa == NULL)
 | ||
| 	return REG_ESPACE;
 | ||
|       preg->allocated = sizeof (re_dfa_t);
 | ||
|       preg->buffer = (unsigned char *) dfa;
 | ||
|     }
 | ||
|   preg->used = sizeof (re_dfa_t);
 | ||
| 
 | ||
|   err = init_dfa (dfa, length);
 | ||
|   if (BE (err != REG_NOERROR, 0))
 | ||
|     {
 | ||
|       free_dfa_content (dfa);
 | ||
|       preg->buffer = NULL;
 | ||
|       preg->allocated = 0;
 | ||
|       return err;
 | ||
|     }
 | ||
| #ifdef DEBUG
 | ||
|   /* Note: length+1 will not overflow since it is checked in init_dfa.  */
 | ||
|   dfa->re_str = re_malloc (char, length + 1);
 | ||
|   strncpy (dfa->re_str, pattern, length + 1);
 | ||
| #endif
 | ||
| 
 | ||
|   __libc_lock_init (dfa->lock);
 | ||
| 
 | ||
|   err = re_string_construct (®exp, pattern, length, preg->translate,
 | ||
| 			     syntax & RE_ICASE, dfa);
 | ||
|   if (BE (err != REG_NOERROR, 0))
 | ||
|     {
 | ||
|     re_compile_internal_free_return:
 | ||
|       free_workarea_compile (preg);
 | ||
|       re_string_destruct (®exp);
 | ||
|       free_dfa_content (dfa);
 | ||
|       preg->buffer = NULL;
 | ||
|       preg->allocated = 0;
 | ||
|       return err;
 | ||
|     }
 | ||
| 
 | ||
|   /* Parse the regular expression, and build a structure tree.  */
 | ||
|   preg->re_nsub = 0;
 | ||
|   dfa->str_tree = parse (®exp, preg, syntax, &err);
 | ||
|   if (BE (dfa->str_tree == NULL, 0))
 | ||
|     goto re_compile_internal_free_return;
 | ||
| 
 | ||
|   /* Analyze the tree and create the nfa.  */
 | ||
|   err = analyze (preg);
 | ||
|   if (BE (err != REG_NOERROR, 0))
 | ||
|     goto re_compile_internal_free_return;
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   /* If possible, do searching in single byte encoding to speed things up.  */
 | ||
|   if (dfa->is_utf8 && !(syntax & RE_ICASE) && preg->translate == NULL)
 | ||
|     optimize_utf8 (dfa);
 | ||
| #endif
 | ||
| 
 | ||
|   /* Then create the initial state of the dfa.  */
 | ||
|   err = create_initial_state (dfa);
 | ||
| 
 | ||
|   /* Release work areas.  */
 | ||
|   free_workarea_compile (preg);
 | ||
|   re_string_destruct (®exp);
 | ||
| 
 | ||
|   if (BE (err != REG_NOERROR, 0))
 | ||
|     {
 | ||
|       free_dfa_content (dfa);
 | ||
|       preg->buffer = NULL;
 | ||
|       preg->allocated = 0;
 | ||
|     }
 | ||
| 
 | ||
|   return err;
 | ||
| }
 | ||
| 
 | ||
| /* Initialize DFA.  We use the length of the regular expression PAT_LEN
 | ||
|    as the initial length of some arrays.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| init_dfa (re_dfa_t *dfa, size_t pat_len)
 | ||
| {
 | ||
|   unsigned int table_size;
 | ||
| #ifndef _LIBC
 | ||
|   char *codeset_name;
 | ||
| #endif
 | ||
| 
 | ||
|   memset (dfa, '\0', sizeof (re_dfa_t));
 | ||
| 
 | ||
|   /* Force allocation of str_tree_storage the first time.  */
 | ||
|   dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE;
 | ||
| 
 | ||
|   /* Avoid overflows.  */
 | ||
|   if (pat_len == SIZE_MAX)
 | ||
|     return REG_ESPACE;
 | ||
| 
 | ||
|   dfa->nodes_alloc = pat_len + 1;
 | ||
|   dfa->nodes = re_malloc (re_token_t, dfa->nodes_alloc);
 | ||
| 
 | ||
|   /*  table_size = 2 ^ ceil(log pat_len) */
 | ||
|   for (table_size = 1; ; table_size <<= 1)
 | ||
|     if (table_size > pat_len)
 | ||
|       break;
 | ||
| 
 | ||
|   dfa->state_table = calloc (sizeof (struct re_state_table_entry), table_size);
 | ||
|   dfa->state_hash_mask = table_size - 1;
 | ||
| 
 | ||
|   dfa->mb_cur_max = MB_CUR_MAX;
 | ||
| #ifdef _LIBC
 | ||
|   if (dfa->mb_cur_max == 6
 | ||
|       && strcmp (_NL_CURRENT (LC_CTYPE, _NL_CTYPE_CODESET_NAME), "UTF-8") == 0)
 | ||
|     dfa->is_utf8 = 1;
 | ||
|   dfa->map_notascii = (_NL_CURRENT_WORD (LC_CTYPE, _NL_CTYPE_MAP_TO_NONASCII)
 | ||
| 		       != 0);
 | ||
| #else
 | ||
| # ifdef HAVE_LANGINFO_CODESET
 | ||
|   codeset_name = nl_langinfo (CODESET);
 | ||
| # else
 | ||
|   codeset_name = getenv ("LC_ALL");
 | ||
|   if (codeset_name == NULL || codeset_name[0] == '\0')
 | ||
|     codeset_name = getenv ("LC_CTYPE");
 | ||
|   if (codeset_name == NULL || codeset_name[0] == '\0')
 | ||
|     codeset_name = getenv ("LANG");
 | ||
|   if (codeset_name == NULL)
 | ||
|     codeset_name = "";
 | ||
|   else if (strchr (codeset_name, '.') !=  NULL)
 | ||
|     codeset_name = strchr (codeset_name, '.') + 1;
 | ||
| # endif
 | ||
| 
 | ||
|   if (strcasecmp (codeset_name, "UTF-8") == 0
 | ||
|       || strcasecmp (codeset_name, "UTF8") == 0)
 | ||
|     dfa->is_utf8 = 1;
 | ||
| 
 | ||
|   /* We check exhaustively in the loop below if this charset is a
 | ||
|      superset of ASCII.  */
 | ||
|   dfa->map_notascii = 0;
 | ||
| #endif
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   if (dfa->mb_cur_max > 1)
 | ||
|     {
 | ||
|       if (dfa->is_utf8)
 | ||
| 	dfa->sb_char = (re_bitset_ptr_t) utf8_sb_map;
 | ||
|       else
 | ||
| 	{
 | ||
| 	  int i, j, ch;
 | ||
| 
 | ||
| 	  dfa->sb_char = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1);
 | ||
| 	  if (BE (dfa->sb_char == NULL, 0))
 | ||
| 	    return REG_ESPACE;
 | ||
| 
 | ||
| 	  /* Set the bits corresponding to single byte chars.  */
 | ||
| 	  for (i = 0, ch = 0; i < BITSET_WORDS; ++i)
 | ||
| 	    for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch)
 | ||
| 	      {
 | ||
| 		wint_t wch = __btowc (ch);
 | ||
| 		if (wch != WEOF)
 | ||
| 		  dfa->sb_char[i] |= (bitset_word_t) 1 << j;
 | ||
| # ifndef _LIBC
 | ||
| 		if (isascii (ch) && wch != ch)
 | ||
| 		  dfa->map_notascii = 1;
 | ||
| # endif
 | ||
| 	      }
 | ||
| 	}
 | ||
|     }
 | ||
| #endif
 | ||
| 
 | ||
|   if (BE (dfa->nodes == NULL || dfa->state_table == NULL, 0))
 | ||
|     return REG_ESPACE;
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Initialize WORD_CHAR table, which indicate which character is
 | ||
|    "word".  In this case "word" means that it is the word construction
 | ||
|    character used by some operators like "\<", "\>", etc.  */
 | ||
| 
 | ||
| static void
 | ||
| internal_function
 | ||
| init_word_char (re_dfa_t *dfa)
 | ||
| {
 | ||
|   dfa->word_ops_used = 1;
 | ||
|   int i = 0;
 | ||
|   int ch = 0;
 | ||
|   if (BE (dfa->map_notascii == 0, 1))
 | ||
|     {
 | ||
|       if (sizeof (dfa->word_char[0]) == 8)
 | ||
| 	{
 | ||
|           /* The extra temporaries here avoid "implicitly truncated"
 | ||
|              warnings in the case when this is dead code, i.e. 32-bit.  */
 | ||
|           const uint64_t wc0 = UINT64_C (0x03ff000000000000);
 | ||
|           const uint64_t wc1 = UINT64_C (0x07fffffe87fffffe);
 | ||
| 	  dfa->word_char[0] = wc0;
 | ||
| 	  dfa->word_char[1] = wc1;
 | ||
| 	  i = 2;
 | ||
| 	}
 | ||
|       else if (sizeof (dfa->word_char[0]) == 4)
 | ||
| 	{
 | ||
| 	  dfa->word_char[0] = UINT32_C (0x00000000);
 | ||
| 	  dfa->word_char[1] = UINT32_C (0x03ff0000);
 | ||
| 	  dfa->word_char[2] = UINT32_C (0x87fffffe);
 | ||
| 	  dfa->word_char[3] = UINT32_C (0x07fffffe);
 | ||
| 	  i = 4;
 | ||
| 	}
 | ||
|       else
 | ||
| 	abort ();
 | ||
|       ch = 128;
 | ||
| 
 | ||
|       if (BE (dfa->is_utf8, 1))
 | ||
| 	{
 | ||
| 	  memset (&dfa->word_char[i], '\0', (SBC_MAX - ch) / 8);
 | ||
| 	  return;
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   for (; i < BITSET_WORDS; ++i)
 | ||
|     for (int j = 0; j < BITSET_WORD_BITS; ++j, ++ch)
 | ||
|       if (isalnum (ch) || ch == '_')
 | ||
| 	dfa->word_char[i] |= (bitset_word_t) 1 << j;
 | ||
| }
 | ||
| 
 | ||
| /* Free the work area which are only used while compiling.  */
 | ||
| 
 | ||
| static void
 | ||
| free_workarea_compile (regex_t *preg)
 | ||
| {
 | ||
|   re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
 | ||
|   bin_tree_storage_t *storage, *next;
 | ||
|   for (storage = dfa->str_tree_storage; storage; storage = next)
 | ||
|     {
 | ||
|       next = storage->next;
 | ||
|       re_free (storage);
 | ||
|     }
 | ||
|   dfa->str_tree_storage = NULL;
 | ||
|   dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE;
 | ||
|   dfa->str_tree = NULL;
 | ||
|   re_free (dfa->org_indices);
 | ||
|   dfa->org_indices = NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Create initial states for all contexts.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| create_initial_state (re_dfa_t *dfa)
 | ||
| {
 | ||
|   int first, i;
 | ||
|   reg_errcode_t err;
 | ||
|   re_node_set init_nodes;
 | ||
| 
 | ||
|   /* Initial states have the epsilon closure of the node which is
 | ||
|      the first node of the regular expression.  */
 | ||
|   first = dfa->str_tree->first->node_idx;
 | ||
|   dfa->init_node = first;
 | ||
|   err = re_node_set_init_copy (&init_nodes, dfa->eclosures + first);
 | ||
|   if (BE (err != REG_NOERROR, 0))
 | ||
|     return err;
 | ||
| 
 | ||
|   /* The back-references which are in initial states can epsilon transit,
 | ||
|      since in this case all of the subexpressions can be null.
 | ||
|      Then we add epsilon closures of the nodes which are the next nodes of
 | ||
|      the back-references.  */
 | ||
|   if (dfa->nbackref > 0)
 | ||
|     for (i = 0; i < init_nodes.nelem; ++i)
 | ||
|       {
 | ||
| 	int node_idx = init_nodes.elems[i];
 | ||
| 	re_token_type_t type = dfa->nodes[node_idx].type;
 | ||
| 
 | ||
| 	int clexp_idx;
 | ||
| 	if (type != OP_BACK_REF)
 | ||
| 	  continue;
 | ||
| 	for (clexp_idx = 0; clexp_idx < init_nodes.nelem; ++clexp_idx)
 | ||
| 	  {
 | ||
| 	    re_token_t *clexp_node;
 | ||
| 	    clexp_node = dfa->nodes + init_nodes.elems[clexp_idx];
 | ||
| 	    if (clexp_node->type == OP_CLOSE_SUBEXP
 | ||
| 		&& clexp_node->opr.idx == dfa->nodes[node_idx].opr.idx)
 | ||
| 	      break;
 | ||
| 	  }
 | ||
| 	if (clexp_idx == init_nodes.nelem)
 | ||
| 	  continue;
 | ||
| 
 | ||
| 	if (type == OP_BACK_REF)
 | ||
| 	  {
 | ||
| 	    int dest_idx = dfa->edests[node_idx].elems[0];
 | ||
| 	    if (!re_node_set_contains (&init_nodes, dest_idx))
 | ||
| 	      {
 | ||
| 		reg_errcode_t err = re_node_set_merge (&init_nodes,
 | ||
| 						       dfa->eclosures
 | ||
| 						       + dest_idx);
 | ||
| 		if (err != REG_NOERROR)
 | ||
| 		  return err;
 | ||
| 		i = 0;
 | ||
| 	      }
 | ||
| 	  }
 | ||
|       }
 | ||
| 
 | ||
|   /* It must be the first time to invoke acquire_state.  */
 | ||
|   dfa->init_state = re_acquire_state_context (&err, dfa, &init_nodes, 0);
 | ||
|   /* We don't check ERR here, since the initial state must not be NULL.  */
 | ||
|   if (BE (dfa->init_state == NULL, 0))
 | ||
|     return err;
 | ||
|   if (dfa->init_state->has_constraint)
 | ||
|     {
 | ||
|       dfa->init_state_word = re_acquire_state_context (&err, dfa, &init_nodes,
 | ||
| 						       CONTEXT_WORD);
 | ||
|       dfa->init_state_nl = re_acquire_state_context (&err, dfa, &init_nodes,
 | ||
| 						     CONTEXT_NEWLINE);
 | ||
|       dfa->init_state_begbuf = re_acquire_state_context (&err, dfa,
 | ||
| 							 &init_nodes,
 | ||
| 							 CONTEXT_NEWLINE
 | ||
| 							 | CONTEXT_BEGBUF);
 | ||
|       if (BE (dfa->init_state_word == NULL || dfa->init_state_nl == NULL
 | ||
| 	      || dfa->init_state_begbuf == NULL, 0))
 | ||
| 	return err;
 | ||
|     }
 | ||
|   else
 | ||
|     dfa->init_state_word = dfa->init_state_nl
 | ||
|       = dfa->init_state_begbuf = dfa->init_state;
 | ||
| 
 | ||
|   re_node_set_free (&init_nodes);
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| /* If it is possible to do searching in single byte encoding instead of UTF-8
 | ||
|    to speed things up, set dfa->mb_cur_max to 1, clear is_utf8 and change
 | ||
|    DFA nodes where needed.  */
 | ||
| 
 | ||
| static void
 | ||
| optimize_utf8 (re_dfa_t *dfa)
 | ||
| {
 | ||
|   int node, i, mb_chars = 0, has_period = 0;
 | ||
| 
 | ||
|   for (node = 0; node < dfa->nodes_len; ++node)
 | ||
|     switch (dfa->nodes[node].type)
 | ||
|       {
 | ||
|       case CHARACTER:
 | ||
| 	if (dfa->nodes[node].opr.c >= 0x80)
 | ||
| 	  mb_chars = 1;
 | ||
| 	break;
 | ||
|       case ANCHOR:
 | ||
| 	switch (dfa->nodes[node].opr.ctx_type)
 | ||
| 	  {
 | ||
| 	  case LINE_FIRST:
 | ||
| 	  case LINE_LAST:
 | ||
| 	  case BUF_FIRST:
 | ||
| 	  case BUF_LAST:
 | ||
| 	    break;
 | ||
| 	  default:
 | ||
| 	    /* Word anchors etc. cannot be handled.  It's okay to test
 | ||
| 	       opr.ctx_type since constraints (for all DFA nodes) are
 | ||
| 	       created by ORing one or more opr.ctx_type values.  */
 | ||
| 	    return;
 | ||
| 	  }
 | ||
| 	break;
 | ||
|       case OP_PERIOD:
 | ||
| 	has_period = 1;
 | ||
| 	break;
 | ||
|       case OP_BACK_REF:
 | ||
|       case OP_ALT:
 | ||
|       case END_OF_RE:
 | ||
|       case OP_DUP_ASTERISK:
 | ||
|       case OP_OPEN_SUBEXP:
 | ||
|       case OP_CLOSE_SUBEXP:
 | ||
| 	break;
 | ||
|       case COMPLEX_BRACKET:
 | ||
| 	return;
 | ||
|       case SIMPLE_BRACKET:
 | ||
| 	/* Just double check.  The non-ASCII range starts at 0x80.  */
 | ||
| 	assert (0x80 % BITSET_WORD_BITS == 0);
 | ||
| 	for (i = 0x80 / BITSET_WORD_BITS; i < BITSET_WORDS; ++i)
 | ||
| 	  if (dfa->nodes[node].opr.sbcset[i])
 | ||
| 	    return;
 | ||
| 	break;
 | ||
|       default:
 | ||
| 	abort ();
 | ||
|       }
 | ||
| 
 | ||
|   if (mb_chars || has_period)
 | ||
|     for (node = 0; node < dfa->nodes_len; ++node)
 | ||
|       {
 | ||
| 	if (dfa->nodes[node].type == CHARACTER
 | ||
| 	    && dfa->nodes[node].opr.c >= 0x80)
 | ||
| 	  dfa->nodes[node].mb_partial = 0;
 | ||
| 	else if (dfa->nodes[node].type == OP_PERIOD)
 | ||
| 	  dfa->nodes[node].type = OP_UTF8_PERIOD;
 | ||
|       }
 | ||
| 
 | ||
|   /* The search can be in single byte locale.  */
 | ||
|   dfa->mb_cur_max = 1;
 | ||
|   dfa->is_utf8 = 0;
 | ||
|   dfa->has_mb_node = dfa->nbackref > 0 || has_period;
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| /* Analyze the structure tree, and calculate "first", "next", "edest",
 | ||
|    "eclosure", and "inveclosure".  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| analyze (regex_t *preg)
 | ||
| {
 | ||
|   re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
 | ||
|   reg_errcode_t ret;
 | ||
| 
 | ||
|   /* Allocate arrays.  */
 | ||
|   dfa->nexts = re_malloc (int, dfa->nodes_alloc);
 | ||
|   dfa->org_indices = re_malloc (int, dfa->nodes_alloc);
 | ||
|   dfa->edests = re_malloc (re_node_set, dfa->nodes_alloc);
 | ||
|   dfa->eclosures = re_malloc (re_node_set, dfa->nodes_alloc);
 | ||
|   if (BE (dfa->nexts == NULL || dfa->org_indices == NULL || dfa->edests == NULL
 | ||
| 	  || dfa->eclosures == NULL, 0))
 | ||
|     return REG_ESPACE;
 | ||
| 
 | ||
|   dfa->subexp_map = re_malloc (int, preg->re_nsub);
 | ||
|   if (dfa->subexp_map != NULL)
 | ||
|     {
 | ||
|       int i;
 | ||
|       for (i = 0; i < preg->re_nsub; i++)
 | ||
| 	dfa->subexp_map[i] = i;
 | ||
|       preorder (dfa->str_tree, optimize_subexps, dfa);
 | ||
|       for (i = 0; i < preg->re_nsub; i++)
 | ||
| 	if (dfa->subexp_map[i] != i)
 | ||
| 	  break;
 | ||
|       if (i == preg->re_nsub)
 | ||
| 	{
 | ||
| 	  free (dfa->subexp_map);
 | ||
| 	  dfa->subexp_map = NULL;
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   ret = postorder (dfa->str_tree, lower_subexps, preg);
 | ||
|   if (BE (ret != REG_NOERROR, 0))
 | ||
|     return ret;
 | ||
|   ret = postorder (dfa->str_tree, calc_first, dfa);
 | ||
|   if (BE (ret != REG_NOERROR, 0))
 | ||
|     return ret;
 | ||
|   preorder (dfa->str_tree, calc_next, dfa);
 | ||
|   ret = preorder (dfa->str_tree, link_nfa_nodes, dfa);
 | ||
|   if (BE (ret != REG_NOERROR, 0))
 | ||
|     return ret;
 | ||
|   ret = calc_eclosure (dfa);
 | ||
|   if (BE (ret != REG_NOERROR, 0))
 | ||
|     return ret;
 | ||
| 
 | ||
|   /* We only need this during the prune_impossible_nodes pass in regexec.c;
 | ||
|      skip it if p_i_n will not run, as calc_inveclosure can be quadratic.  */
 | ||
|   if ((!preg->no_sub && preg->re_nsub > 0 && dfa->has_plural_match)
 | ||
|       || dfa->nbackref)
 | ||
|     {
 | ||
|       dfa->inveclosures = re_malloc (re_node_set, dfa->nodes_len);
 | ||
|       if (BE (dfa->inveclosures == NULL, 0))
 | ||
| 	return REG_ESPACE;
 | ||
|       ret = calc_inveclosure (dfa);
 | ||
|     }
 | ||
| 
 | ||
|   return ret;
 | ||
| }
 | ||
| 
 | ||
| /* Our parse trees are very unbalanced, so we cannot use a stack to
 | ||
|    implement parse tree visits.  Instead, we use parent pointers and
 | ||
|    some hairy code in these two functions.  */
 | ||
| static reg_errcode_t
 | ||
| postorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)),
 | ||
| 	   void *extra)
 | ||
| {
 | ||
|   bin_tree_t *node, *prev;
 | ||
| 
 | ||
|   for (node = root; ; )
 | ||
|     {
 | ||
|       /* Descend down the tree, preferably to the left (or to the right
 | ||
| 	 if that's the only child).  */
 | ||
|       while (node->left || node->right)
 | ||
| 	if (node->left)
 | ||
| 	  node = node->left;
 | ||
| 	else
 | ||
| 	  node = node->right;
 | ||
| 
 | ||
|       do
 | ||
| 	{
 | ||
| 	  reg_errcode_t err = fn (extra, node);
 | ||
| 	  if (BE (err != REG_NOERROR, 0))
 | ||
| 	    return err;
 | ||
| 	  if (node->parent == NULL)
 | ||
| 	    return REG_NOERROR;
 | ||
| 	  prev = node;
 | ||
| 	  node = node->parent;
 | ||
| 	}
 | ||
|       /* Go up while we have a node that is reached from the right.  */
 | ||
|       while (node->right == prev || node->right == NULL);
 | ||
|       node = node->right;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| preorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)),
 | ||
| 	  void *extra)
 | ||
| {
 | ||
|   bin_tree_t *node;
 | ||
| 
 | ||
|   for (node = root; ; )
 | ||
|     {
 | ||
|       reg_errcode_t err = fn (extra, node);
 | ||
|       if (BE (err != REG_NOERROR, 0))
 | ||
| 	return err;
 | ||
| 
 | ||
|       /* Go to the left node, or up and to the right.  */
 | ||
|       if (node->left)
 | ||
| 	node = node->left;
 | ||
|       else
 | ||
| 	{
 | ||
| 	  bin_tree_t *prev = NULL;
 | ||
| 	  while (node->right == prev || node->right == NULL)
 | ||
| 	    {
 | ||
| 	      prev = node;
 | ||
| 	      node = node->parent;
 | ||
| 	      if (!node)
 | ||
| 		return REG_NOERROR;
 | ||
| 	    }
 | ||
| 	  node = node->right;
 | ||
| 	}
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Optimization pass: if a SUBEXP is entirely contained, strip it and tell
 | ||
|    re_search_internal to map the inner one's opr.idx to this one's.  Adjust
 | ||
|    backreferences as well.  Requires a preorder visit.  */
 | ||
| static reg_errcode_t
 | ||
| optimize_subexps (void *extra, bin_tree_t *node)
 | ||
| {
 | ||
|   re_dfa_t *dfa = (re_dfa_t *) extra;
 | ||
| 
 | ||
|   if (node->token.type == OP_BACK_REF && dfa->subexp_map)
 | ||
|     {
 | ||
|       int idx = node->token.opr.idx;
 | ||
|       node->token.opr.idx = dfa->subexp_map[idx];
 | ||
|       dfa->used_bkref_map |= 1 << node->token.opr.idx;
 | ||
|     }
 | ||
| 
 | ||
|   else if (node->token.type == SUBEXP
 | ||
| 	   && node->left && node->left->token.type == SUBEXP)
 | ||
|     {
 | ||
|       int other_idx = node->left->token.opr.idx;
 | ||
| 
 | ||
|       node->left = node->left->left;
 | ||
|       if (node->left)
 | ||
| 	node->left->parent = node;
 | ||
| 
 | ||
|       dfa->subexp_map[other_idx] = dfa->subexp_map[node->token.opr.idx];
 | ||
|       if (other_idx < BITSET_WORD_BITS)
 | ||
| 	  dfa->used_bkref_map &= ~((bitset_word_t) 1 << other_idx);
 | ||
|     }
 | ||
| 
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Lowering pass: Turn each SUBEXP node into the appropriate concatenation
 | ||
|    of OP_OPEN_SUBEXP, the body of the SUBEXP (if any) and OP_CLOSE_SUBEXP.  */
 | ||
| static reg_errcode_t
 | ||
| lower_subexps (void *extra, bin_tree_t *node)
 | ||
| {
 | ||
|   regex_t *preg = (regex_t *) extra;
 | ||
|   reg_errcode_t err = REG_NOERROR;
 | ||
| 
 | ||
|   if (node->left && node->left->token.type == SUBEXP)
 | ||
|     {
 | ||
|       node->left = lower_subexp (&err, preg, node->left);
 | ||
|       if (node->left)
 | ||
| 	node->left->parent = node;
 | ||
|     }
 | ||
|   if (node->right && node->right->token.type == SUBEXP)
 | ||
|     {
 | ||
|       node->right = lower_subexp (&err, preg, node->right);
 | ||
|       if (node->right)
 | ||
| 	node->right->parent = node;
 | ||
|     }
 | ||
| 
 | ||
|   return err;
 | ||
| }
 | ||
| 
 | ||
| static bin_tree_t *
 | ||
| lower_subexp (reg_errcode_t *err, regex_t *preg, bin_tree_t *node)
 | ||
| {
 | ||
|   re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
 | ||
|   bin_tree_t *body = node->left;
 | ||
|   bin_tree_t *op, *cls, *tree1, *tree;
 | ||
| 
 | ||
|   if (preg->no_sub
 | ||
|       /* We do not optimize empty subexpressions, because otherwise we may
 | ||
| 	 have bad CONCAT nodes with NULL children.  This is obviously not
 | ||
| 	 very common, so we do not lose much.  An example that triggers
 | ||
| 	 this case is the sed "script" /\(\)/x.  */
 | ||
|       && node->left != NULL
 | ||
|       && (node->token.opr.idx >= BITSET_WORD_BITS
 | ||
| 	  || !(dfa->used_bkref_map
 | ||
| 	       & ((bitset_word_t) 1 << node->token.opr.idx))))
 | ||
|     return node->left;
 | ||
| 
 | ||
|   /* Convert the SUBEXP node to the concatenation of an
 | ||
|      OP_OPEN_SUBEXP, the contents, and an OP_CLOSE_SUBEXP.  */
 | ||
|   op = create_tree (dfa, NULL, NULL, OP_OPEN_SUBEXP);
 | ||
|   cls = create_tree (dfa, NULL, NULL, OP_CLOSE_SUBEXP);
 | ||
|   tree1 = body ? create_tree (dfa, body, cls, CONCAT) : cls;
 | ||
|   tree = create_tree (dfa, op, tree1, CONCAT);
 | ||
|   if (BE (tree == NULL || tree1 == NULL || op == NULL || cls == NULL, 0))
 | ||
|     {
 | ||
|       *err = REG_ESPACE;
 | ||
|       return NULL;
 | ||
|     }
 | ||
| 
 | ||
|   op->token.opr.idx = cls->token.opr.idx = node->token.opr.idx;
 | ||
|   op->token.opt_subexp = cls->token.opt_subexp = node->token.opt_subexp;
 | ||
|   return tree;
 | ||
| }
 | ||
| 
 | ||
| /* Pass 1 in building the NFA: compute FIRST and create unlinked automaton
 | ||
|    nodes.  Requires a postorder visit.  */
 | ||
| static reg_errcode_t
 | ||
| calc_first (void *extra, bin_tree_t *node)
 | ||
| {
 | ||
|   re_dfa_t *dfa = (re_dfa_t *) extra;
 | ||
|   if (node->token.type == CONCAT)
 | ||
|     {
 | ||
|       node->first = node->left->first;
 | ||
|       node->node_idx = node->left->node_idx;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       node->first = node;
 | ||
|       node->node_idx = re_dfa_add_node (dfa, node->token);
 | ||
|       if (BE (node->node_idx == -1, 0))
 | ||
| 	return REG_ESPACE;
 | ||
|       if (node->token.type == ANCHOR)
 | ||
| 	dfa->nodes[node->node_idx].constraint = node->token.opr.ctx_type;
 | ||
|     }
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Pass 2: compute NEXT on the tree.  Preorder visit.  */
 | ||
| static reg_errcode_t
 | ||
| calc_next (void *extra, bin_tree_t *node)
 | ||
| {
 | ||
|   switch (node->token.type)
 | ||
|     {
 | ||
|     case OP_DUP_ASTERISK:
 | ||
|       node->left->next = node;
 | ||
|       break;
 | ||
|     case CONCAT:
 | ||
|       node->left->next = node->right->first;
 | ||
|       node->right->next = node->next;
 | ||
|       break;
 | ||
|     default:
 | ||
|       if (node->left)
 | ||
| 	node->left->next = node->next;
 | ||
|       if (node->right)
 | ||
| 	node->right->next = node->next;
 | ||
|       break;
 | ||
|     }
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Pass 3: link all DFA nodes to their NEXT node (any order will do).  */
 | ||
| static reg_errcode_t
 | ||
| link_nfa_nodes (void *extra, bin_tree_t *node)
 | ||
| {
 | ||
|   re_dfa_t *dfa = (re_dfa_t *) extra;
 | ||
|   int idx = node->node_idx;
 | ||
|   reg_errcode_t err = REG_NOERROR;
 | ||
| 
 | ||
|   switch (node->token.type)
 | ||
|     {
 | ||
|     case CONCAT:
 | ||
|       break;
 | ||
| 
 | ||
|     case END_OF_RE:
 | ||
|       assert (node->next == NULL);
 | ||
|       break;
 | ||
| 
 | ||
|     case OP_DUP_ASTERISK:
 | ||
|     case OP_ALT:
 | ||
|       {
 | ||
| 	int left, right;
 | ||
| 	dfa->has_plural_match = 1;
 | ||
| 	if (node->left != NULL)
 | ||
| 	  left = node->left->first->node_idx;
 | ||
| 	else
 | ||
| 	  left = node->next->node_idx;
 | ||
| 	if (node->right != NULL)
 | ||
| 	  right = node->right->first->node_idx;
 | ||
| 	else
 | ||
| 	  right = node->next->node_idx;
 | ||
| 	assert (left > -1);
 | ||
| 	assert (right > -1);
 | ||
| 	err = re_node_set_init_2 (dfa->edests + idx, left, right);
 | ||
|       }
 | ||
|       break;
 | ||
| 
 | ||
|     case ANCHOR:
 | ||
|     case OP_OPEN_SUBEXP:
 | ||
|     case OP_CLOSE_SUBEXP:
 | ||
|       err = re_node_set_init_1 (dfa->edests + idx, node->next->node_idx);
 | ||
|       break;
 | ||
| 
 | ||
|     case OP_BACK_REF:
 | ||
|       dfa->nexts[idx] = node->next->node_idx;
 | ||
|       if (node->token.type == OP_BACK_REF)
 | ||
| 	err = re_node_set_init_1 (dfa->edests + idx, dfa->nexts[idx]);
 | ||
|       break;
 | ||
| 
 | ||
|     default:
 | ||
|       assert (!IS_EPSILON_NODE (node->token.type));
 | ||
|       dfa->nexts[idx] = node->next->node_idx;
 | ||
|       break;
 | ||
|     }
 | ||
| 
 | ||
|   return err;
 | ||
| }
 | ||
| 
 | ||
| /* Duplicate the epsilon closure of the node ROOT_NODE.
 | ||
|    Note that duplicated nodes have constraint INIT_CONSTRAINT in addition
 | ||
|    to their own constraint.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| duplicate_node_closure (re_dfa_t *dfa, int top_org_node, int top_clone_node,
 | ||
| 			int root_node, unsigned int init_constraint)
 | ||
| {
 | ||
|   int org_node, clone_node, ret;
 | ||
|   unsigned int constraint = init_constraint;
 | ||
|   for (org_node = top_org_node, clone_node = top_clone_node;;)
 | ||
|     {
 | ||
|       int org_dest, clone_dest;
 | ||
|       if (dfa->nodes[org_node].type == OP_BACK_REF)
 | ||
| 	{
 | ||
| 	  /* If the back reference epsilon-transit, its destination must
 | ||
| 	     also have the constraint.  Then duplicate the epsilon closure
 | ||
| 	     of the destination of the back reference, and store it in
 | ||
| 	     edests of the back reference.  */
 | ||
| 	  org_dest = dfa->nexts[org_node];
 | ||
| 	  re_node_set_empty (dfa->edests + clone_node);
 | ||
| 	  clone_dest = duplicate_node (dfa, org_dest, constraint);
 | ||
| 	  if (BE (clone_dest == -1, 0))
 | ||
| 	    return REG_ESPACE;
 | ||
| 	  dfa->nexts[clone_node] = dfa->nexts[org_node];
 | ||
| 	  ret = re_node_set_insert (dfa->edests + clone_node, clone_dest);
 | ||
| 	  if (BE (ret < 0, 0))
 | ||
| 	    return REG_ESPACE;
 | ||
| 	}
 | ||
|       else if (dfa->edests[org_node].nelem == 0)
 | ||
| 	{
 | ||
| 	  /* In case of the node can't epsilon-transit, don't duplicate the
 | ||
| 	     destination and store the original destination as the
 | ||
| 	     destination of the node.  */
 | ||
| 	  dfa->nexts[clone_node] = dfa->nexts[org_node];
 | ||
| 	  break;
 | ||
| 	}
 | ||
|       else if (dfa->edests[org_node].nelem == 1)
 | ||
| 	{
 | ||
| 	  /* In case of the node can epsilon-transit, and it has only one
 | ||
| 	     destination.  */
 | ||
| 	  org_dest = dfa->edests[org_node].elems[0];
 | ||
| 	  re_node_set_empty (dfa->edests + clone_node);
 | ||
| 	  /* If the node is root_node itself, it means the epsilon closure
 | ||
| 	     has a loop.   Then tie it to the destination of the root_node.  */
 | ||
| 	  if (org_node == root_node && clone_node != org_node)
 | ||
| 	    {
 | ||
| 	      ret = re_node_set_insert (dfa->edests + clone_node, org_dest);
 | ||
| 	      if (BE (ret < 0, 0))
 | ||
| 		return REG_ESPACE;
 | ||
| 	      break;
 | ||
| 	    }
 | ||
| 	  /* In case the node has another constraint, append it.  */
 | ||
| 	  constraint |= dfa->nodes[org_node].constraint;
 | ||
| 	  clone_dest = duplicate_node (dfa, org_dest, constraint);
 | ||
| 	  if (BE (clone_dest == -1, 0))
 | ||
| 	    return REG_ESPACE;
 | ||
| 	  ret = re_node_set_insert (dfa->edests + clone_node, clone_dest);
 | ||
| 	  if (BE (ret < 0, 0))
 | ||
| 	    return REG_ESPACE;
 | ||
| 	}
 | ||
|       else /* dfa->edests[org_node].nelem == 2 */
 | ||
| 	{
 | ||
| 	  /* In case of the node can epsilon-transit, and it has two
 | ||
| 	     destinations. In the bin_tree_t and DFA, that's '|' and '*'.   */
 | ||
| 	  org_dest = dfa->edests[org_node].elems[0];
 | ||
| 	  re_node_set_empty (dfa->edests + clone_node);
 | ||
| 	  /* Search for a duplicated node which satisfies the constraint.  */
 | ||
| 	  clone_dest = search_duplicated_node (dfa, org_dest, constraint);
 | ||
| 	  if (clone_dest == -1)
 | ||
| 	    {
 | ||
| 	      /* There is no such duplicated node, create a new one.  */
 | ||
| 	      reg_errcode_t err;
 | ||
| 	      clone_dest = duplicate_node (dfa, org_dest, constraint);
 | ||
| 	      if (BE (clone_dest == -1, 0))
 | ||
| 		return REG_ESPACE;
 | ||
| 	      ret = re_node_set_insert (dfa->edests + clone_node, clone_dest);
 | ||
| 	      if (BE (ret < 0, 0))
 | ||
| 		return REG_ESPACE;
 | ||
| 	      err = duplicate_node_closure (dfa, org_dest, clone_dest,
 | ||
| 					    root_node, constraint);
 | ||
| 	      if (BE (err != REG_NOERROR, 0))
 | ||
| 		return err;
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      /* There is a duplicated node which satisfies the constraint,
 | ||
| 		 use it to avoid infinite loop.  */
 | ||
| 	      ret = re_node_set_insert (dfa->edests + clone_node, clone_dest);
 | ||
| 	      if (BE (ret < 0, 0))
 | ||
| 		return REG_ESPACE;
 | ||
| 	    }
 | ||
| 
 | ||
| 	  org_dest = dfa->edests[org_node].elems[1];
 | ||
| 	  clone_dest = duplicate_node (dfa, org_dest, constraint);
 | ||
| 	  if (BE (clone_dest == -1, 0))
 | ||
| 	    return REG_ESPACE;
 | ||
| 	  ret = re_node_set_insert (dfa->edests + clone_node, clone_dest);
 | ||
| 	  if (BE (ret < 0, 0))
 | ||
| 	    return REG_ESPACE;
 | ||
| 	}
 | ||
|       org_node = org_dest;
 | ||
|       clone_node = clone_dest;
 | ||
|     }
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Search for a node which is duplicated from the node ORG_NODE, and
 | ||
|    satisfies the constraint CONSTRAINT.  */
 | ||
| 
 | ||
| static int
 | ||
| search_duplicated_node (const re_dfa_t *dfa, int org_node,
 | ||
| 			unsigned int constraint)
 | ||
| {
 | ||
|   int idx;
 | ||
|   for (idx = dfa->nodes_len - 1; dfa->nodes[idx].duplicated && idx > 0; --idx)
 | ||
|     {
 | ||
|       if (org_node == dfa->org_indices[idx]
 | ||
| 	  && constraint == dfa->nodes[idx].constraint)
 | ||
| 	return idx; /* Found.  */
 | ||
|     }
 | ||
|   return -1; /* Not found.  */
 | ||
| }
 | ||
| 
 | ||
| /* Duplicate the node whose index is ORG_IDX and set the constraint CONSTRAINT.
 | ||
|    Return the index of the new node, or -1 if insufficient storage is
 | ||
|    available.  */
 | ||
| 
 | ||
| static int
 | ||
| duplicate_node (re_dfa_t *dfa, int org_idx, unsigned int constraint)
 | ||
| {
 | ||
|   int dup_idx = re_dfa_add_node (dfa, dfa->nodes[org_idx]);
 | ||
|   if (BE (dup_idx != -1, 1))
 | ||
|     {
 | ||
|       dfa->nodes[dup_idx].constraint = constraint;
 | ||
|       dfa->nodes[dup_idx].constraint |= dfa->nodes[org_idx].constraint;
 | ||
|       dfa->nodes[dup_idx].duplicated = 1;
 | ||
| 
 | ||
|       /* Store the index of the original node.  */
 | ||
|       dfa->org_indices[dup_idx] = org_idx;
 | ||
|     }
 | ||
|   return dup_idx;
 | ||
| }
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| calc_inveclosure (re_dfa_t *dfa)
 | ||
| {
 | ||
|   int src, idx, ret;
 | ||
|   for (idx = 0; idx < dfa->nodes_len; ++idx)
 | ||
|     re_node_set_init_empty (dfa->inveclosures + idx);
 | ||
| 
 | ||
|   for (src = 0; src < dfa->nodes_len; ++src)
 | ||
|     {
 | ||
|       int *elems = dfa->eclosures[src].elems;
 | ||
|       for (idx = 0; idx < dfa->eclosures[src].nelem; ++idx)
 | ||
| 	{
 | ||
| 	  ret = re_node_set_insert_last (dfa->inveclosures + elems[idx], src);
 | ||
| 	  if (BE (ret == -1, 0))
 | ||
| 	    return REG_ESPACE;
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Calculate "eclosure" for all the node in DFA.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| calc_eclosure (re_dfa_t *dfa)
 | ||
| {
 | ||
|   int node_idx, incomplete;
 | ||
| #ifdef DEBUG
 | ||
|   assert (dfa->nodes_len > 0);
 | ||
| #endif
 | ||
|   incomplete = 0;
 | ||
|   /* For each nodes, calculate epsilon closure.  */
 | ||
|   for (node_idx = 0; ; ++node_idx)
 | ||
|     {
 | ||
|       reg_errcode_t err;
 | ||
|       re_node_set eclosure_elem;
 | ||
|       if (node_idx == dfa->nodes_len)
 | ||
| 	{
 | ||
| 	  if (!incomplete)
 | ||
| 	    break;
 | ||
| 	  incomplete = 0;
 | ||
| 	  node_idx = 0;
 | ||
| 	}
 | ||
| 
 | ||
| #ifdef DEBUG
 | ||
|       assert (dfa->eclosures[node_idx].nelem != -1);
 | ||
| #endif
 | ||
| 
 | ||
|       /* If we have already calculated, skip it.  */
 | ||
|       if (dfa->eclosures[node_idx].nelem != 0)
 | ||
| 	continue;
 | ||
|       /* Calculate epsilon closure of 'node_idx'.  */
 | ||
|       err = calc_eclosure_iter (&eclosure_elem, dfa, node_idx, 1);
 | ||
|       if (BE (err != REG_NOERROR, 0))
 | ||
| 	return err;
 | ||
| 
 | ||
|       if (dfa->eclosures[node_idx].nelem == 0)
 | ||
| 	{
 | ||
| 	  incomplete = 1;
 | ||
| 	  re_node_set_free (&eclosure_elem);
 | ||
| 	}
 | ||
|     }
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Calculate epsilon closure of NODE.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, int node, int root)
 | ||
| {
 | ||
|   reg_errcode_t err;
 | ||
|   int i;
 | ||
|   re_node_set eclosure;
 | ||
|   int ret;
 | ||
|   int incomplete = 0;
 | ||
|   err = re_node_set_alloc (&eclosure, dfa->edests[node].nelem + 1);
 | ||
|   if (BE (err != REG_NOERROR, 0))
 | ||
|     return err;
 | ||
| 
 | ||
|   /* This indicates that we are calculating this node now.
 | ||
|      We reference this value to avoid infinite loop.  */
 | ||
|   dfa->eclosures[node].nelem = -1;
 | ||
| 
 | ||
|   /* If the current node has constraints, duplicate all nodes
 | ||
|      since they must inherit the constraints.  */
 | ||
|   if (dfa->nodes[node].constraint
 | ||
|       && dfa->edests[node].nelem
 | ||
|       && !dfa->nodes[dfa->edests[node].elems[0]].duplicated)
 | ||
|     {
 | ||
|       err = duplicate_node_closure (dfa, node, node, node,
 | ||
| 				    dfa->nodes[node].constraint);
 | ||
|       if (BE (err != REG_NOERROR, 0))
 | ||
| 	return err;
 | ||
|     }
 | ||
| 
 | ||
|   /* Expand each epsilon destination nodes.  */
 | ||
|   if (IS_EPSILON_NODE(dfa->nodes[node].type))
 | ||
|     for (i = 0; i < dfa->edests[node].nelem; ++i)
 | ||
|       {
 | ||
| 	re_node_set eclosure_elem;
 | ||
| 	int edest = dfa->edests[node].elems[i];
 | ||
| 	/* If calculating the epsilon closure of `edest' is in progress,
 | ||
| 	   return intermediate result.  */
 | ||
| 	if (dfa->eclosures[edest].nelem == -1)
 | ||
| 	  {
 | ||
| 	    incomplete = 1;
 | ||
| 	    continue;
 | ||
| 	  }
 | ||
| 	/* If we haven't calculated the epsilon closure of `edest' yet,
 | ||
| 	   calculate now. Otherwise use calculated epsilon closure.  */
 | ||
| 	if (dfa->eclosures[edest].nelem == 0)
 | ||
| 	  {
 | ||
| 	    err = calc_eclosure_iter (&eclosure_elem, dfa, edest, 0);
 | ||
| 	    if (BE (err != REG_NOERROR, 0))
 | ||
| 	      return err;
 | ||
| 	  }
 | ||
| 	else
 | ||
| 	  eclosure_elem = dfa->eclosures[edest];
 | ||
| 	/* Merge the epsilon closure of 'edest'.  */
 | ||
| 	err = re_node_set_merge (&eclosure, &eclosure_elem);
 | ||
| 	if (BE (err != REG_NOERROR, 0))
 | ||
| 	  return err;
 | ||
| 	/* If the epsilon closure of 'edest' is incomplete,
 | ||
| 	   the epsilon closure of this node is also incomplete.  */
 | ||
| 	if (dfa->eclosures[edest].nelem == 0)
 | ||
| 	  {
 | ||
| 	    incomplete = 1;
 | ||
| 	    re_node_set_free (&eclosure_elem);
 | ||
| 	  }
 | ||
|       }
 | ||
| 
 | ||
|   /* An epsilon closure includes itself.  */
 | ||
|   ret = re_node_set_insert (&eclosure, node);
 | ||
|   if (BE (ret < 0, 0))
 | ||
|     return REG_ESPACE;
 | ||
|   if (incomplete && !root)
 | ||
|     dfa->eclosures[node].nelem = 0;
 | ||
|   else
 | ||
|     dfa->eclosures[node] = eclosure;
 | ||
|   *new_set = eclosure;
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Functions for token which are used in the parser.  */
 | ||
| 
 | ||
| /* Fetch a token from INPUT.
 | ||
|    We must not use this function inside bracket expressions.  */
 | ||
| 
 | ||
| static void
 | ||
| internal_function
 | ||
| fetch_token (re_token_t *result, re_string_t *input, reg_syntax_t syntax)
 | ||
| {
 | ||
|   re_string_skip_bytes (input, peek_token (result, input, syntax));
 | ||
| }
 | ||
| 
 | ||
| /* Peek a token from INPUT, and return the length of the token.
 | ||
|    We must not use this function inside bracket expressions.  */
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| peek_token (re_token_t *token, re_string_t *input, reg_syntax_t syntax)
 | ||
| {
 | ||
|   unsigned char c;
 | ||
| 
 | ||
|   if (re_string_eoi (input))
 | ||
|     {
 | ||
|       token->type = END_OF_RE;
 | ||
|       return 0;
 | ||
|     }
 | ||
| 
 | ||
|   c = re_string_peek_byte (input, 0);
 | ||
|   token->opr.c = c;
 | ||
| 
 | ||
|   token->word_char = 0;
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   token->mb_partial = 0;
 | ||
|   if (input->mb_cur_max > 1 &&
 | ||
|       !re_string_first_byte (input, re_string_cur_idx (input)))
 | ||
|     {
 | ||
|       token->type = CHARACTER;
 | ||
|       token->mb_partial = 1;
 | ||
|       return 1;
 | ||
|     }
 | ||
| #endif
 | ||
|   if (c == '\\')
 | ||
|     {
 | ||
|       unsigned char c2;
 | ||
|       if (re_string_cur_idx (input) + 1 >= re_string_length (input))
 | ||
| 	{
 | ||
| 	  token->type = BACK_SLASH;
 | ||
| 	  return 1;
 | ||
| 	}
 | ||
| 
 | ||
|       c2 = re_string_peek_byte_case (input, 1);
 | ||
|       token->opr.c = c2;
 | ||
|       token->type = CHARACTER;
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|       if (input->mb_cur_max > 1)
 | ||
| 	{
 | ||
| 	  wint_t wc = re_string_wchar_at (input,
 | ||
| 					  re_string_cur_idx (input) + 1);
 | ||
| 	  token->word_char = IS_WIDE_WORD_CHAR (wc) != 0;
 | ||
| 	}
 | ||
|       else
 | ||
| #endif
 | ||
| 	token->word_char = IS_WORD_CHAR (c2) != 0;
 | ||
| 
 | ||
|       switch (c2)
 | ||
| 	{
 | ||
| 	case '|':
 | ||
| 	  if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_NO_BK_VBAR))
 | ||
| 	    token->type = OP_ALT;
 | ||
| 	  break;
 | ||
| 	case '1': case '2': case '3': case '4': case '5':
 | ||
| 	case '6': case '7': case '8': case '9':
 | ||
| 	  if (!(syntax & RE_NO_BK_REFS))
 | ||
| 	    {
 | ||
| 	      token->type = OP_BACK_REF;
 | ||
| 	      token->opr.idx = c2 - '1';
 | ||
| 	    }
 | ||
| 	  break;
 | ||
| 	case '<':
 | ||
| 	  if (!(syntax & RE_NO_GNU_OPS))
 | ||
| 	    {
 | ||
| 	      token->type = ANCHOR;
 | ||
| 	      token->opr.ctx_type = WORD_FIRST;
 | ||
| 	    }
 | ||
| 	  break;
 | ||
| 	case '>':
 | ||
| 	  if (!(syntax & RE_NO_GNU_OPS))
 | ||
| 	    {
 | ||
| 	      token->type = ANCHOR;
 | ||
| 	      token->opr.ctx_type = WORD_LAST;
 | ||
| 	    }
 | ||
| 	  break;
 | ||
| 	case 'b':
 | ||
| 	  if (!(syntax & RE_NO_GNU_OPS))
 | ||
| 	    {
 | ||
| 	      token->type = ANCHOR;
 | ||
| 	      token->opr.ctx_type = WORD_DELIM;
 | ||
| 	    }
 | ||
| 	  break;
 | ||
| 	case 'B':
 | ||
| 	  if (!(syntax & RE_NO_GNU_OPS))
 | ||
| 	    {
 | ||
| 	      token->type = ANCHOR;
 | ||
| 	      token->opr.ctx_type = NOT_WORD_DELIM;
 | ||
| 	    }
 | ||
| 	  break;
 | ||
| 	case 'w':
 | ||
| 	  if (!(syntax & RE_NO_GNU_OPS))
 | ||
| 	    token->type = OP_WORD;
 | ||
| 	  break;
 | ||
| 	case 'W':
 | ||
| 	  if (!(syntax & RE_NO_GNU_OPS))
 | ||
| 	    token->type = OP_NOTWORD;
 | ||
| 	  break;
 | ||
| 	case 's':
 | ||
| 	  if (!(syntax & RE_NO_GNU_OPS))
 | ||
| 	    token->type = OP_SPACE;
 | ||
| 	  break;
 | ||
| 	case 'S':
 | ||
| 	  if (!(syntax & RE_NO_GNU_OPS))
 | ||
| 	    token->type = OP_NOTSPACE;
 | ||
| 	  break;
 | ||
| 	case '`':
 | ||
| 	  if (!(syntax & RE_NO_GNU_OPS))
 | ||
| 	    {
 | ||
| 	      token->type = ANCHOR;
 | ||
| 	      token->opr.ctx_type = BUF_FIRST;
 | ||
| 	    }
 | ||
| 	  break;
 | ||
| 	case '\'':
 | ||
| 	  if (!(syntax & RE_NO_GNU_OPS))
 | ||
| 	    {
 | ||
| 	      token->type = ANCHOR;
 | ||
| 	      token->opr.ctx_type = BUF_LAST;
 | ||
| 	    }
 | ||
| 	  break;
 | ||
| 	case '(':
 | ||
| 	  if (!(syntax & RE_NO_BK_PARENS))
 | ||
| 	    token->type = OP_OPEN_SUBEXP;
 | ||
| 	  break;
 | ||
| 	case ')':
 | ||
| 	  if (!(syntax & RE_NO_BK_PARENS))
 | ||
| 	    token->type = OP_CLOSE_SUBEXP;
 | ||
| 	  break;
 | ||
| 	case '+':
 | ||
| 	  if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM))
 | ||
| 	    token->type = OP_DUP_PLUS;
 | ||
| 	  break;
 | ||
| 	case '?':
 | ||
| 	  if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM))
 | ||
| 	    token->type = OP_DUP_QUESTION;
 | ||
| 	  break;
 | ||
| 	case '{':
 | ||
| 	  if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES)))
 | ||
| 	    token->type = OP_OPEN_DUP_NUM;
 | ||
| 	  break;
 | ||
| 	case '}':
 | ||
| 	  if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES)))
 | ||
| 	    token->type = OP_CLOSE_DUP_NUM;
 | ||
| 	  break;
 | ||
| 	default:
 | ||
| 	  break;
 | ||
| 	}
 | ||
|       return 2;
 | ||
|     }
 | ||
| 
 | ||
|   token->type = CHARACTER;
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   if (input->mb_cur_max > 1)
 | ||
|     {
 | ||
|       wint_t wc = re_string_wchar_at (input, re_string_cur_idx (input));
 | ||
|       token->word_char = IS_WIDE_WORD_CHAR (wc) != 0;
 | ||
|     }
 | ||
|   else
 | ||
| #endif
 | ||
|     token->word_char = IS_WORD_CHAR (token->opr.c);
 | ||
| 
 | ||
|   switch (c)
 | ||
|     {
 | ||
|     case '\n':
 | ||
|       if (syntax & RE_NEWLINE_ALT)
 | ||
| 	token->type = OP_ALT;
 | ||
|       break;
 | ||
|     case '|':
 | ||
|       if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_NO_BK_VBAR))
 | ||
| 	token->type = OP_ALT;
 | ||
|       break;
 | ||
|     case '*':
 | ||
|       token->type = OP_DUP_ASTERISK;
 | ||
|       break;
 | ||
|     case '+':
 | ||
|       if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM))
 | ||
| 	token->type = OP_DUP_PLUS;
 | ||
|       break;
 | ||
|     case '?':
 | ||
|       if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM))
 | ||
| 	token->type = OP_DUP_QUESTION;
 | ||
|       break;
 | ||
|     case '{':
 | ||
|       if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
 | ||
| 	token->type = OP_OPEN_DUP_NUM;
 | ||
|       break;
 | ||
|     case '}':
 | ||
|       if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
 | ||
| 	token->type = OP_CLOSE_DUP_NUM;
 | ||
|       break;
 | ||
|     case '(':
 | ||
|       if (syntax & RE_NO_BK_PARENS)
 | ||
| 	token->type = OP_OPEN_SUBEXP;
 | ||
|       break;
 | ||
|     case ')':
 | ||
|       if (syntax & RE_NO_BK_PARENS)
 | ||
| 	token->type = OP_CLOSE_SUBEXP;
 | ||
|       break;
 | ||
|     case '[':
 | ||
|       token->type = OP_OPEN_BRACKET;
 | ||
|       break;
 | ||
|     case '.':
 | ||
|       token->type = OP_PERIOD;
 | ||
|       break;
 | ||
|     case '^':
 | ||
|       if (!(syntax & (RE_CONTEXT_INDEP_ANCHORS | RE_CARET_ANCHORS_HERE)) &&
 | ||
| 	  re_string_cur_idx (input) != 0)
 | ||
| 	{
 | ||
| 	  char prev = re_string_peek_byte (input, -1);
 | ||
| 	  if (!(syntax & RE_NEWLINE_ALT) || prev != '\n')
 | ||
| 	    break;
 | ||
| 	}
 | ||
|       token->type = ANCHOR;
 | ||
|       token->opr.ctx_type = LINE_FIRST;
 | ||
|       break;
 | ||
|     case '$':
 | ||
|       if (!(syntax & RE_CONTEXT_INDEP_ANCHORS) &&
 | ||
| 	  re_string_cur_idx (input) + 1 != re_string_length (input))
 | ||
| 	{
 | ||
| 	  re_token_t next;
 | ||
| 	  re_string_skip_bytes (input, 1);
 | ||
| 	  peek_token (&next, input, syntax);
 | ||
| 	  re_string_skip_bytes (input, -1);
 | ||
| 	  if (next.type != OP_ALT && next.type != OP_CLOSE_SUBEXP)
 | ||
| 	    break;
 | ||
| 	}
 | ||
|       token->type = ANCHOR;
 | ||
|       token->opr.ctx_type = LINE_LAST;
 | ||
|       break;
 | ||
|     default:
 | ||
|       break;
 | ||
|     }
 | ||
|   return 1;
 | ||
| }
 | ||
| 
 | ||
| /* Peek a token from INPUT, and return the length of the token.
 | ||
|    We must not use this function out of bracket expressions.  */
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| peek_token_bracket (re_token_t *token, re_string_t *input, reg_syntax_t syntax)
 | ||
| {
 | ||
|   unsigned char c;
 | ||
|   if (re_string_eoi (input))
 | ||
|     {
 | ||
|       token->type = END_OF_RE;
 | ||
|       return 0;
 | ||
|     }
 | ||
|   c = re_string_peek_byte (input, 0);
 | ||
|   token->opr.c = c;
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   if (input->mb_cur_max > 1 &&
 | ||
|       !re_string_first_byte (input, re_string_cur_idx (input)))
 | ||
|     {
 | ||
|       token->type = CHARACTER;
 | ||
|       return 1;
 | ||
|     }
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| 
 | ||
|   if (c == '\\' && (syntax & RE_BACKSLASH_ESCAPE_IN_LISTS)
 | ||
|       && re_string_cur_idx (input) + 1 < re_string_length (input))
 | ||
|     {
 | ||
|       /* In this case, '\' escape a character.  */
 | ||
|       unsigned char c2;
 | ||
|       re_string_skip_bytes (input, 1);
 | ||
|       c2 = re_string_peek_byte (input, 0);
 | ||
|       token->opr.c = c2;
 | ||
|       token->type = CHARACTER;
 | ||
|       return 1;
 | ||
|     }
 | ||
|   if (c == '[') /* '[' is a special char in a bracket exps.  */
 | ||
|     {
 | ||
|       unsigned char c2;
 | ||
|       int token_len;
 | ||
|       if (re_string_cur_idx (input) + 1 < re_string_length (input))
 | ||
| 	c2 = re_string_peek_byte (input, 1);
 | ||
|       else
 | ||
| 	c2 = 0;
 | ||
|       token->opr.c = c2;
 | ||
|       token_len = 2;
 | ||
|       switch (c2)
 | ||
| 	{
 | ||
| 	case '.':
 | ||
| 	  token->type = OP_OPEN_COLL_ELEM;
 | ||
| 	  break;
 | ||
| 	case '=':
 | ||
| 	  token->type = OP_OPEN_EQUIV_CLASS;
 | ||
| 	  break;
 | ||
| 	case ':':
 | ||
| 	  if (syntax & RE_CHAR_CLASSES)
 | ||
| 	    {
 | ||
| 	      token->type = OP_OPEN_CHAR_CLASS;
 | ||
| 	      break;
 | ||
| 	    }
 | ||
| 	  /* else fall through.  */
 | ||
| 	default:
 | ||
| 	  token->type = CHARACTER;
 | ||
| 	  token->opr.c = c;
 | ||
| 	  token_len = 1;
 | ||
| 	  break;
 | ||
| 	}
 | ||
|       return token_len;
 | ||
|     }
 | ||
|   switch (c)
 | ||
|     {
 | ||
|     case '-':
 | ||
|       token->type = OP_CHARSET_RANGE;
 | ||
|       break;
 | ||
|     case ']':
 | ||
|       token->type = OP_CLOSE_BRACKET;
 | ||
|       break;
 | ||
|     case '^':
 | ||
|       token->type = OP_NON_MATCH_LIST;
 | ||
|       break;
 | ||
|     default:
 | ||
|       token->type = CHARACTER;
 | ||
|     }
 | ||
|   return 1;
 | ||
| }
 | ||
| 
 | ||
| /* Functions for parser.  */
 | ||
| 
 | ||
| /* Entry point of the parser.
 | ||
|    Parse the regular expression REGEXP and return the structure tree.
 | ||
|    If an error occurs, ERR is set by error code, and return NULL.
 | ||
|    This function build the following tree, from regular expression <reg_exp>:
 | ||
| 	   CAT
 | ||
| 	   / \
 | ||
| 	  /   \
 | ||
|    <reg_exp>  EOR
 | ||
| 
 | ||
|    CAT means concatenation.
 | ||
|    EOR means end of regular expression.  */
 | ||
| 
 | ||
| static bin_tree_t *
 | ||
| parse (re_string_t *regexp, regex_t *preg, reg_syntax_t syntax,
 | ||
|        reg_errcode_t *err)
 | ||
| {
 | ||
|   re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
 | ||
|   bin_tree_t *tree, *eor, *root;
 | ||
|   re_token_t current_token;
 | ||
|   dfa->syntax = syntax;
 | ||
|   fetch_token (¤t_token, regexp, syntax | RE_CARET_ANCHORS_HERE);
 | ||
|   tree = parse_reg_exp (regexp, preg, ¤t_token, syntax, 0, err);
 | ||
|   if (BE (*err != REG_NOERROR && tree == NULL, 0))
 | ||
|     return NULL;
 | ||
|   eor = create_tree (dfa, NULL, NULL, END_OF_RE);
 | ||
|   if (tree != NULL)
 | ||
|     root = create_tree (dfa, tree, eor, CONCAT);
 | ||
|   else
 | ||
|     root = eor;
 | ||
|   if (BE (eor == NULL || root == NULL, 0))
 | ||
|     {
 | ||
|       *err = REG_ESPACE;
 | ||
|       return NULL;
 | ||
|     }
 | ||
|   return root;
 | ||
| }
 | ||
| 
 | ||
| /* This function build the following tree, from regular expression
 | ||
|    <branch1>|<branch2>:
 | ||
| 	   ALT
 | ||
| 	   / \
 | ||
| 	  /   \
 | ||
|    <branch1> <branch2>
 | ||
| 
 | ||
|    ALT means alternative, which represents the operator '|'.  */
 | ||
| 
 | ||
| static bin_tree_t *
 | ||
| parse_reg_exp (re_string_t *regexp, regex_t *preg, re_token_t *token,
 | ||
| 	       reg_syntax_t syntax, int nest, reg_errcode_t *err)
 | ||
| {
 | ||
|   re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
 | ||
|   bin_tree_t *tree, *branch = NULL;
 | ||
|   tree = parse_branch (regexp, preg, token, syntax, nest, err);
 | ||
|   if (BE (*err != REG_NOERROR && tree == NULL, 0))
 | ||
|     return NULL;
 | ||
| 
 | ||
|   while (token->type == OP_ALT)
 | ||
|     {
 | ||
|       fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE);
 | ||
|       if (token->type != OP_ALT && token->type != END_OF_RE
 | ||
| 	  && (nest == 0 || token->type != OP_CLOSE_SUBEXP))
 | ||
| 	{
 | ||
| 	  branch = parse_branch (regexp, preg, token, syntax, nest, err);
 | ||
| 	  if (BE (*err != REG_NOERROR && branch == NULL, 0))
 | ||
| 	    {
 | ||
| 	      if (tree != NULL)
 | ||
| 		postorder (tree, free_tree, NULL);
 | ||
| 	      return NULL;
 | ||
| 	    }
 | ||
| 	}
 | ||
|       else
 | ||
| 	branch = NULL;
 | ||
|       tree = create_tree (dfa, tree, branch, OP_ALT);
 | ||
|       if (BE (tree == NULL, 0))
 | ||
| 	{
 | ||
| 	  *err = REG_ESPACE;
 | ||
| 	  return NULL;
 | ||
| 	}
 | ||
|     }
 | ||
|   return tree;
 | ||
| }
 | ||
| 
 | ||
| /* This function build the following tree, from regular expression
 | ||
|    <exp1><exp2>:
 | ||
| 	CAT
 | ||
| 	/ \
 | ||
|        /   \
 | ||
|    <exp1> <exp2>
 | ||
| 
 | ||
|    CAT means concatenation.  */
 | ||
| 
 | ||
| static bin_tree_t *
 | ||
| parse_branch (re_string_t *regexp, regex_t *preg, re_token_t *token,
 | ||
| 	      reg_syntax_t syntax, int nest, reg_errcode_t *err)
 | ||
| {
 | ||
|   bin_tree_t *tree, *exp;
 | ||
|   re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
 | ||
|   tree = parse_expression (regexp, preg, token, syntax, nest, err);
 | ||
|   if (BE (*err != REG_NOERROR && tree == NULL, 0))
 | ||
|     return NULL;
 | ||
| 
 | ||
|   while (token->type != OP_ALT && token->type != END_OF_RE
 | ||
| 	 && (nest == 0 || token->type != OP_CLOSE_SUBEXP))
 | ||
|     {
 | ||
|       exp = parse_expression (regexp, preg, token, syntax, nest, err);
 | ||
|       if (BE (*err != REG_NOERROR && exp == NULL, 0))
 | ||
| 	{
 | ||
| 	  if (tree != NULL)
 | ||
| 	    postorder (tree, free_tree, NULL);
 | ||
| 	  return NULL;
 | ||
| 	}
 | ||
|       if (tree != NULL && exp != NULL)
 | ||
| 	{
 | ||
| 	  bin_tree_t *newtree = create_tree (dfa, tree, exp, CONCAT);
 | ||
| 	  if (newtree == NULL)
 | ||
| 	    {
 | ||
| 	      postorder (exp, free_tree, NULL);
 | ||
| 	      postorder (tree, free_tree, NULL);
 | ||
| 	      *err = REG_ESPACE;
 | ||
| 	      return NULL;
 | ||
| 	    }
 | ||
| 	  tree = newtree;
 | ||
| 	}
 | ||
|       else if (tree == NULL)
 | ||
| 	tree = exp;
 | ||
|       /* Otherwise exp == NULL, we don't need to create new tree.  */
 | ||
|     }
 | ||
|   return tree;
 | ||
| }
 | ||
| 
 | ||
| /* This function build the following tree, from regular expression a*:
 | ||
| 	 *
 | ||
| 	 |
 | ||
| 	 a
 | ||
| */
 | ||
| 
 | ||
| static bin_tree_t *
 | ||
| parse_expression (re_string_t *regexp, regex_t *preg, re_token_t *token,
 | ||
| 		  reg_syntax_t syntax, int nest, reg_errcode_t *err)
 | ||
| {
 | ||
|   re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
 | ||
|   bin_tree_t *tree;
 | ||
|   switch (token->type)
 | ||
|     {
 | ||
|     case CHARACTER:
 | ||
|       tree = create_token_tree (dfa, NULL, NULL, token);
 | ||
|       if (BE (tree == NULL, 0))
 | ||
| 	{
 | ||
| 	  *err = REG_ESPACE;
 | ||
| 	  return NULL;
 | ||
| 	}
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|       if (dfa->mb_cur_max > 1)
 | ||
| 	{
 | ||
| 	  while (!re_string_eoi (regexp)
 | ||
| 		 && !re_string_first_byte (regexp, re_string_cur_idx (regexp)))
 | ||
| 	    {
 | ||
| 	      bin_tree_t *mbc_remain;
 | ||
| 	      fetch_token (token, regexp, syntax);
 | ||
| 	      mbc_remain = create_token_tree (dfa, NULL, NULL, token);
 | ||
| 	      tree = create_tree (dfa, tree, mbc_remain, CONCAT);
 | ||
| 	      if (BE (mbc_remain == NULL || tree == NULL, 0))
 | ||
| 		{
 | ||
| 		  *err = REG_ESPACE;
 | ||
| 		  return NULL;
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	}
 | ||
| #endif
 | ||
|       break;
 | ||
|     case OP_OPEN_SUBEXP:
 | ||
|       tree = parse_sub_exp (regexp, preg, token, syntax, nest + 1, err);
 | ||
|       if (BE (*err != REG_NOERROR && tree == NULL, 0))
 | ||
| 	return NULL;
 | ||
|       break;
 | ||
|     case OP_OPEN_BRACKET:
 | ||
|       tree = parse_bracket_exp (regexp, dfa, token, syntax, err);
 | ||
|       if (BE (*err != REG_NOERROR && tree == NULL, 0))
 | ||
| 	return NULL;
 | ||
|       break;
 | ||
|     case OP_BACK_REF:
 | ||
|       if (!BE (dfa->completed_bkref_map & (1 << token->opr.idx), 1))
 | ||
| 	{
 | ||
| 	  *err = REG_ESUBREG;
 | ||
| 	  return NULL;
 | ||
| 	}
 | ||
|       dfa->used_bkref_map |= 1 << token->opr.idx;
 | ||
|       tree = create_token_tree (dfa, NULL, NULL, token);
 | ||
|       if (BE (tree == NULL, 0))
 | ||
| 	{
 | ||
| 	  *err = REG_ESPACE;
 | ||
| 	  return NULL;
 | ||
| 	}
 | ||
|       ++dfa->nbackref;
 | ||
|       dfa->has_mb_node = 1;
 | ||
|       break;
 | ||
|     case OP_OPEN_DUP_NUM:
 | ||
|       if (syntax & RE_CONTEXT_INVALID_DUP)
 | ||
| 	{
 | ||
| 	  *err = REG_BADRPT;
 | ||
| 	  return NULL;
 | ||
| 	}
 | ||
|       /* FALLTHROUGH */
 | ||
|     case OP_DUP_ASTERISK:
 | ||
|     case OP_DUP_PLUS:
 | ||
|     case OP_DUP_QUESTION:
 | ||
|       if (syntax & RE_CONTEXT_INVALID_OPS)
 | ||
| 	{
 | ||
| 	  *err = REG_BADRPT;
 | ||
| 	  return NULL;
 | ||
| 	}
 | ||
|       else if (syntax & RE_CONTEXT_INDEP_OPS)
 | ||
| 	{
 | ||
| 	  fetch_token (token, regexp, syntax);
 | ||
| 	  return parse_expression (regexp, preg, token, syntax, nest, err);
 | ||
| 	}
 | ||
|       /* else fall through  */
 | ||
|     case OP_CLOSE_SUBEXP:
 | ||
|       if ((token->type == OP_CLOSE_SUBEXP) &&
 | ||
| 	  !(syntax & RE_UNMATCHED_RIGHT_PAREN_ORD))
 | ||
| 	{
 | ||
| 	  *err = REG_ERPAREN;
 | ||
| 	  return NULL;
 | ||
| 	}
 | ||
|       /* else fall through  */
 | ||
|     case OP_CLOSE_DUP_NUM:
 | ||
|       /* We treat it as a normal character.  */
 | ||
| 
 | ||
|       /* Then we can these characters as normal characters.  */
 | ||
|       token->type = CHARACTER;
 | ||
|       /* mb_partial and word_char bits should be initialized already
 | ||
| 	 by peek_token.  */
 | ||
|       tree = create_token_tree (dfa, NULL, NULL, token);
 | ||
|       if (BE (tree == NULL, 0))
 | ||
| 	{
 | ||
| 	  *err = REG_ESPACE;
 | ||
| 	  return NULL;
 | ||
| 	}
 | ||
|       break;
 | ||
|     case ANCHOR:
 | ||
|       if ((token->opr.ctx_type
 | ||
| 	   & (WORD_DELIM | NOT_WORD_DELIM | WORD_FIRST | WORD_LAST))
 | ||
| 	  && dfa->word_ops_used == 0)
 | ||
| 	init_word_char (dfa);
 | ||
|       if (token->opr.ctx_type == WORD_DELIM
 | ||
| 	  || token->opr.ctx_type == NOT_WORD_DELIM)
 | ||
| 	{
 | ||
| 	  bin_tree_t *tree_first, *tree_last;
 | ||
| 	  if (token->opr.ctx_type == WORD_DELIM)
 | ||
| 	    {
 | ||
| 	      token->opr.ctx_type = WORD_FIRST;
 | ||
| 	      tree_first = create_token_tree (dfa, NULL, NULL, token);
 | ||
| 	      token->opr.ctx_type = WORD_LAST;
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      token->opr.ctx_type = INSIDE_WORD;
 | ||
| 	      tree_first = create_token_tree (dfa, NULL, NULL, token);
 | ||
| 	      token->opr.ctx_type = INSIDE_NOTWORD;
 | ||
| 	    }
 | ||
| 	  tree_last = create_token_tree (dfa, NULL, NULL, token);
 | ||
| 	  tree = create_tree (dfa, tree_first, tree_last, OP_ALT);
 | ||
| 	  if (BE (tree_first == NULL || tree_last == NULL || tree == NULL, 0))
 | ||
| 	    {
 | ||
| 	      *err = REG_ESPACE;
 | ||
| 	      return NULL;
 | ||
| 	    }
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  tree = create_token_tree (dfa, NULL, NULL, token);
 | ||
| 	  if (BE (tree == NULL, 0))
 | ||
| 	    {
 | ||
| 	      *err = REG_ESPACE;
 | ||
| 	      return NULL;
 | ||
| 	    }
 | ||
| 	}
 | ||
|       /* We must return here, since ANCHORs can't be followed
 | ||
| 	 by repetition operators.
 | ||
| 	 eg. RE"^*" is invalid or "<ANCHOR(^)><CHAR(*)>",
 | ||
| 	     it must not be "<ANCHOR(^)><REPEAT(*)>".  */
 | ||
|       fetch_token (token, regexp, syntax);
 | ||
|       return tree;
 | ||
|     case OP_PERIOD:
 | ||
|       tree = create_token_tree (dfa, NULL, NULL, token);
 | ||
|       if (BE (tree == NULL, 0))
 | ||
| 	{
 | ||
| 	  *err = REG_ESPACE;
 | ||
| 	  return NULL;
 | ||
| 	}
 | ||
|       if (dfa->mb_cur_max > 1)
 | ||
| 	dfa->has_mb_node = 1;
 | ||
|       break;
 | ||
|     case OP_WORD:
 | ||
|     case OP_NOTWORD:
 | ||
|       tree = build_charclass_op (dfa, regexp->trans,
 | ||
| 				 (const unsigned char *) "alnum",
 | ||
| 				 (const unsigned char *) "_",
 | ||
| 				 token->type == OP_NOTWORD, err);
 | ||
|       if (BE (*err != REG_NOERROR && tree == NULL, 0))
 | ||
| 	return NULL;
 | ||
|       break;
 | ||
|     case OP_SPACE:
 | ||
|     case OP_NOTSPACE:
 | ||
|       tree = build_charclass_op (dfa, regexp->trans,
 | ||
| 				 (const unsigned char *) "space",
 | ||
| 				 (const unsigned char *) "",
 | ||
| 				 token->type == OP_NOTSPACE, err);
 | ||
|       if (BE (*err != REG_NOERROR && tree == NULL, 0))
 | ||
| 	return NULL;
 | ||
|       break;
 | ||
|     case OP_ALT:
 | ||
|     case END_OF_RE:
 | ||
|       return NULL;
 | ||
|     case BACK_SLASH:
 | ||
|       *err = REG_EESCAPE;
 | ||
|       return NULL;
 | ||
|     default:
 | ||
|       /* Must not happen?  */
 | ||
| #ifdef DEBUG
 | ||
|       assert (0);
 | ||
| #endif
 | ||
|       return NULL;
 | ||
|     }
 | ||
|   fetch_token (token, regexp, syntax);
 | ||
| 
 | ||
|   while (token->type == OP_DUP_ASTERISK || token->type == OP_DUP_PLUS
 | ||
| 	 || token->type == OP_DUP_QUESTION || token->type == OP_OPEN_DUP_NUM)
 | ||
|     {
 | ||
|       bin_tree_t *dup_tree = parse_dup_op (tree, regexp, dfa, token, syntax, err);
 | ||
|       if (BE (*err != REG_NOERROR && dup_tree == NULL, 0))
 | ||
| 	{
 | ||
| 	  if (tree != NULL)
 | ||
| 	    postorder (tree, free_tree, NULL);
 | ||
| 	  return NULL;
 | ||
| 	}
 | ||
|       tree = dup_tree;
 | ||
|       /* In BRE consecutive duplications are not allowed.  */
 | ||
|       if ((syntax & RE_CONTEXT_INVALID_DUP)
 | ||
| 	  && (token->type == OP_DUP_ASTERISK
 | ||
| 	      || token->type == OP_OPEN_DUP_NUM))
 | ||
| 	{
 | ||
| 	  if (tree != NULL)
 | ||
| 	    postorder (tree, free_tree, NULL);
 | ||
| 	  *err = REG_BADRPT;
 | ||
| 	  return NULL;
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   return tree;
 | ||
| }
 | ||
| 
 | ||
| /* This function build the following tree, from regular expression
 | ||
|    (<reg_exp>):
 | ||
| 	 SUBEXP
 | ||
| 	    |
 | ||
| 	<reg_exp>
 | ||
| */
 | ||
| 
 | ||
| static bin_tree_t *
 | ||
| parse_sub_exp (re_string_t *regexp, regex_t *preg, re_token_t *token,
 | ||
| 	       reg_syntax_t syntax, int nest, reg_errcode_t *err)
 | ||
| {
 | ||
|   re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
 | ||
|   bin_tree_t *tree;
 | ||
|   size_t cur_nsub;
 | ||
|   cur_nsub = preg->re_nsub++;
 | ||
| 
 | ||
|   fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE);
 | ||
| 
 | ||
|   /* The subexpression may be a null string.  */
 | ||
|   if (token->type == OP_CLOSE_SUBEXP)
 | ||
|     tree = NULL;
 | ||
|   else
 | ||
|     {
 | ||
|       tree = parse_reg_exp (regexp, preg, token, syntax, nest, err);
 | ||
|       if (BE (*err == REG_NOERROR && token->type != OP_CLOSE_SUBEXP, 0))
 | ||
| 	{
 | ||
| 	  if (tree != NULL)
 | ||
| 	    postorder (tree, free_tree, NULL);
 | ||
| 	  *err = REG_EPAREN;
 | ||
| 	}
 | ||
|       if (BE (*err != REG_NOERROR, 0))
 | ||
| 	return NULL;
 | ||
|     }
 | ||
| 
 | ||
|   if (cur_nsub <= '9' - '1')
 | ||
|     dfa->completed_bkref_map |= 1 << cur_nsub;
 | ||
| 
 | ||
|   tree = create_tree (dfa, tree, NULL, SUBEXP);
 | ||
|   if (BE (tree == NULL, 0))
 | ||
|     {
 | ||
|       *err = REG_ESPACE;
 | ||
|       return NULL;
 | ||
|     }
 | ||
|   tree->token.opr.idx = cur_nsub;
 | ||
|   return tree;
 | ||
| }
 | ||
| 
 | ||
| /* This function parse repetition operators like "*", "+", "{1,3}" etc.  */
 | ||
| 
 | ||
| static bin_tree_t *
 | ||
| parse_dup_op (bin_tree_t *elem, re_string_t *regexp, re_dfa_t *dfa,
 | ||
| 	      re_token_t *token, reg_syntax_t syntax, reg_errcode_t *err)
 | ||
| {
 | ||
|   bin_tree_t *tree = NULL, *old_tree = NULL;
 | ||
|   int i, start, end, start_idx = re_string_cur_idx (regexp);
 | ||
|   re_token_t start_token = *token;
 | ||
| 
 | ||
|   if (token->type == OP_OPEN_DUP_NUM)
 | ||
|     {
 | ||
|       end = 0;
 | ||
|       start = fetch_number (regexp, token, syntax);
 | ||
|       if (start == -1)
 | ||
| 	{
 | ||
| 	  if (token->type == CHARACTER && token->opr.c == ',')
 | ||
| 	    start = 0; /* We treat "{,m}" as "{0,m}".  */
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      *err = REG_BADBR; /* <re>{} is invalid.  */
 | ||
| 	      return NULL;
 | ||
| 	    }
 | ||
| 	}
 | ||
|       if (BE (start != -2, 1))
 | ||
| 	{
 | ||
| 	  /* We treat "{n}" as "{n,n}".  */
 | ||
| 	  end = ((token->type == OP_CLOSE_DUP_NUM) ? start
 | ||
| 		 : ((token->type == CHARACTER && token->opr.c == ',')
 | ||
| 		    ? fetch_number (regexp, token, syntax) : -2));
 | ||
| 	}
 | ||
|       if (BE (start == -2 || end == -2, 0))
 | ||
| 	{
 | ||
| 	  /* Invalid sequence.  */
 | ||
| 	  if (BE (!(syntax & RE_INVALID_INTERVAL_ORD), 0))
 | ||
| 	    {
 | ||
| 	      if (token->type == END_OF_RE)
 | ||
| 		*err = REG_EBRACE;
 | ||
| 	      else
 | ||
| 		*err = REG_BADBR;
 | ||
| 
 | ||
| 	      return NULL;
 | ||
| 	    }
 | ||
| 
 | ||
| 	  /* If the syntax bit is set, rollback.  */
 | ||
| 	  re_string_set_index (regexp, start_idx);
 | ||
| 	  *token = start_token;
 | ||
| 	  token->type = CHARACTER;
 | ||
| 	  /* mb_partial and word_char bits should be already initialized by
 | ||
| 	     peek_token.  */
 | ||
| 	  return elem;
 | ||
| 	}
 | ||
| 
 | ||
|       if (BE ((end != -1 && start > end) || token->type != OP_CLOSE_DUP_NUM, 0))
 | ||
| 	{
 | ||
| 	  /* First number greater than second.  */
 | ||
| 	  *err = REG_BADBR;
 | ||
| 	  return NULL;
 | ||
| 	}
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       start = (token->type == OP_DUP_PLUS) ? 1 : 0;
 | ||
|       end = (token->type == OP_DUP_QUESTION) ? 1 : -1;
 | ||
|     }
 | ||
| 
 | ||
|   fetch_token (token, regexp, syntax);
 | ||
| 
 | ||
|   if (BE (elem == NULL, 0))
 | ||
|     return NULL;
 | ||
|   if (BE (start == 0 && end == 0, 0))
 | ||
|     {
 | ||
|       postorder (elem, free_tree, NULL);
 | ||
|       return NULL;
 | ||
|     }
 | ||
| 
 | ||
|   /* Extract "<re>{n,m}" to "<re><re>...<re><re>{0,<m-n>}".  */
 | ||
|   if (BE (start > 0, 0))
 | ||
|     {
 | ||
|       tree = elem;
 | ||
|       for (i = 2; i <= start; ++i)
 | ||
| 	{
 | ||
| 	  elem = duplicate_tree (elem, dfa);
 | ||
| 	  tree = create_tree (dfa, tree, elem, CONCAT);
 | ||
| 	  if (BE (elem == NULL || tree == NULL, 0))
 | ||
| 	    goto parse_dup_op_espace;
 | ||
| 	}
 | ||
| 
 | ||
|       if (start == end)
 | ||
| 	return tree;
 | ||
| 
 | ||
|       /* Duplicate ELEM before it is marked optional.  */
 | ||
|       elem = duplicate_tree (elem, dfa);
 | ||
|       if (BE (elem == NULL, 0))
 | ||
|         goto parse_dup_op_espace;
 | ||
|       old_tree = tree;
 | ||
|     }
 | ||
|   else
 | ||
|     old_tree = NULL;
 | ||
| 
 | ||
|   if (elem->token.type == SUBEXP)
 | ||
|     postorder (elem, mark_opt_subexp, (void *) (long) elem->token.opr.idx);
 | ||
| 
 | ||
|   tree = create_tree (dfa, elem, NULL, (end == -1 ? OP_DUP_ASTERISK : OP_ALT));
 | ||
|   if (BE (tree == NULL, 0))
 | ||
|     goto parse_dup_op_espace;
 | ||
| 
 | ||
|   /* This loop is actually executed only when end != -1,
 | ||
|      to rewrite <re>{0,n} as (<re>(<re>...<re>?)?)?...  We have
 | ||
|      already created the start+1-th copy.  */
 | ||
|   for (i = start + 2; i <= end; ++i)
 | ||
|     {
 | ||
|       elem = duplicate_tree (elem, dfa);
 | ||
|       tree = create_tree (dfa, tree, elem, CONCAT);
 | ||
|       if (BE (elem == NULL || tree == NULL, 0))
 | ||
| 	goto parse_dup_op_espace;
 | ||
| 
 | ||
|       tree = create_tree (dfa, tree, NULL, OP_ALT);
 | ||
|       if (BE (tree == NULL, 0))
 | ||
| 	goto parse_dup_op_espace;
 | ||
|     }
 | ||
| 
 | ||
|   if (old_tree)
 | ||
|     tree = create_tree (dfa, old_tree, tree, CONCAT);
 | ||
| 
 | ||
|   return tree;
 | ||
| 
 | ||
|  parse_dup_op_espace:
 | ||
|   *err = REG_ESPACE;
 | ||
|   return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Size of the names for collating symbol/equivalence_class/character_class.
 | ||
|    I'm not sure, but maybe enough.  */
 | ||
| #define BRACKET_NAME_BUF_SIZE 32
 | ||
| 
 | ||
| #ifndef _LIBC
 | ||
|   /* Local function for parse_bracket_exp only used in case of NOT _LIBC.
 | ||
|      Build the range expression which starts from START_ELEM, and ends
 | ||
|      at END_ELEM.  The result are written to MBCSET and SBCSET.
 | ||
|      RANGE_ALLOC is the allocated size of mbcset->range_starts, and
 | ||
|      mbcset->range_ends, is a pointer argument since we may
 | ||
|      update it.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| # ifdef RE_ENABLE_I18N
 | ||
| build_range_exp (bitset_t sbcset, re_charset_t *mbcset, int *range_alloc,
 | ||
| 		 bracket_elem_t *start_elem, bracket_elem_t *end_elem)
 | ||
| # else /* not RE_ENABLE_I18N */
 | ||
| build_range_exp (bitset_t sbcset, bracket_elem_t *start_elem,
 | ||
| 		 bracket_elem_t *end_elem)
 | ||
| # endif /* not RE_ENABLE_I18N */
 | ||
| {
 | ||
|   unsigned int start_ch, end_ch;
 | ||
|   /* Equivalence Classes and Character Classes can't be a range start/end.  */
 | ||
|   if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS
 | ||
| 	  || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS,
 | ||
| 	  0))
 | ||
|     return REG_ERANGE;
 | ||
| 
 | ||
|   /* We can handle no multi character collating elements without libc
 | ||
|      support.  */
 | ||
|   if (BE ((start_elem->type == COLL_SYM
 | ||
| 	   && strlen ((char *) start_elem->opr.name) > 1)
 | ||
| 	  || (end_elem->type == COLL_SYM
 | ||
| 	      && strlen ((char *) end_elem->opr.name) > 1), 0))
 | ||
|     return REG_ECOLLATE;
 | ||
| 
 | ||
| # ifdef RE_ENABLE_I18N
 | ||
|   {
 | ||
|     wchar_t wc;
 | ||
|     wint_t start_wc;
 | ||
|     wint_t end_wc;
 | ||
|     wchar_t cmp_buf[6] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'};
 | ||
| 
 | ||
|     start_ch = ((start_elem->type == SB_CHAR) ? start_elem->opr.ch
 | ||
| 		: ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0]
 | ||
| 		   : 0));
 | ||
|     end_ch = ((end_elem->type == SB_CHAR) ? end_elem->opr.ch
 | ||
| 	      : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0]
 | ||
| 		 : 0));
 | ||
|     start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM)
 | ||
| 		? __btowc (start_ch) : start_elem->opr.wch);
 | ||
|     end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM)
 | ||
| 	      ? __btowc (end_ch) : end_elem->opr.wch);
 | ||
|     if (start_wc == WEOF || end_wc == WEOF)
 | ||
|       return REG_ECOLLATE;
 | ||
|     cmp_buf[0] = start_wc;
 | ||
|     cmp_buf[4] = end_wc;
 | ||
|     if (__wcscoll (cmp_buf, cmp_buf + 4) > 0)
 | ||
|       return REG_ERANGE;
 | ||
| 
 | ||
|     /* Got valid collation sequence values, add them as a new entry.
 | ||
|        However, for !_LIBC we have no collation elements: if the
 | ||
|        character set is single byte, the single byte character set
 | ||
|        that we build below suffices.  parse_bracket_exp passes
 | ||
|        no MBCSET if dfa->mb_cur_max == 1.  */
 | ||
|     if (mbcset)
 | ||
|       {
 | ||
| 	/* Check the space of the arrays.  */
 | ||
| 	if (BE (*range_alloc == mbcset->nranges, 0))
 | ||
| 	  {
 | ||
| 	    /* There is not enough space, need realloc.  */
 | ||
| 	    wchar_t *new_array_start, *new_array_end;
 | ||
| 	    int new_nranges;
 | ||
| 
 | ||
| 	    /* +1 in case of mbcset->nranges is 0.  */
 | ||
| 	    new_nranges = 2 * mbcset->nranges + 1;
 | ||
| 	    /* Use realloc since mbcset->range_starts and mbcset->range_ends
 | ||
| 	       are NULL if *range_alloc == 0.  */
 | ||
| 	    new_array_start = re_realloc (mbcset->range_starts, wchar_t,
 | ||
| 					  new_nranges);
 | ||
| 	    new_array_end = re_realloc (mbcset->range_ends, wchar_t,
 | ||
| 					new_nranges);
 | ||
| 
 | ||
| 	    if (BE (new_array_start == NULL || new_array_end == NULL, 0))
 | ||
| 	      return REG_ESPACE;
 | ||
| 
 | ||
| 	    mbcset->range_starts = new_array_start;
 | ||
| 	    mbcset->range_ends = new_array_end;
 | ||
| 	    *range_alloc = new_nranges;
 | ||
| 	  }
 | ||
| 
 | ||
| 	mbcset->range_starts[mbcset->nranges] = start_wc;
 | ||
| 	mbcset->range_ends[mbcset->nranges++] = end_wc;
 | ||
|       }
 | ||
| 
 | ||
|     /* Build the table for single byte characters.  */
 | ||
|     for (wc = 0; wc < SBC_MAX; ++wc)
 | ||
|       {
 | ||
| 	cmp_buf[2] = wc;
 | ||
| 	if (__wcscoll (cmp_buf, cmp_buf + 2) <= 0
 | ||
| 	    && __wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0)
 | ||
| 	  bitset_set (sbcset, wc);
 | ||
|       }
 | ||
|   }
 | ||
| # else /* not RE_ENABLE_I18N */
 | ||
|   {
 | ||
|     unsigned int ch;
 | ||
|     start_ch = ((start_elem->type == SB_CHAR ) ? start_elem->opr.ch
 | ||
| 		: ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0]
 | ||
| 		   : 0));
 | ||
|     end_ch = ((end_elem->type == SB_CHAR ) ? end_elem->opr.ch
 | ||
| 	      : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0]
 | ||
| 		 : 0));
 | ||
|     if (start_ch > end_ch)
 | ||
|       return REG_ERANGE;
 | ||
|     /* Build the table for single byte characters.  */
 | ||
|     for (ch = 0; ch < SBC_MAX; ++ch)
 | ||
|       if (start_ch <= ch  && ch <= end_ch)
 | ||
| 	bitset_set (sbcset, ch);
 | ||
|   }
 | ||
| # endif /* not RE_ENABLE_I18N */
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| #endif /* not _LIBC */
 | ||
| 
 | ||
| #ifndef _LIBC
 | ||
| /* Helper function for parse_bracket_exp only used in case of NOT _LIBC..
 | ||
|    Build the collating element which is represented by NAME.
 | ||
|    The result are written to MBCSET and SBCSET.
 | ||
|    COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a
 | ||
|    pointer argument since we may update it.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| internal_function
 | ||
| # ifdef RE_ENABLE_I18N
 | ||
| build_collating_symbol (bitset_t sbcset, re_charset_t *mbcset,
 | ||
| 			int *coll_sym_alloc, const unsigned char *name)
 | ||
| # else /* not RE_ENABLE_I18N */
 | ||
| build_collating_symbol (bitset_t sbcset, const unsigned char *name)
 | ||
| # endif /* not RE_ENABLE_I18N */
 | ||
| {
 | ||
|   size_t name_len = strlen ((const char *) name);
 | ||
|   if (BE (name_len != 1, 0))
 | ||
|     return REG_ECOLLATE;
 | ||
|   else
 | ||
|     {
 | ||
|       bitset_set (sbcset, name[0]);
 | ||
|       return REG_NOERROR;
 | ||
|     }
 | ||
| }
 | ||
| #endif /* not _LIBC */
 | ||
| 
 | ||
| /* This function parse bracket expression like "[abc]", "[a-c]",
 | ||
|    "[[.a-a.]]" etc.  */
 | ||
| 
 | ||
| static bin_tree_t *
 | ||
| parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, re_token_t *token,
 | ||
| 		   reg_syntax_t syntax, reg_errcode_t *err)
 | ||
| {
 | ||
| #ifdef _LIBC
 | ||
|   const unsigned char *collseqmb;
 | ||
|   const char *collseqwc;
 | ||
|   uint32_t nrules;
 | ||
|   int32_t table_size;
 | ||
|   const int32_t *symb_table;
 | ||
|   const unsigned char *extra;
 | ||
| 
 | ||
|   /* Local function for parse_bracket_exp used in _LIBC environment.
 | ||
|      Seek the collating symbol entry corresponding to NAME.
 | ||
|      Return the index of the symbol in the SYMB_TABLE,
 | ||
|      or -1 if not found.  */
 | ||
| 
 | ||
|   auto inline int32_t
 | ||
|   __attribute__ ((always_inline))
 | ||
|   seek_collating_symbol_entry (const unsigned char *name, size_t name_len)
 | ||
|     {
 | ||
|       int32_t elem;
 | ||
| 
 | ||
|       for (elem = 0; elem < table_size; elem++)
 | ||
| 	if (symb_table[2 * elem] != 0)
 | ||
| 	  {
 | ||
| 	    int32_t idx = symb_table[2 * elem + 1];
 | ||
| 	    /* Skip the name of collating element name.  */
 | ||
| 	    idx += 1 + extra[idx];
 | ||
| 	    if (/* Compare the length of the name.  */
 | ||
| 		name_len == extra[idx]
 | ||
| 		/* Compare the name.  */
 | ||
| 		&& memcmp (name, &extra[idx + 1], name_len) == 0)
 | ||
| 	      /* Yep, this is the entry.  */
 | ||
| 	      return elem;
 | ||
| 	  }
 | ||
|       return -1;
 | ||
|     }
 | ||
| 
 | ||
|   /* Local function for parse_bracket_exp used in _LIBC environment.
 | ||
|      Look up the collation sequence value of BR_ELEM.
 | ||
|      Return the value if succeeded, UINT_MAX otherwise.  */
 | ||
| 
 | ||
|   auto inline unsigned int
 | ||
|   __attribute__ ((always_inline))
 | ||
|   lookup_collation_sequence_value (bracket_elem_t *br_elem)
 | ||
|     {
 | ||
|       if (br_elem->type == SB_CHAR)
 | ||
| 	{
 | ||
| 	  /*
 | ||
| 	  if (MB_CUR_MAX == 1)
 | ||
| 	  */
 | ||
| 	  if (nrules == 0)
 | ||
| 	    return collseqmb[br_elem->opr.ch];
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      wint_t wc = __btowc (br_elem->opr.ch);
 | ||
| 	      return __collseq_table_lookup (collseqwc, wc);
 | ||
| 	    }
 | ||
| 	}
 | ||
|       else if (br_elem->type == MB_CHAR)
 | ||
| 	{
 | ||
| 	  if (nrules != 0)
 | ||
| 	    return __collseq_table_lookup (collseqwc, br_elem->opr.wch);
 | ||
| 	}
 | ||
|       else if (br_elem->type == COLL_SYM)
 | ||
| 	{
 | ||
| 	  size_t sym_name_len = strlen ((char *) br_elem->opr.name);
 | ||
| 	  if (nrules != 0)
 | ||
| 	    {
 | ||
| 	      int32_t elem, idx;
 | ||
| 	      elem = seek_collating_symbol_entry (br_elem->opr.name,
 | ||
| 						  sym_name_len);
 | ||
| 	      if (elem != -1)
 | ||
| 		{
 | ||
| 		  /* We found the entry.  */
 | ||
| 		  idx = symb_table[2 * elem + 1];
 | ||
| 		  /* Skip the name of collating element name.  */
 | ||
| 		  idx += 1 + extra[idx];
 | ||
| 		  /* Skip the byte sequence of the collating element.  */
 | ||
| 		  idx += 1 + extra[idx];
 | ||
| 		  /* Adjust for the alignment.  */
 | ||
| 		  idx = (idx + 3) & ~3;
 | ||
| 		  /* Skip the multibyte collation sequence value.  */
 | ||
| 		  idx += sizeof (unsigned int);
 | ||
| 		  /* Skip the wide char sequence of the collating element.  */
 | ||
| 		  idx += sizeof (unsigned int) *
 | ||
| 		    (1 + *(unsigned int *) (extra + idx));
 | ||
| 		  /* Return the collation sequence value.  */
 | ||
| 		  return *(unsigned int *) (extra + idx);
 | ||
| 		}
 | ||
| 	      else if (sym_name_len == 1)
 | ||
| 		{
 | ||
| 		  /* No valid character.  Match it as a single byte
 | ||
| 		     character.  */
 | ||
| 		  return collseqmb[br_elem->opr.name[0]];
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	  else if (sym_name_len == 1)
 | ||
| 	    return collseqmb[br_elem->opr.name[0]];
 | ||
| 	}
 | ||
|       return UINT_MAX;
 | ||
|     }
 | ||
| 
 | ||
|   /* Local function for parse_bracket_exp used in _LIBC environment.
 | ||
|      Build the range expression which starts from START_ELEM, and ends
 | ||
|      at END_ELEM.  The result are written to MBCSET and SBCSET.
 | ||
|      RANGE_ALLOC is the allocated size of mbcset->range_starts, and
 | ||
|      mbcset->range_ends, is a pointer argument since we may
 | ||
|      update it.  */
 | ||
| 
 | ||
|   auto inline reg_errcode_t
 | ||
|   __attribute__ ((always_inline))
 | ||
|   build_range_exp (bitset_t sbcset, re_charset_t *mbcset, int *range_alloc,
 | ||
| 		   bracket_elem_t *start_elem, bracket_elem_t *end_elem)
 | ||
|     {
 | ||
|       unsigned int ch;
 | ||
|       uint32_t start_collseq;
 | ||
|       uint32_t end_collseq;
 | ||
| 
 | ||
|       /* Equivalence Classes and Character Classes can't be a range
 | ||
| 	 start/end.  */
 | ||
|       if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS
 | ||
| 	      || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS,
 | ||
| 	      0))
 | ||
| 	return REG_ERANGE;
 | ||
| 
 | ||
|       start_collseq = lookup_collation_sequence_value (start_elem);
 | ||
|       end_collseq = lookup_collation_sequence_value (end_elem);
 | ||
|       /* Check start/end collation sequence values.  */
 | ||
|       if (BE (start_collseq == UINT_MAX || end_collseq == UINT_MAX, 0))
 | ||
| 	return REG_ECOLLATE;
 | ||
|       if (BE ((syntax & RE_NO_EMPTY_RANGES) && start_collseq > end_collseq, 0))
 | ||
| 	return REG_ERANGE;
 | ||
| 
 | ||
|       /* Got valid collation sequence values, add them as a new entry.
 | ||
| 	 However, if we have no collation elements, and the character set
 | ||
| 	 is single byte, the single byte character set that we
 | ||
| 	 build below suffices. */
 | ||
|       if (nrules > 0 || dfa->mb_cur_max > 1)
 | ||
| 	{
 | ||
| 	  /* Check the space of the arrays.  */
 | ||
| 	  if (BE (*range_alloc == mbcset->nranges, 0))
 | ||
| 	    {
 | ||
| 	      /* There is not enough space, need realloc.  */
 | ||
| 	      uint32_t *new_array_start;
 | ||
| 	      uint32_t *new_array_end;
 | ||
| 	      int new_nranges;
 | ||
| 
 | ||
| 	      /* +1 in case of mbcset->nranges is 0.  */
 | ||
| 	      new_nranges = 2 * mbcset->nranges + 1;
 | ||
| 	      new_array_start = re_realloc (mbcset->range_starts, uint32_t,
 | ||
| 					    new_nranges);
 | ||
| 	      new_array_end = re_realloc (mbcset->range_ends, uint32_t,
 | ||
| 					  new_nranges);
 | ||
| 
 | ||
| 	      if (BE (new_array_start == NULL || new_array_end == NULL, 0))
 | ||
| 		return REG_ESPACE;
 | ||
| 
 | ||
| 	      mbcset->range_starts = new_array_start;
 | ||
| 	      mbcset->range_ends = new_array_end;
 | ||
| 	      *range_alloc = new_nranges;
 | ||
| 	    }
 | ||
| 
 | ||
| 	  mbcset->range_starts[mbcset->nranges] = start_collseq;
 | ||
| 	  mbcset->range_ends[mbcset->nranges++] = end_collseq;
 | ||
| 	}
 | ||
| 
 | ||
|       /* Build the table for single byte characters.  */
 | ||
|       for (ch = 0; ch < SBC_MAX; ch++)
 | ||
| 	{
 | ||
| 	  uint32_t ch_collseq;
 | ||
| 	  /*
 | ||
| 	  if (MB_CUR_MAX == 1)
 | ||
| 	  */
 | ||
| 	  if (nrules == 0)
 | ||
| 	    ch_collseq = collseqmb[ch];
 | ||
| 	  else
 | ||
| 	    ch_collseq = __collseq_table_lookup (collseqwc, __btowc (ch));
 | ||
| 	  if (start_collseq <= ch_collseq && ch_collseq <= end_collseq)
 | ||
| 	    bitset_set (sbcset, ch);
 | ||
| 	}
 | ||
|       return REG_NOERROR;
 | ||
|     }
 | ||
| 
 | ||
|   /* Local function for parse_bracket_exp used in _LIBC environment.
 | ||
|      Build the collating element which is represented by NAME.
 | ||
|      The result are written to MBCSET and SBCSET.
 | ||
|      COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a
 | ||
|      pointer argument since we may update it.  */
 | ||
| 
 | ||
|   auto inline reg_errcode_t
 | ||
|   __attribute__ ((always_inline))
 | ||
|   build_collating_symbol (bitset_t sbcset, re_charset_t *mbcset,
 | ||
| 			  int *coll_sym_alloc, const unsigned char *name)
 | ||
|     {
 | ||
|       int32_t elem, idx;
 | ||
|       size_t name_len = strlen ((const char *) name);
 | ||
|       if (nrules != 0)
 | ||
| 	{
 | ||
| 	  elem = seek_collating_symbol_entry (name, name_len);
 | ||
| 	  if (elem != -1)
 | ||
| 	    {
 | ||
| 	      /* We found the entry.  */
 | ||
| 	      idx = symb_table[2 * elem + 1];
 | ||
| 	      /* Skip the name of collating element name.  */
 | ||
| 	      idx += 1 + extra[idx];
 | ||
| 	    }
 | ||
| 	  else if (name_len == 1)
 | ||
| 	    {
 | ||
| 	      /* No valid character, treat it as a normal
 | ||
| 		 character.  */
 | ||
| 	      bitset_set (sbcset, name[0]);
 | ||
| 	      return REG_NOERROR;
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    return REG_ECOLLATE;
 | ||
| 
 | ||
| 	  /* Got valid collation sequence, add it as a new entry.  */
 | ||
| 	  /* Check the space of the arrays.  */
 | ||
| 	  if (BE (*coll_sym_alloc == mbcset->ncoll_syms, 0))
 | ||
| 	    {
 | ||
| 	      /* Not enough, realloc it.  */
 | ||
| 	      /* +1 in case of mbcset->ncoll_syms is 0.  */
 | ||
| 	      int new_coll_sym_alloc = 2 * mbcset->ncoll_syms + 1;
 | ||
| 	      /* Use realloc since mbcset->coll_syms is NULL
 | ||
| 		 if *alloc == 0.  */
 | ||
| 	      int32_t *new_coll_syms = re_realloc (mbcset->coll_syms, int32_t,
 | ||
| 						   new_coll_sym_alloc);
 | ||
| 	      if (BE (new_coll_syms == NULL, 0))
 | ||
| 		return REG_ESPACE;
 | ||
| 	      mbcset->coll_syms = new_coll_syms;
 | ||
| 	      *coll_sym_alloc = new_coll_sym_alloc;
 | ||
| 	    }
 | ||
| 	  mbcset->coll_syms[mbcset->ncoll_syms++] = idx;
 | ||
| 	  return REG_NOERROR;
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  if (BE (name_len != 1, 0))
 | ||
| 	    return REG_ECOLLATE;
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      bitset_set (sbcset, name[0]);
 | ||
| 	      return REG_NOERROR;
 | ||
| 	    }
 | ||
| 	}
 | ||
|     }
 | ||
| #endif
 | ||
| 
 | ||
|   re_token_t br_token;
 | ||
|   re_bitset_ptr_t sbcset;
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   re_charset_t *mbcset;
 | ||
|   int coll_sym_alloc = 0, range_alloc = 0, mbchar_alloc = 0;
 | ||
|   int equiv_class_alloc = 0, char_class_alloc = 0;
 | ||
| #endif /* not RE_ENABLE_I18N */
 | ||
|   int non_match = 0;
 | ||
|   bin_tree_t *work_tree;
 | ||
|   int token_len;
 | ||
|   int first_round = 1;
 | ||
| #ifdef _LIBC
 | ||
|   collseqmb = (const unsigned char *)
 | ||
|     _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB);
 | ||
|   nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
 | ||
|   if (nrules)
 | ||
|     {
 | ||
|       /*
 | ||
|       if (MB_CUR_MAX > 1)
 | ||
|       */
 | ||
|       collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC);
 | ||
|       table_size = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_SYMB_HASH_SIZEMB);
 | ||
|       symb_table = (const int32_t *) _NL_CURRENT (LC_COLLATE,
 | ||
| 						  _NL_COLLATE_SYMB_TABLEMB);
 | ||
|       extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
 | ||
| 						   _NL_COLLATE_SYMB_EXTRAMB);
 | ||
|     }
 | ||
| #endif
 | ||
|   sbcset = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1);
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1);
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   if (BE (sbcset == NULL || mbcset == NULL, 0))
 | ||
| #else
 | ||
|   if (BE (sbcset == NULL, 0))
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
|     {
 | ||
|       re_free (sbcset);
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|       re_free (mbcset);
 | ||
| #endif
 | ||
|       *err = REG_ESPACE;
 | ||
|       return NULL;
 | ||
|     }
 | ||
| 
 | ||
|   token_len = peek_token_bracket (token, regexp, syntax);
 | ||
|   if (BE (token->type == END_OF_RE, 0))
 | ||
|     {
 | ||
|       *err = REG_BADPAT;
 | ||
|       goto parse_bracket_exp_free_return;
 | ||
|     }
 | ||
|   if (token->type == OP_NON_MATCH_LIST)
 | ||
|     {
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|       mbcset->non_match = 1;
 | ||
| #endif /* not RE_ENABLE_I18N */
 | ||
|       non_match = 1;
 | ||
|       if (syntax & RE_HAT_LISTS_NOT_NEWLINE)
 | ||
| 	bitset_set (sbcset, '\n');
 | ||
|       re_string_skip_bytes (regexp, token_len); /* Skip a token.  */
 | ||
|       token_len = peek_token_bracket (token, regexp, syntax);
 | ||
|       if (BE (token->type == END_OF_RE, 0))
 | ||
| 	{
 | ||
| 	  *err = REG_BADPAT;
 | ||
| 	  goto parse_bracket_exp_free_return;
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   /* We treat the first ']' as a normal character.  */
 | ||
|   if (token->type == OP_CLOSE_BRACKET)
 | ||
|     token->type = CHARACTER;
 | ||
| 
 | ||
|   while (1)
 | ||
|     {
 | ||
|       bracket_elem_t start_elem, end_elem;
 | ||
|       unsigned char start_name_buf[BRACKET_NAME_BUF_SIZE];
 | ||
|       unsigned char end_name_buf[BRACKET_NAME_BUF_SIZE];
 | ||
|       reg_errcode_t ret;
 | ||
|       int token_len2 = 0, is_range_exp = 0;
 | ||
|       re_token_t token2;
 | ||
| 
 | ||
|       start_elem.opr.name = start_name_buf;
 | ||
|       start_elem.type = COLL_SYM;
 | ||
|       ret = parse_bracket_element (&start_elem, regexp, token, token_len, dfa,
 | ||
| 				   syntax, first_round);
 | ||
|       if (BE (ret != REG_NOERROR, 0))
 | ||
| 	{
 | ||
| 	  *err = ret;
 | ||
| 	  goto parse_bracket_exp_free_return;
 | ||
| 	}
 | ||
|       first_round = 0;
 | ||
| 
 | ||
|       /* Get information about the next token.  We need it in any case.  */
 | ||
|       token_len = peek_token_bracket (token, regexp, syntax);
 | ||
| 
 | ||
|       /* Do not check for ranges if we know they are not allowed.  */
 | ||
|       if (start_elem.type != CHAR_CLASS && start_elem.type != EQUIV_CLASS)
 | ||
| 	{
 | ||
| 	  if (BE (token->type == END_OF_RE, 0))
 | ||
| 	    {
 | ||
| 	      *err = REG_EBRACK;
 | ||
| 	      goto parse_bracket_exp_free_return;
 | ||
| 	    }
 | ||
| 	  if (token->type == OP_CHARSET_RANGE)
 | ||
| 	    {
 | ||
| 	      re_string_skip_bytes (regexp, token_len); /* Skip '-'.  */
 | ||
| 	      token_len2 = peek_token_bracket (&token2, regexp, syntax);
 | ||
| 	      if (BE (token2.type == END_OF_RE, 0))
 | ||
| 		{
 | ||
| 		  *err = REG_EBRACK;
 | ||
| 		  goto parse_bracket_exp_free_return;
 | ||
| 		}
 | ||
| 	      if (token2.type == OP_CLOSE_BRACKET)
 | ||
| 		{
 | ||
| 		  /* We treat the last '-' as a normal character.  */
 | ||
| 		  re_string_skip_bytes (regexp, -token_len);
 | ||
| 		  token->type = CHARACTER;
 | ||
| 		}
 | ||
| 	      else
 | ||
| 		is_range_exp = 1;
 | ||
| 	    }
 | ||
| 	}
 | ||
| 
 | ||
|       if (is_range_exp == 1)
 | ||
| 	{
 | ||
| 	  end_elem.opr.name = end_name_buf;
 | ||
| 	  end_elem.type = COLL_SYM;
 | ||
| 	  ret = parse_bracket_element (&end_elem, regexp, &token2, token_len2,
 | ||
| 				       dfa, syntax, 1);
 | ||
| 	  if (BE (ret != REG_NOERROR, 0))
 | ||
| 	    {
 | ||
| 	      *err = ret;
 | ||
| 	      goto parse_bracket_exp_free_return;
 | ||
| 	    }
 | ||
| 
 | ||
| 	  token_len = peek_token_bracket (token, regexp, syntax);
 | ||
| 
 | ||
| #ifdef _LIBC
 | ||
| 	  *err = build_range_exp (sbcset, mbcset, &range_alloc,
 | ||
| 				  &start_elem, &end_elem);
 | ||
| #else
 | ||
| # ifdef RE_ENABLE_I18N
 | ||
| 	  *err = build_range_exp (sbcset,
 | ||
| 				  dfa->mb_cur_max > 1 ? mbcset : NULL,
 | ||
| 				  &range_alloc, &start_elem, &end_elem);
 | ||
| # else
 | ||
| 	  *err = build_range_exp (sbcset, &start_elem, &end_elem);
 | ||
| # endif
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| 	  if (BE (*err != REG_NOERROR, 0))
 | ||
| 	    goto parse_bracket_exp_free_return;
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  switch (start_elem.type)
 | ||
| 	    {
 | ||
| 	    case SB_CHAR:
 | ||
| 	      bitset_set (sbcset, start_elem.opr.ch);
 | ||
| 	      break;
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| 	    case MB_CHAR:
 | ||
| 	      /* Check whether the array has enough space.  */
 | ||
| 	      if (BE (mbchar_alloc == mbcset->nmbchars, 0))
 | ||
| 		{
 | ||
| 		  wchar_t *new_mbchars;
 | ||
| 		  /* Not enough, realloc it.  */
 | ||
| 		  /* +1 in case of mbcset->nmbchars is 0.  */
 | ||
| 		  mbchar_alloc = 2 * mbcset->nmbchars + 1;
 | ||
| 		  /* Use realloc since array is NULL if *alloc == 0.  */
 | ||
| 		  new_mbchars = re_realloc (mbcset->mbchars, wchar_t,
 | ||
| 					    mbchar_alloc);
 | ||
| 		  if (BE (new_mbchars == NULL, 0))
 | ||
| 		    goto parse_bracket_exp_espace;
 | ||
| 		  mbcset->mbchars = new_mbchars;
 | ||
| 		}
 | ||
| 	      mbcset->mbchars[mbcset->nmbchars++] = start_elem.opr.wch;
 | ||
| 	      break;
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| 	    case EQUIV_CLASS:
 | ||
| 	      *err = build_equiv_class (sbcset,
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| 					mbcset, &equiv_class_alloc,
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| 					start_elem.opr.name);
 | ||
| 	      if (BE (*err != REG_NOERROR, 0))
 | ||
| 		goto parse_bracket_exp_free_return;
 | ||
| 	      break;
 | ||
| 	    case COLL_SYM:
 | ||
| 	      *err = build_collating_symbol (sbcset,
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| 					     mbcset, &coll_sym_alloc,
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| 					     start_elem.opr.name);
 | ||
| 	      if (BE (*err != REG_NOERROR, 0))
 | ||
| 		goto parse_bracket_exp_free_return;
 | ||
| 	      break;
 | ||
| 	    case CHAR_CLASS:
 | ||
| 	      *err = build_charclass (regexp->trans, sbcset,
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| 				      mbcset, &char_class_alloc,
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| 				      start_elem.opr.name, syntax);
 | ||
| 	      if (BE (*err != REG_NOERROR, 0))
 | ||
| 	       goto parse_bracket_exp_free_return;
 | ||
| 	      break;
 | ||
| 	    default:
 | ||
| 	      assert (0);
 | ||
| 	      break;
 | ||
| 	    }
 | ||
| 	}
 | ||
|       if (BE (token->type == END_OF_RE, 0))
 | ||
| 	{
 | ||
| 	  *err = REG_EBRACK;
 | ||
| 	  goto parse_bracket_exp_free_return;
 | ||
| 	}
 | ||
|       if (token->type == OP_CLOSE_BRACKET)
 | ||
| 	break;
 | ||
|     }
 | ||
| 
 | ||
|   re_string_skip_bytes (regexp, token_len); /* Skip a token.  */
 | ||
| 
 | ||
|   /* If it is non-matching list.  */
 | ||
|   if (non_match)
 | ||
|     bitset_not (sbcset);
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   /* Ensure only single byte characters are set.  */
 | ||
|   if (dfa->mb_cur_max > 1)
 | ||
|     bitset_mask (sbcset, dfa->sb_char);
 | ||
| 
 | ||
|   if (mbcset->nmbchars || mbcset->ncoll_syms || mbcset->nequiv_classes
 | ||
|       || mbcset->nranges || (dfa->mb_cur_max > 1 && (mbcset->nchar_classes
 | ||
| 						     || mbcset->non_match)))
 | ||
|     {
 | ||
|       bin_tree_t *mbc_tree;
 | ||
|       int sbc_idx;
 | ||
|       /* Build a tree for complex bracket.  */
 | ||
|       dfa->has_mb_node = 1;
 | ||
|       br_token.type = COMPLEX_BRACKET;
 | ||
|       br_token.opr.mbcset = mbcset;
 | ||
|       mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token);
 | ||
|       if (BE (mbc_tree == NULL, 0))
 | ||
| 	goto parse_bracket_exp_espace;
 | ||
|       for (sbc_idx = 0; sbc_idx < BITSET_WORDS; ++sbc_idx)
 | ||
| 	if (sbcset[sbc_idx])
 | ||
| 	  break;
 | ||
|       /* If there are no bits set in sbcset, there is no point
 | ||
| 	 of having both SIMPLE_BRACKET and COMPLEX_BRACKET.  */
 | ||
|       if (sbc_idx < BITSET_WORDS)
 | ||
| 	{
 | ||
| 	  /* Build a tree for simple bracket.  */
 | ||
| 	  br_token.type = SIMPLE_BRACKET;
 | ||
| 	  br_token.opr.sbcset = sbcset;
 | ||
| 	  work_tree = create_token_tree (dfa, NULL, NULL, &br_token);
 | ||
| 	  if (BE (work_tree == NULL, 0))
 | ||
| 	    goto parse_bracket_exp_espace;
 | ||
| 
 | ||
| 	  /* Then join them by ALT node.  */
 | ||
| 	  work_tree = create_tree (dfa, work_tree, mbc_tree, OP_ALT);
 | ||
| 	  if (BE (work_tree == NULL, 0))
 | ||
| 	    goto parse_bracket_exp_espace;
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  re_free (sbcset);
 | ||
| 	  work_tree = mbc_tree;
 | ||
| 	}
 | ||
|     }
 | ||
|   else
 | ||
| #endif /* not RE_ENABLE_I18N */
 | ||
|     {
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|       free_charset (mbcset);
 | ||
| #endif
 | ||
|       /* Build a tree for simple bracket.  */
 | ||
|       br_token.type = SIMPLE_BRACKET;
 | ||
|       br_token.opr.sbcset = sbcset;
 | ||
|       work_tree = create_token_tree (dfa, NULL, NULL, &br_token);
 | ||
|       if (BE (work_tree == NULL, 0))
 | ||
| 	goto parse_bracket_exp_espace;
 | ||
|     }
 | ||
|   return work_tree;
 | ||
| 
 | ||
|  parse_bracket_exp_espace:
 | ||
|   *err = REG_ESPACE;
 | ||
|  parse_bracket_exp_free_return:
 | ||
|   re_free (sbcset);
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   free_charset (mbcset);
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
|   return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Parse an element in the bracket expression.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| parse_bracket_element (bracket_elem_t *elem, re_string_t *regexp,
 | ||
| 		       re_token_t *token, int token_len, re_dfa_t *dfa,
 | ||
| 		       reg_syntax_t syntax, int accept_hyphen)
 | ||
| {
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   int cur_char_size;
 | ||
|   cur_char_size = re_string_char_size_at (regexp, re_string_cur_idx (regexp));
 | ||
|   if (cur_char_size > 1)
 | ||
|     {
 | ||
|       elem->type = MB_CHAR;
 | ||
|       elem->opr.wch = re_string_wchar_at (regexp, re_string_cur_idx (regexp));
 | ||
|       re_string_skip_bytes (regexp, cur_char_size);
 | ||
|       return REG_NOERROR;
 | ||
|     }
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
|   re_string_skip_bytes (regexp, token_len); /* Skip a token.  */
 | ||
|   if (token->type == OP_OPEN_COLL_ELEM || token->type == OP_OPEN_CHAR_CLASS
 | ||
|       || token->type == OP_OPEN_EQUIV_CLASS)
 | ||
|     return parse_bracket_symbol (elem, regexp, token);
 | ||
|   if (BE (token->type == OP_CHARSET_RANGE, 0) && !accept_hyphen)
 | ||
|     {
 | ||
|       /* A '-' must only appear as anything but a range indicator before
 | ||
| 	 the closing bracket.  Everything else is an error.  */
 | ||
|       re_token_t token2;
 | ||
|       (void) peek_token_bracket (&token2, regexp, syntax);
 | ||
|       if (token2.type != OP_CLOSE_BRACKET)
 | ||
| 	/* The actual error value is not standardized since this whole
 | ||
| 	   case is undefined.  But ERANGE makes good sense.  */
 | ||
| 	return REG_ERANGE;
 | ||
|     }
 | ||
|   elem->type = SB_CHAR;
 | ||
|   elem->opr.ch = token->opr.c;
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Parse a bracket symbol in the bracket expression.  Bracket symbols are
 | ||
|    such as [:<character_class>:], [.<collating_element>.], and
 | ||
|    [=<equivalent_class>=].  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| parse_bracket_symbol (bracket_elem_t *elem, re_string_t *regexp,
 | ||
| 		      re_token_t *token)
 | ||
| {
 | ||
|   unsigned char ch, delim = token->opr.c;
 | ||
|   int i = 0;
 | ||
|   if (re_string_eoi(regexp))
 | ||
|     return REG_EBRACK;
 | ||
|   for (;; ++i)
 | ||
|     {
 | ||
|       if (i >= BRACKET_NAME_BUF_SIZE)
 | ||
| 	return REG_EBRACK;
 | ||
|       if (token->type == OP_OPEN_CHAR_CLASS)
 | ||
| 	ch = re_string_fetch_byte_case (regexp);
 | ||
|       else
 | ||
| 	ch = re_string_fetch_byte (regexp);
 | ||
|       if (re_string_eoi(regexp))
 | ||
| 	return REG_EBRACK;
 | ||
|       if (ch == delim && re_string_peek_byte (regexp, 0) == ']')
 | ||
| 	break;
 | ||
|       elem->opr.name[i] = ch;
 | ||
|     }
 | ||
|   re_string_skip_bytes (regexp, 1);
 | ||
|   elem->opr.name[i] = '\0';
 | ||
|   switch (token->type)
 | ||
|     {
 | ||
|     case OP_OPEN_COLL_ELEM:
 | ||
|       elem->type = COLL_SYM;
 | ||
|       break;
 | ||
|     case OP_OPEN_EQUIV_CLASS:
 | ||
|       elem->type = EQUIV_CLASS;
 | ||
|       break;
 | ||
|     case OP_OPEN_CHAR_CLASS:
 | ||
|       elem->type = CHAR_CLASS;
 | ||
|       break;
 | ||
|     default:
 | ||
|       break;
 | ||
|     }
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
|   /* Helper function for parse_bracket_exp.
 | ||
|      Build the equivalence class which is represented by NAME.
 | ||
|      The result are written to MBCSET and SBCSET.
 | ||
|      EQUIV_CLASS_ALLOC is the allocated size of mbcset->equiv_classes,
 | ||
|      is a pointer argument since we may update it.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| build_equiv_class (bitset_t sbcset, re_charset_t *mbcset,
 | ||
| 		   int *equiv_class_alloc, const unsigned char *name)
 | ||
| #else /* not RE_ENABLE_I18N */
 | ||
| build_equiv_class (bitset_t sbcset, const unsigned char *name)
 | ||
| #endif /* not RE_ENABLE_I18N */
 | ||
| {
 | ||
| #ifdef _LIBC
 | ||
|   uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
 | ||
|   if (nrules != 0)
 | ||
|     {
 | ||
|       const int32_t *table, *indirect;
 | ||
|       const unsigned char *weights, *extra, *cp;
 | ||
|       unsigned char char_buf[2];
 | ||
|       int32_t idx1, idx2;
 | ||
|       unsigned int ch;
 | ||
|       size_t len;
 | ||
|       /* Calculate the index for equivalence class.  */
 | ||
|       cp = name;
 | ||
|       table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
 | ||
|       weights = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
 | ||
| 					       _NL_COLLATE_WEIGHTMB);
 | ||
|       extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
 | ||
| 						   _NL_COLLATE_EXTRAMB);
 | ||
|       indirect = (const int32_t *) _NL_CURRENT (LC_COLLATE,
 | ||
| 						_NL_COLLATE_INDIRECTMB);
 | ||
|       idx1 = findidx (table, indirect, extra, &cp, -1);
 | ||
|       if (BE (idx1 == 0 || *cp != '\0', 0))
 | ||
| 	/* This isn't a valid character.  */
 | ||
| 	return REG_ECOLLATE;
 | ||
| 
 | ||
|       /* Build single byte matcing table for this equivalence class.  */
 | ||
|       len = weights[idx1 & 0xffffff];
 | ||
|       for (ch = 0; ch < SBC_MAX; ++ch)
 | ||
| 	{
 | ||
| 	  char_buf[0] = ch;
 | ||
| 	  cp = char_buf;
 | ||
| 	  idx2 = findidx (table, indirect, extra, &cp, 1);
 | ||
| /*
 | ||
| 	  idx2 = table[ch];
 | ||
| */
 | ||
| 	  if (idx2 == 0)
 | ||
| 	    /* This isn't a valid character.  */
 | ||
| 	    continue;
 | ||
| 	  /* Compare only if the length matches and the collation rule
 | ||
| 	     index is the same.  */
 | ||
| 	  if (len == weights[idx2 & 0xffffff] && (idx1 >> 24) == (idx2 >> 24))
 | ||
| 	    {
 | ||
| 	      int cnt = 0;
 | ||
| 
 | ||
| 	      while (cnt <= len &&
 | ||
| 		     weights[(idx1 & 0xffffff) + 1 + cnt]
 | ||
| 		     == weights[(idx2 & 0xffffff) + 1 + cnt])
 | ||
| 		++cnt;
 | ||
| 
 | ||
| 	      if (cnt > len)
 | ||
| 		bitset_set (sbcset, ch);
 | ||
| 	    }
 | ||
| 	}
 | ||
|       /* Check whether the array has enough space.  */
 | ||
|       if (BE (*equiv_class_alloc == mbcset->nequiv_classes, 0))
 | ||
| 	{
 | ||
| 	  /* Not enough, realloc it.  */
 | ||
| 	  /* +1 in case of mbcset->nequiv_classes is 0.  */
 | ||
| 	  int new_equiv_class_alloc = 2 * mbcset->nequiv_classes + 1;
 | ||
| 	  /* Use realloc since the array is NULL if *alloc == 0.  */
 | ||
| 	  int32_t *new_equiv_classes = re_realloc (mbcset->equiv_classes,
 | ||
| 						   int32_t,
 | ||
| 						   new_equiv_class_alloc);
 | ||
| 	  if (BE (new_equiv_classes == NULL, 0))
 | ||
| 	    return REG_ESPACE;
 | ||
| 	  mbcset->equiv_classes = new_equiv_classes;
 | ||
| 	  *equiv_class_alloc = new_equiv_class_alloc;
 | ||
| 	}
 | ||
|       mbcset->equiv_classes[mbcset->nequiv_classes++] = idx1;
 | ||
|     }
 | ||
|   else
 | ||
| #endif /* _LIBC */
 | ||
|     {
 | ||
|       if (BE (strlen ((const char *) name) != 1, 0))
 | ||
| 	return REG_ECOLLATE;
 | ||
|       bitset_set (sbcset, *name);
 | ||
|     }
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
|   /* Helper function for parse_bracket_exp.
 | ||
|      Build the character class which is represented by NAME.
 | ||
|      The result are written to MBCSET and SBCSET.
 | ||
|      CHAR_CLASS_ALLOC is the allocated size of mbcset->char_classes,
 | ||
|      is a pointer argument since we may update it.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset,
 | ||
| 		 re_charset_t *mbcset, int *char_class_alloc,
 | ||
| 		 const unsigned char *class_name, reg_syntax_t syntax)
 | ||
| #else /* not RE_ENABLE_I18N */
 | ||
| build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset,
 | ||
| 		 const unsigned char *class_name, reg_syntax_t syntax)
 | ||
| #endif /* not RE_ENABLE_I18N */
 | ||
| {
 | ||
|   int i;
 | ||
|   const char *name = (const char *) class_name;
 | ||
| 
 | ||
|   /* In case of REG_ICASE "upper" and "lower" match the both of
 | ||
|      upper and lower cases.  */
 | ||
|   if ((syntax & RE_ICASE)
 | ||
|       && (strcmp (name, "upper") == 0 || strcmp (name, "lower") == 0))
 | ||
|     name = "alpha";
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   /* Check the space of the arrays.  */
 | ||
|   if (BE (*char_class_alloc == mbcset->nchar_classes, 0))
 | ||
|     {
 | ||
|       /* Not enough, realloc it.  */
 | ||
|       /* +1 in case of mbcset->nchar_classes is 0.  */
 | ||
|       int new_char_class_alloc = 2 * mbcset->nchar_classes + 1;
 | ||
|       /* Use realloc since array is NULL if *alloc == 0.  */
 | ||
|       wctype_t *new_char_classes = re_realloc (mbcset->char_classes, wctype_t,
 | ||
| 					       new_char_class_alloc);
 | ||
|       if (BE (new_char_classes == NULL, 0))
 | ||
| 	return REG_ESPACE;
 | ||
|       mbcset->char_classes = new_char_classes;
 | ||
|       *char_class_alloc = new_char_class_alloc;
 | ||
|     }
 | ||
|   mbcset->char_classes[mbcset->nchar_classes++] = __wctype (name);
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| 
 | ||
| #define BUILD_CHARCLASS_LOOP(ctype_func)	\
 | ||
|   do {						\
 | ||
|     if (BE (trans != NULL, 0))			\
 | ||
|       {						\
 | ||
| 	for (i = 0; i < SBC_MAX; ++i)		\
 | ||
|   	  if (ctype_func (i))			\
 | ||
| 	    bitset_set (sbcset, trans[i]);	\
 | ||
|       }						\
 | ||
|     else					\
 | ||
|       {						\
 | ||
| 	for (i = 0; i < SBC_MAX; ++i)		\
 | ||
|   	  if (ctype_func (i))			\
 | ||
| 	    bitset_set (sbcset, i);		\
 | ||
|       }						\
 | ||
|   } while (0)
 | ||
| 
 | ||
|   if (strcmp (name, "alnum") == 0)
 | ||
|     BUILD_CHARCLASS_LOOP (isalnum);
 | ||
|   else if (strcmp (name, "cntrl") == 0)
 | ||
|     BUILD_CHARCLASS_LOOP (iscntrl);
 | ||
|   else if (strcmp (name, "lower") == 0)
 | ||
|     BUILD_CHARCLASS_LOOP (islower);
 | ||
|   else if (strcmp (name, "space") == 0)
 | ||
|     BUILD_CHARCLASS_LOOP (isspace);
 | ||
|   else if (strcmp (name, "alpha") == 0)
 | ||
|     BUILD_CHARCLASS_LOOP (isalpha);
 | ||
|   else if (strcmp (name, "digit") == 0)
 | ||
|     BUILD_CHARCLASS_LOOP (isdigit);
 | ||
|   else if (strcmp (name, "print") == 0)
 | ||
|     BUILD_CHARCLASS_LOOP (isprint);
 | ||
|   else if (strcmp (name, "upper") == 0)
 | ||
|     BUILD_CHARCLASS_LOOP (isupper);
 | ||
|   else if (strcmp (name, "blank") == 0)
 | ||
|     BUILD_CHARCLASS_LOOP (isblank);
 | ||
|   else if (strcmp (name, "graph") == 0)
 | ||
|     BUILD_CHARCLASS_LOOP (isgraph);
 | ||
|   else if (strcmp (name, "punct") == 0)
 | ||
|     BUILD_CHARCLASS_LOOP (ispunct);
 | ||
|   else if (strcmp (name, "xdigit") == 0)
 | ||
|     BUILD_CHARCLASS_LOOP (isxdigit);
 | ||
|   else
 | ||
|     return REG_ECTYPE;
 | ||
| 
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| static bin_tree_t *
 | ||
| build_charclass_op (re_dfa_t *dfa, RE_TRANSLATE_TYPE trans,
 | ||
| 		    const unsigned char *class_name,
 | ||
| 		    const unsigned char *extra, int non_match,
 | ||
| 		    reg_errcode_t *err)
 | ||
| {
 | ||
|   re_bitset_ptr_t sbcset;
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   re_charset_t *mbcset;
 | ||
|   int alloc = 0;
 | ||
| #endif /* not RE_ENABLE_I18N */
 | ||
|   reg_errcode_t ret;
 | ||
|   re_token_t br_token;
 | ||
|   bin_tree_t *tree;
 | ||
| 
 | ||
|   sbcset = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1);
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1);
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   if (BE (sbcset == NULL || mbcset == NULL, 0))
 | ||
| #else /* not RE_ENABLE_I18N */
 | ||
|   if (BE (sbcset == NULL, 0))
 | ||
| #endif /* not RE_ENABLE_I18N */
 | ||
|     {
 | ||
|       *err = REG_ESPACE;
 | ||
|       return NULL;
 | ||
|     }
 | ||
| 
 | ||
|   if (non_match)
 | ||
|     {
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|       mbcset->non_match = 1;
 | ||
| #endif /* not RE_ENABLE_I18N */
 | ||
|     }
 | ||
| 
 | ||
|   /* We don't care the syntax in this case.  */
 | ||
|   ret = build_charclass (trans, sbcset,
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| 			 mbcset, &alloc,
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| 			 class_name, 0);
 | ||
| 
 | ||
|   if (BE (ret != REG_NOERROR, 0))
 | ||
|     {
 | ||
|       re_free (sbcset);
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|       free_charset (mbcset);
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
|       *err = ret;
 | ||
|       return NULL;
 | ||
|     }
 | ||
|   /* \w match '_' also.  */
 | ||
|   for (; *extra; extra++)
 | ||
|     bitset_set (sbcset, *extra);
 | ||
| 
 | ||
|   /* If it is non-matching list.  */
 | ||
|   if (non_match)
 | ||
|     bitset_not (sbcset);
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   /* Ensure only single byte characters are set.  */
 | ||
|   if (dfa->mb_cur_max > 1)
 | ||
|     bitset_mask (sbcset, dfa->sb_char);
 | ||
| #endif
 | ||
| 
 | ||
|   /* Build a tree for simple bracket.  */
 | ||
|   br_token.type = SIMPLE_BRACKET;
 | ||
|   br_token.opr.sbcset = sbcset;
 | ||
|   tree = create_token_tree (dfa, NULL, NULL, &br_token);
 | ||
|   if (BE (tree == NULL, 0))
 | ||
|     goto build_word_op_espace;
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   if (dfa->mb_cur_max > 1)
 | ||
|     {
 | ||
|       bin_tree_t *mbc_tree;
 | ||
|       /* Build a tree for complex bracket.  */
 | ||
|       br_token.type = COMPLEX_BRACKET;
 | ||
|       br_token.opr.mbcset = mbcset;
 | ||
|       dfa->has_mb_node = 1;
 | ||
|       mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token);
 | ||
|       if (BE (mbc_tree == NULL, 0))
 | ||
| 	goto build_word_op_espace;
 | ||
|       /* Then join them by ALT node.  */
 | ||
|       tree = create_tree (dfa, tree, mbc_tree, OP_ALT);
 | ||
|       if (BE (mbc_tree != NULL, 1))
 | ||
| 	return tree;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       free_charset (mbcset);
 | ||
|       return tree;
 | ||
|     }
 | ||
| #else /* not RE_ENABLE_I18N */
 | ||
|   return tree;
 | ||
| #endif /* not RE_ENABLE_I18N */
 | ||
| 
 | ||
|  build_word_op_espace:
 | ||
|   re_free (sbcset);
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   free_charset (mbcset);
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
|   *err = REG_ESPACE;
 | ||
|   return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* This is intended for the expressions like "a{1,3}".
 | ||
|    Fetch a number from `input', and return the number.
 | ||
|    Return -1, if the number field is empty like "{,1}".
 | ||
|    Return -2, If an error is occured.  */
 | ||
| 
 | ||
| static int
 | ||
| fetch_number (re_string_t *input, re_token_t *token, reg_syntax_t syntax)
 | ||
| {
 | ||
|   int num = -1;
 | ||
|   unsigned char c;
 | ||
|   while (1)
 | ||
|     {
 | ||
|       fetch_token (token, input, syntax);
 | ||
|       c = token->opr.c;
 | ||
|       if (BE (token->type == END_OF_RE, 0))
 | ||
| 	return -2;
 | ||
|       if (token->type == OP_CLOSE_DUP_NUM || c == ',')
 | ||
| 	break;
 | ||
|       num = ((token->type != CHARACTER || c < '0' || '9' < c || num == -2)
 | ||
| 	     ? -2 : ((num == -1) ? c - '0' : num * 10 + c - '0'));
 | ||
|       num = (num > RE_DUP_MAX) ? -2 : num;
 | ||
|     }
 | ||
|   return num;
 | ||
| }
 | ||
| 
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
| static void
 | ||
| free_charset (re_charset_t *cset)
 | ||
| {
 | ||
|   re_free (cset->mbchars);
 | ||
| # ifdef _LIBC
 | ||
|   re_free (cset->coll_syms);
 | ||
|   re_free (cset->equiv_classes);
 | ||
|   re_free (cset->range_starts);
 | ||
|   re_free (cset->range_ends);
 | ||
| # endif
 | ||
|   re_free (cset->char_classes);
 | ||
|   re_free (cset);
 | ||
| }
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
| 
 | ||
| /* Functions for binary tree operation.  */
 | ||
| 
 | ||
| /* Create a tree node.  */
 | ||
| 
 | ||
| static bin_tree_t *
 | ||
| create_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right,
 | ||
| 	     re_token_type_t type)
 | ||
| {
 | ||
|   re_token_t t;
 | ||
|   t.type = type;
 | ||
|   return create_token_tree (dfa, left, right, &t);
 | ||
| }
 | ||
| 
 | ||
| static bin_tree_t *
 | ||
| create_token_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right,
 | ||
| 		   const re_token_t *token)
 | ||
| {
 | ||
|   bin_tree_t *tree;
 | ||
|   if (BE (dfa->str_tree_storage_idx == BIN_TREE_STORAGE_SIZE, 0))
 | ||
|     {
 | ||
|       bin_tree_storage_t *storage = re_malloc (bin_tree_storage_t, 1);
 | ||
| 
 | ||
|       if (storage == NULL)
 | ||
| 	return NULL;
 | ||
|       storage->next = dfa->str_tree_storage;
 | ||
|       dfa->str_tree_storage = storage;
 | ||
|       dfa->str_tree_storage_idx = 0;
 | ||
|     }
 | ||
|   tree = &dfa->str_tree_storage->data[dfa->str_tree_storage_idx++];
 | ||
| 
 | ||
|   tree->parent = NULL;
 | ||
|   tree->left = left;
 | ||
|   tree->right = right;
 | ||
|   tree->token = *token;
 | ||
|   tree->token.duplicated = 0;
 | ||
|   tree->token.opt_subexp = 0;
 | ||
|   tree->first = NULL;
 | ||
|   tree->next = NULL;
 | ||
|   tree->node_idx = -1;
 | ||
| 
 | ||
|   if (left != NULL)
 | ||
|     left->parent = tree;
 | ||
|   if (right != NULL)
 | ||
|     right->parent = tree;
 | ||
|   return tree;
 | ||
| }
 | ||
| 
 | ||
| /* Mark the tree SRC as an optional subexpression.
 | ||
|    To be called from preorder or postorder.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| mark_opt_subexp (void *extra, bin_tree_t *node)
 | ||
| {
 | ||
|   int idx = (int) (long) extra;
 | ||
|   if (node->token.type == SUBEXP && node->token.opr.idx == idx)
 | ||
|     node->token.opt_subexp = 1;
 | ||
| 
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Free the allocated memory inside NODE. */
 | ||
| 
 | ||
| static void
 | ||
| free_token (re_token_t *node)
 | ||
| {
 | ||
| #ifdef RE_ENABLE_I18N
 | ||
|   if (node->type == COMPLEX_BRACKET && node->duplicated == 0)
 | ||
|     free_charset (node->opr.mbcset);
 | ||
|   else
 | ||
| #endif /* RE_ENABLE_I18N */
 | ||
|     if (node->type == SIMPLE_BRACKET && node->duplicated == 0)
 | ||
|       re_free (node->opr.sbcset);
 | ||
| }
 | ||
| 
 | ||
| /* Worker function for tree walking.  Free the allocated memory inside NODE
 | ||
|    and its children. */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| free_tree (void *extra, bin_tree_t *node)
 | ||
| {
 | ||
|   free_token (&node->token);
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Duplicate the node SRC, and return new node.  This is a preorder
 | ||
|    visit similar to the one implemented by the generic visitor, but
 | ||
|    we need more infrastructure to maintain two parallel trees --- so,
 | ||
|    it's easier to duplicate.  */
 | ||
| 
 | ||
| static bin_tree_t *
 | ||
| duplicate_tree (const bin_tree_t *root, re_dfa_t *dfa)
 | ||
| {
 | ||
|   const bin_tree_t *node;
 | ||
|   bin_tree_t *dup_root;
 | ||
|   bin_tree_t **p_new = &dup_root, *dup_node = root->parent;
 | ||
| 
 | ||
|   for (node = root; ; )
 | ||
|     {
 | ||
|       /* Create a new tree and link it back to the current parent.  */
 | ||
|       *p_new = create_token_tree (dfa, NULL, NULL, &node->token);
 | ||
|       if (*p_new == NULL)
 | ||
| 	return NULL;
 | ||
|       (*p_new)->parent = dup_node;
 | ||
|       (*p_new)->token.duplicated = 1;
 | ||
|       dup_node = *p_new;
 | ||
| 
 | ||
|       /* Go to the left node, or up and to the right.  */
 | ||
|       if (node->left)
 | ||
| 	{
 | ||
| 	  node = node->left;
 | ||
| 	  p_new = &dup_node->left;
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  const bin_tree_t *prev = NULL;
 | ||
| 	  while (node->right == prev || node->right == NULL)
 | ||
| 	    {
 | ||
| 	      prev = node;
 | ||
| 	      node = node->parent;
 | ||
| 	      dup_node = dup_node->parent;
 | ||
| 	      if (!node)
 | ||
| 		return dup_root;
 | ||
| 	    }
 | ||
| 	  node = node->right;
 | ||
| 	  p_new = &dup_node->right;
 | ||
| 	}
 | ||
|     }
 | ||
| }
 |