mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-30 10:45:40 +03:00 
			
		
		
		
	The tgmath.h totalorder and totalordermag macros wrongly return a floating-point type. They should return int, like the underlying functions. This patch fixes them accordingly, updating tests including enabling tests of those functions from gen-tgmath-tests.py. Tested for x86_64. [BZ #21687] * math/tgmath.h (__TGMATH_BINARY_REAL_RET_ONLY): New macro. (totalorder): Use it. (totalordermag): Likewise. * math/gen-tgmath-tests.py (Tests.add_all_tests): Enable tests of totalorder and totalordermag. * math/test-tgmath.c (F(compile_test)): Do not call totalorder or totalordermag in arguments of calls to those functions. (NCALLS): Change to 134.
		
			
				
	
	
		
			1160 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1160 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Test compilation of tgmath macros.
 | |
|    Copyright (C) 2001-2017 Free Software Foundation, Inc.
 | |
|    This file is part of the GNU C Library.
 | |
|    Contributed by Jakub Jelinek <jakub@redhat.com> and
 | |
|    Ulrich Drepper <drepper@redhat.com>, 2001.
 | |
| 
 | |
|    The GNU C Library is free software; you can redistribute it and/or
 | |
|    modify it under the terms of the GNU Lesser General Public
 | |
|    License as published by the Free Software Foundation; either
 | |
|    version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|    The GNU C Library is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    Lesser General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Lesser General Public
 | |
|    License along with the GNU C Library; if not, see
 | |
|    <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #ifndef HAVE_MAIN
 | |
| #undef __NO_MATH_INLINES
 | |
| #define __NO_MATH_INLINES 1
 | |
| #include <float.h>
 | |
| #include <math.h>
 | |
| #include <stdint.h>
 | |
| #include <stdio.h>
 | |
| #include <tgmath.h>
 | |
| 
 | |
| //#define DEBUG
 | |
| 
 | |
| static void compile_test (void);
 | |
| static void compile_testf (void);
 | |
| #if LDBL_MANT_DIG > DBL_MANT_DIG
 | |
| static void compile_testl (void);
 | |
| #endif
 | |
| 
 | |
| float fx;
 | |
| double dx;
 | |
| long double lx;
 | |
| const float fy = 1.25;
 | |
| const double dy = 1.25;
 | |
| const long double ly = 1.25;
 | |
| complex float fz;
 | |
| complex double dz;
 | |
| complex long double lz;
 | |
| 
 | |
| int count_double;
 | |
| int count_float;
 | |
| int count_ldouble;
 | |
| int count_cdouble;
 | |
| int count_cfloat;
 | |
| int count_cldouble;
 | |
| 
 | |
| #define NCALLS     134
 | |
| #define NCALLS_INT 4
 | |
| #define NCCALLS    47
 | |
| 
 | |
| static int
 | |
| do_test (void)
 | |
| {
 | |
|   int result = 0;
 | |
| 
 | |
|   count_float = count_double = count_ldouble = 0;
 | |
|   count_cfloat = count_cdouble = count_cldouble = 0;
 | |
|   compile_test ();
 | |
|   if (count_float != 0 || count_cfloat != 0)
 | |
|     {
 | |
|       puts ("float function called for double test");
 | |
|       result = 1;
 | |
|     }
 | |
|   if (count_ldouble != 0 || count_cldouble != 0)
 | |
|     {
 | |
|       puts ("long double function called for double test");
 | |
|       result = 1;
 | |
|     }
 | |
|   if (count_double < NCALLS + NCALLS_INT)
 | |
|     {
 | |
|       printf ("double functions not called often enough (%d)\n",
 | |
| 	      count_double);
 | |
|       result = 1;
 | |
|     }
 | |
|   else if (count_double > NCALLS + NCALLS_INT)
 | |
|     {
 | |
|       printf ("double functions called too often (%d)\n",
 | |
| 	      count_double);
 | |
|       result = 1;
 | |
|     }
 | |
|   if (count_cdouble < NCCALLS)
 | |
|     {
 | |
|       printf ("double complex functions not called often enough (%d)\n",
 | |
| 	      count_cdouble);
 | |
|       result = 1;
 | |
|     }
 | |
|   else if (count_cdouble > NCCALLS)
 | |
|     {
 | |
|       printf ("double complex functions called too often (%d)\n",
 | |
| 	      count_cdouble);
 | |
|       result = 1;
 | |
|     }
 | |
| 
 | |
|   count_float = count_double = count_ldouble = 0;
 | |
|   count_cfloat = count_cdouble = count_cldouble = 0;
 | |
|   compile_testf ();
 | |
|   if (count_double != 0 || count_cdouble != 0)
 | |
|     {
 | |
|       puts ("double function called for float test");
 | |
|       result = 1;
 | |
|     }
 | |
|   if (count_ldouble != 0 || count_cldouble != 0)
 | |
|     {
 | |
|       puts ("long double function called for float test");
 | |
|       result = 1;
 | |
|     }
 | |
|   if (count_float < NCALLS)
 | |
|     {
 | |
|       printf ("float functions not called often enough (%d)\n", count_float);
 | |
|       result = 1;
 | |
|     }
 | |
|   else if (count_float > NCALLS)
 | |
|     {
 | |
|       printf ("float functions called too often (%d)\n",
 | |
| 	      count_double);
 | |
|       result = 1;
 | |
|     }
 | |
|   if (count_cfloat < NCCALLS)
 | |
|     {
 | |
|       printf ("float complex functions not called often enough (%d)\n",
 | |
| 	      count_cfloat);
 | |
|       result = 1;
 | |
|     }
 | |
|   else if (count_cfloat > NCCALLS)
 | |
|     {
 | |
|       printf ("float complex functions called too often (%d)\n",
 | |
| 	      count_cfloat);
 | |
|       result = 1;
 | |
|     }
 | |
| 
 | |
| #if LDBL_MANT_DIG > DBL_MANT_DIG
 | |
|   count_float = count_double = count_ldouble = 0;
 | |
|   count_cfloat = count_cdouble = count_cldouble = 0;
 | |
|   compile_testl ();
 | |
|   if (count_float != 0 || count_cfloat != 0)
 | |
|     {
 | |
|       puts ("float function called for long double test");
 | |
|       result = 1;
 | |
|     }
 | |
|   if (count_double != 0 || count_cdouble != 0)
 | |
|     {
 | |
|       puts ("double function called for long double test");
 | |
|       result = 1;
 | |
|     }
 | |
|   if (count_ldouble < NCALLS)
 | |
|     {
 | |
|       printf ("long double functions not called often enough (%d)\n",
 | |
| 	      count_ldouble);
 | |
|       result = 1;
 | |
|     }
 | |
|   else if (count_ldouble > NCALLS)
 | |
|     {
 | |
|       printf ("long double functions called too often (%d)\n",
 | |
| 	      count_double);
 | |
|       result = 1;
 | |
|     }
 | |
|   if (count_cldouble < NCCALLS)
 | |
|     {
 | |
|       printf ("long double complex functions not called often enough (%d)\n",
 | |
| 	      count_cldouble);
 | |
|       result = 1;
 | |
|     }
 | |
|   else if (count_cldouble > NCCALLS)
 | |
|     {
 | |
|       printf ("long double complex functions called too often (%d)\n",
 | |
| 	      count_cldouble);
 | |
|       result = 1;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /* Now generate the three functions.  */
 | |
| #define HAVE_MAIN
 | |
| 
 | |
| #define F(name) name
 | |
| #define TYPE double
 | |
| #define TEST_INT 1
 | |
| #define x dx
 | |
| #define y dy
 | |
| #define z dz
 | |
| #define count count_double
 | |
| #define ccount count_cdouble
 | |
| #include "test-tgmath.c"
 | |
| 
 | |
| #define F(name) name##f
 | |
| #define TYPE float
 | |
| #define x fx
 | |
| #define y fy
 | |
| #define z fz
 | |
| #define count count_float
 | |
| #define ccount count_cfloat
 | |
| #include "test-tgmath.c"
 | |
| 
 | |
| #if LDBL_MANT_DIG > DBL_MANT_DIG
 | |
| #define F(name) name##l
 | |
| #define TYPE long double
 | |
| #define x lx
 | |
| #define y ly
 | |
| #define z lz
 | |
| #define count count_ldouble
 | |
| #define ccount count_cldouble
 | |
| #include "test-tgmath.c"
 | |
| #endif
 | |
| 
 | |
| #define TEST_FUNCTION do_test ()
 | |
| #include "../test-skeleton.c"
 | |
| 
 | |
| #else
 | |
| 
 | |
| #ifdef DEBUG
 | |
| #define P() puts (__FUNCTION__)
 | |
| #else
 | |
| #define P()
 | |
| #endif
 | |
| 
 | |
| static void
 | |
| F(compile_test) (void)
 | |
| {
 | |
|   TYPE a, b, c = 1.0;
 | |
|   complex TYPE d;
 | |
|   int i = 2;
 | |
|   int saved_count;
 | |
|   long int j;
 | |
|   long long int k;
 | |
|   intmax_t m;
 | |
|   uintmax_t um;
 | |
| 
 | |
|   a = cos (cos (x));
 | |
|   b = acos (acos (a));
 | |
|   a = sin (sin (x));
 | |
|   b = asin (asin (a));
 | |
|   a = tan (tan (x));
 | |
|   b = atan (atan (a));
 | |
|   c = atan2 (atan2 (a, c), atan2 (b, x));
 | |
|   a = cosh (cosh (x));
 | |
|   b = acosh (acosh (a));
 | |
|   a = sinh (sinh (x));
 | |
|   b = asinh (asinh (a));
 | |
|   a = tanh (tanh (x));
 | |
|   b = atanh (atanh (a));
 | |
|   a = exp (exp (x));
 | |
|   b = log (log (a));
 | |
|   a = log10 (log10 (x));
 | |
|   b = ldexp (ldexp (a, 1), 5);
 | |
|   a = frexp (frexp (x, &i), &i);
 | |
|   b = expm1 (expm1 (a));
 | |
|   a = log1p (log1p (x));
 | |
|   b = logb (logb (a));
 | |
|   a = exp2 (exp2 (x));
 | |
|   b = log2 (log2 (a));
 | |
|   a = pow (pow (x, a), pow (c, b));
 | |
|   b = sqrt (sqrt (a));
 | |
|   a = hypot (hypot (x, b), hypot (c, a));
 | |
|   b = cbrt (cbrt (a));
 | |
|   a = ceil (ceil (x));
 | |
|   b = fabs (fabs (a));
 | |
|   a = floor (floor (x));
 | |
|   b = fmod (fmod (a, b), fmod (c, x));
 | |
|   a = nearbyint (nearbyint (x));
 | |
|   b = round (round (a));
 | |
|   c = roundeven (roundeven (a));
 | |
|   a = trunc (trunc (x));
 | |
|   b = remquo (remquo (a, b, &i), remquo (c, x, &i), &i);
 | |
|   j = lrint (x) + lround (a);
 | |
|   k = llrint (b) + llround (c);
 | |
|   m = fromfp (a, FP_INT_UPWARD, 2) + fromfpx (b, FP_INT_DOWNWARD, 3);
 | |
|   um = ufromfp (c, FP_INT_TONEAREST, 4) + ufromfpx (a, FP_INT_TOWARDZERO, 5);
 | |
|   a = erf (erf (x));
 | |
|   b = erfc (erfc (a));
 | |
|   a = tgamma (tgamma (x));
 | |
|   b = lgamma (lgamma (a));
 | |
|   a = rint (rint (x));
 | |
|   b = nextafter (nextafter (a, b), nextafter (c, x));
 | |
|   a = nextdown (nextdown (a));
 | |
|   b = nexttoward (nexttoward (x, a), c);
 | |
|   a = nextup (nextup (a));
 | |
|   b = remainder (remainder (a, b), remainder (c, x));
 | |
|   a = scalb (scalb (x, a), (TYPE) (6));
 | |
|   k = scalbn (a, 7) + scalbln (c, 10l);
 | |
|   i = ilogb (x);
 | |
|   j = llogb (x);
 | |
|   a = fdim (fdim (x, a), fdim (c, b));
 | |
|   b = fmax (fmax (a, x), fmax (c, b));
 | |
|   a = fmin (fmin (x, a), fmin (c, b));
 | |
|   b = fmaxmag (fmaxmag (a, x), fmaxmag (c, b));
 | |
|   a = fminmag (fminmag (x, a), fminmag (c, b));
 | |
|   b = fma (sin (a), sin (x), sin (c));
 | |
|   a = totalorder (x, b);
 | |
|   b = totalordermag (x, a);
 | |
| 
 | |
| #ifdef TEST_INT
 | |
|   a = atan2 (i, b);
 | |
|   b = remquo (i, a, &i);
 | |
|   c = fma (i, b, i);
 | |
|   a = pow (i, c);
 | |
| #endif
 | |
|   x = a + b + c + i + j + k + m + um;
 | |
| 
 | |
|   saved_count = count;
 | |
|   if (ccount != 0)
 | |
|     ccount = -10000;
 | |
| 
 | |
|   d = cos (cos (z));
 | |
|   z = acos (acos (d));
 | |
|   d = sin (sin (z));
 | |
|   z = asin (asin (d));
 | |
|   d = tan (tan (z));
 | |
|   z = atan (atan (d));
 | |
|   d = cosh (cosh (z));
 | |
|   z = acosh (acosh (d));
 | |
|   d = sinh (sinh (z));
 | |
|   z = asinh (asinh (d));
 | |
|   d = tanh (tanh (z));
 | |
|   z = atanh (atanh (d));
 | |
|   d = exp (exp (z));
 | |
|   z = log (log (d));
 | |
|   d = sqrt (sqrt (z));
 | |
|   z = conj (conj (d));
 | |
|   d = fabs (conj (a));
 | |
|   z = pow (pow (a, d), pow (b, z));
 | |
|   d = cproj (cproj (z));
 | |
|   z += fabs (cproj (a));
 | |
|   a = carg (carg (z));
 | |
|   b = creal (creal (d));
 | |
|   c = cimag (cimag (z));
 | |
|   x += a + b + c + i + j + k;
 | |
|   z += d;
 | |
| 
 | |
|   if (saved_count != count)
 | |
|     count = -10000;
 | |
| 
 | |
|   if (0)
 | |
|     {
 | |
|       a = cos (y);
 | |
|       a = acos (y);
 | |
|       a = sin (y);
 | |
|       a = asin (y);
 | |
|       a = tan (y);
 | |
|       a = atan (y);
 | |
|       a = atan2 (y, y);
 | |
|       a = cosh (y);
 | |
|       a = acosh (y);
 | |
|       a = sinh (y);
 | |
|       a = asinh (y);
 | |
|       a = tanh (y);
 | |
|       a = atanh (y);
 | |
|       a = exp (y);
 | |
|       a = log (y);
 | |
|       a = log10 (y);
 | |
|       a = ldexp (y, 5);
 | |
|       a = frexp (y, &i);
 | |
|       a = expm1 (y);
 | |
|       a = log1p (y);
 | |
|       a = logb (y);
 | |
|       a = exp2 (y);
 | |
|       a = log2 (y);
 | |
|       a = pow (y, y);
 | |
|       a = sqrt (y);
 | |
|       a = hypot (y, y);
 | |
|       a = cbrt (y);
 | |
|       a = ceil (y);
 | |
|       a = fabs (y);
 | |
|       a = floor (y);
 | |
|       a = fmod (y, y);
 | |
|       a = nearbyint (y);
 | |
|       a = round (y);
 | |
|       a = roundeven (y);
 | |
|       a = trunc (y);
 | |
|       a = remquo (y, y, &i);
 | |
|       j = lrint (y) + lround (y);
 | |
|       k = llrint (y) + llround (y);
 | |
|       m = fromfp (y, FP_INT_UPWARD, 6) + fromfpx (y, FP_INT_DOWNWARD, 7);
 | |
|       um = (ufromfp (y, FP_INT_TONEAREST, 8)
 | |
| 	    + ufromfpx (y, FP_INT_TOWARDZERO, 9));
 | |
|       a = erf (y);
 | |
|       a = erfc (y);
 | |
|       a = tgamma (y);
 | |
|       a = lgamma (y);
 | |
|       a = rint (y);
 | |
|       a = nextafter (y, y);
 | |
|       a = nexttoward (y, y);
 | |
|       a = remainder (y, y);
 | |
|       a = scalb (y, (const TYPE) (6));
 | |
|       k = scalbn (y, 7) + scalbln (y, 10l);
 | |
|       i = ilogb (y);
 | |
|       j = llogb (y);
 | |
|       a = fdim (y, y);
 | |
|       a = fmax (y, y);
 | |
|       a = fmin (y, y);
 | |
|       a = fmaxmag (y, y);
 | |
|       a = fminmag (y, y);
 | |
|       a = fma (y, y, y);
 | |
|       a = totalorder (y, y);
 | |
|       a = totalordermag (y, y);
 | |
| 
 | |
| #ifdef TEST_INT
 | |
|       a = atan2 (i, y);
 | |
|       a = remquo (i, y, &i);
 | |
|       a = fma (i, y, i);
 | |
|       a = pow (i, y);
 | |
| #endif
 | |
| 
 | |
|       d = cos ((const complex TYPE) z);
 | |
|       d = acos ((const complex TYPE) z);
 | |
|       d = sin ((const complex TYPE) z);
 | |
|       d = asin ((const complex TYPE) z);
 | |
|       d = tan ((const complex TYPE) z);
 | |
|       d = atan ((const complex TYPE) z);
 | |
|       d = cosh ((const complex TYPE) z);
 | |
|       d = acosh ((const complex TYPE) z);
 | |
|       d = sinh ((const complex TYPE) z);
 | |
|       d = asinh ((const complex TYPE) z);
 | |
|       d = tanh ((const complex TYPE) z);
 | |
|       d = atanh ((const complex TYPE) z);
 | |
|       d = exp ((const complex TYPE) z);
 | |
|       d = log ((const complex TYPE) z);
 | |
|       d = sqrt ((const complex TYPE) z);
 | |
|       d = pow ((const complex TYPE) z, (const complex TYPE) z);
 | |
|       d = fabs ((const complex TYPE) z);
 | |
|       d = carg ((const complex TYPE) z);
 | |
|       d = creal ((const complex TYPE) z);
 | |
|       d = cimag ((const complex TYPE) z);
 | |
|       d = conj ((const complex TYPE) z);
 | |
|       d = cproj ((const complex TYPE) z);
 | |
|     }
 | |
| }
 | |
| #undef x
 | |
| #undef y
 | |
| #undef z
 | |
| 
 | |
| 
 | |
| TYPE
 | |
| (F(cos)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(acos)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(sin)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(asin)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(tan)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(atan)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(atan2)) (TYPE x, TYPE y)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x + y;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(cosh)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(acosh)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(sinh)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(asinh)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(tanh)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(atanh)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(exp)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(log)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(log10)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(ldexp)) (TYPE x, int y)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x + y;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(frexp)) (TYPE x, int *y)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x + *y;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(expm1)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(log1p)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(logb)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(exp2)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(log2)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(pow)) (TYPE x, TYPE y)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x + y;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(sqrt)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(hypot)) (TYPE x, TYPE y)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x + y;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(cbrt)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(ceil)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(fabs)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(floor)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(fmod)) (TYPE x, TYPE y)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x + y;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(nearbyint)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(round)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(roundeven)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(trunc)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(remquo)) (TYPE x, TYPE y, int *i)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x + y + *i;
 | |
| }
 | |
| 
 | |
| long int
 | |
| (F(lrint)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| long int
 | |
| (F(lround)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| long long int
 | |
| (F(llrint)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| long long int
 | |
| (F(llround)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| intmax_t
 | |
| (F(fromfp)) (TYPE x, int round, unsigned int width)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| intmax_t
 | |
| (F(fromfpx)) (TYPE x, int round, unsigned int width)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| uintmax_t
 | |
| (F(ufromfp)) (TYPE x, int round, unsigned int width)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| uintmax_t
 | |
| (F(ufromfpx)) (TYPE x, int round, unsigned int width)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(erf)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(erfc)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(tgamma)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(lgamma)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(rint)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(nextafter)) (TYPE x, TYPE y)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x + y;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(nextdown)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(nexttoward)) (TYPE x, long double y)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x + y;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(nextup)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(remainder)) (TYPE x, TYPE y)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x + y;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(scalb)) (TYPE x, TYPE y)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x + y;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(scalbn)) (TYPE x, int y)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x + y;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(scalbln)) (TYPE x, long int y)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x + y;
 | |
| }
 | |
| 
 | |
| int
 | |
| (F(ilogb)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| long int
 | |
| (F(llogb)) (TYPE x)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(fdim)) (TYPE x, TYPE y)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x + y;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(fmin)) (TYPE x, TYPE y)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x + y;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(fmax)) (TYPE x, TYPE y)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x + y;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(fminmag)) (TYPE x, TYPE y)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x + y;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(fmaxmag)) (TYPE x, TYPE y)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x + y;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(fma)) (TYPE x, TYPE y, TYPE z)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x + y + z;
 | |
| }
 | |
| 
 | |
| int
 | |
| (F(totalorder)) (TYPE x, TYPE y)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x + y;
 | |
| }
 | |
| 
 | |
| int
 | |
| (F(totalordermag)) (TYPE x, TYPE y)
 | |
| {
 | |
|   ++count;
 | |
|   P ();
 | |
|   return x + y;
 | |
| }
 | |
| 
 | |
| complex TYPE
 | |
| (F(cacos)) (complex TYPE x)
 | |
| {
 | |
|   ++ccount;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| complex TYPE
 | |
| (F(casin)) (complex TYPE x)
 | |
| {
 | |
|   ++ccount;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| complex TYPE
 | |
| (F(catan)) (complex TYPE x)
 | |
| {
 | |
|   ++ccount;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| complex TYPE
 | |
| (F(ccos)) (complex TYPE x)
 | |
| {
 | |
|   ++ccount;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| complex TYPE
 | |
| (F(csin)) (complex TYPE x)
 | |
| {
 | |
|   ++ccount;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| complex TYPE
 | |
| (F(ctan)) (complex TYPE x)
 | |
| {
 | |
|   ++ccount;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| complex TYPE
 | |
| (F(cacosh)) (complex TYPE x)
 | |
| {
 | |
|   ++ccount;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| complex TYPE
 | |
| (F(casinh)) (complex TYPE x)
 | |
| {
 | |
|   ++ccount;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| complex TYPE
 | |
| (F(catanh)) (complex TYPE x)
 | |
| {
 | |
|   ++ccount;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| complex TYPE
 | |
| (F(ccosh)) (complex TYPE x)
 | |
| {
 | |
|   ++ccount;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| complex TYPE
 | |
| (F(csinh)) (complex TYPE x)
 | |
| {
 | |
|   ++ccount;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| complex TYPE
 | |
| (F(ctanh)) (complex TYPE x)
 | |
| {
 | |
|   ++ccount;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| complex TYPE
 | |
| (F(cexp)) (complex TYPE x)
 | |
| {
 | |
|   ++ccount;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| complex TYPE
 | |
| (F(clog)) (complex TYPE x)
 | |
| {
 | |
|   ++ccount;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| complex TYPE
 | |
| (F(csqrt)) (complex TYPE x)
 | |
| {
 | |
|   ++ccount;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| complex TYPE
 | |
| (F(cpow)) (complex TYPE x, complex TYPE y)
 | |
| {
 | |
|   ++ccount;
 | |
|   P ();
 | |
|   return x + y;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(cabs)) (complex TYPE x)
 | |
| {
 | |
|   ++ccount;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(carg)) (complex TYPE x)
 | |
| {
 | |
|   ++ccount;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(creal)) (complex TYPE x)
 | |
| {
 | |
|   ++ccount;
 | |
|   P ();
 | |
|   return __real__ x;
 | |
| }
 | |
| 
 | |
| TYPE
 | |
| (F(cimag)) (complex TYPE x)
 | |
| {
 | |
|   ++ccount;
 | |
|   P ();
 | |
|   return __imag__ x;
 | |
| }
 | |
| 
 | |
| complex TYPE
 | |
| (F(conj)) (complex TYPE x)
 | |
| {
 | |
|   ++ccount;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| complex TYPE
 | |
| (F(cproj)) (complex TYPE x)
 | |
| {
 | |
|   ++ccount;
 | |
|   P ();
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| #undef F
 | |
| #undef TYPE
 | |
| #undef count
 | |
| #undef ccount
 | |
| #undef TEST_INT
 | |
| #endif
 |