mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-31 22:10:34 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			165 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			165 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Complex square root of a float type.
 | |
|    Copyright (C) 1997-2017 Free Software Foundation, Inc.
 | |
|    This file is part of the GNU C Library.
 | |
|    Based on an algorithm by Stephen L. Moshier <moshier@world.std.com>.
 | |
|    Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
 | |
| 
 | |
|    The GNU C Library is free software; you can redistribute it and/or
 | |
|    modify it under the terms of the GNU Lesser General Public
 | |
|    License as published by the Free Software Foundation; either
 | |
|    version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|    The GNU C Library is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    Lesser General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Lesser General Public
 | |
|    License along with the GNU C Library; if not, see
 | |
|    <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include <complex.h>
 | |
| #include <math.h>
 | |
| #include <math_private.h>
 | |
| #include <float.h>
 | |
| 
 | |
| CFLOAT
 | |
| M_DECL_FUNC (__csqrt) (CFLOAT x)
 | |
| {
 | |
|   CFLOAT res;
 | |
|   int rcls = fpclassify (__real__ x);
 | |
|   int icls = fpclassify (__imag__ x);
 | |
| 
 | |
|   if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
 | |
|     {
 | |
|       if (icls == FP_INFINITE)
 | |
| 	{
 | |
| 	  __real__ res = M_HUGE_VAL;
 | |
| 	  __imag__ res = __imag__ x;
 | |
| 	}
 | |
|       else if (rcls == FP_INFINITE)
 | |
| 	{
 | |
| 	  if (__real__ x < 0)
 | |
| 	    {
 | |
| 	      __real__ res = icls == FP_NAN ? M_NAN : 0;
 | |
| 	      __imag__ res = M_COPYSIGN (M_HUGE_VAL, __imag__ x);
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      __real__ res = __real__ x;
 | |
| 	      __imag__ res = (icls == FP_NAN
 | |
| 			      ? M_NAN : M_COPYSIGN (0, __imag__ x));
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  __real__ res = M_NAN;
 | |
| 	  __imag__ res = M_NAN;
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       if (__glibc_unlikely (icls == FP_ZERO))
 | |
| 	{
 | |
| 	  if (__real__ x < 0)
 | |
| 	    {
 | |
| 	      __real__ res = 0;
 | |
| 	      __imag__ res = M_COPYSIGN (M_SQRT (-__real__ x), __imag__ x);
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      __real__ res = M_FABS (M_SQRT (__real__ x));
 | |
| 	      __imag__ res = M_COPYSIGN (0, __imag__ x);
 | |
| 	    }
 | |
| 	}
 | |
|       else if (__glibc_unlikely (rcls == FP_ZERO))
 | |
| 	{
 | |
| 	  FLOAT r;
 | |
| 	  if (M_FABS (__imag__ x) >= 2 * M_MIN)
 | |
| 	    r = M_SQRT (M_LIT (0.5) * M_FABS (__imag__ x));
 | |
| 	  else
 | |
| 	    r = M_LIT (0.5) * M_SQRT (2 * M_FABS (__imag__ x));
 | |
| 
 | |
| 	  __real__ res = r;
 | |
| 	  __imag__ res = M_COPYSIGN (r, __imag__ x);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  FLOAT d, r, s;
 | |
| 	  int scale = 0;
 | |
| 
 | |
| 	  if (M_FABS (__real__ x) > M_MAX / 4)
 | |
| 	    {
 | |
| 	      scale = 1;
 | |
| 	      __real__ x = M_SCALBN (__real__ x, -2 * scale);
 | |
| 	      __imag__ x = M_SCALBN (__imag__ x, -2 * scale);
 | |
| 	    }
 | |
| 	  else if (M_FABS (__imag__ x) > M_MAX / 4)
 | |
| 	    {
 | |
| 	      scale = 1;
 | |
| 	      if (M_FABS (__real__ x) >= 4 * M_MIN)
 | |
| 		__real__ x = M_SCALBN (__real__ x, -2 * scale);
 | |
| 	      else
 | |
| 		__real__ x = 0;
 | |
| 	      __imag__ x = M_SCALBN (__imag__ x, -2 * scale);
 | |
| 	    }
 | |
| 	  else if (M_FABS (__real__ x) < 2 * M_MIN
 | |
| 		   && M_FABS (__imag__ x) < 2 * M_MIN)
 | |
| 	    {
 | |
| 	      scale = -((M_MANT_DIG + 1) / 2);
 | |
| 	      __real__ x = M_SCALBN (__real__ x, -2 * scale);
 | |
| 	      __imag__ x = M_SCALBN (__imag__ x, -2 * scale);
 | |
| 	    }
 | |
| 
 | |
| 	  d = M_HYPOT (__real__ x, __imag__ x);
 | |
| 	  /* Use the identity   2  Re res  Im res = Im x
 | |
| 	     to avoid cancellation error in  d +/- Re x.  */
 | |
| 	  if (__real__ x > 0)
 | |
| 	    {
 | |
| 	      r = M_SQRT (M_LIT (0.5) * (d + __real__ x));
 | |
| 	      if (scale == 1 && M_FABS (__imag__ x) < 1)
 | |
| 		{
 | |
| 		  /* Avoid possible intermediate underflow.  */
 | |
| 		  s = __imag__ x / r;
 | |
| 		  r = M_SCALBN (r, scale);
 | |
| 		  scale = 0;
 | |
| 		}
 | |
| 	      else
 | |
| 		s = M_LIT (0.5) * (__imag__ x / r);
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      s = M_SQRT (M_LIT (0.5) * (d - __real__ x));
 | |
| 	      if (scale == 1 && M_FABS (__imag__ x) < 1)
 | |
| 		{
 | |
| 		  /* Avoid possible intermediate underflow.  */
 | |
| 		  r = M_FABS (__imag__ x / s);
 | |
| 		  s = M_SCALBN (s, scale);
 | |
| 		  scale = 0;
 | |
| 		}
 | |
| 	      else
 | |
| 		r = M_FABS (M_LIT (0.5) * (__imag__ x / s));
 | |
| 	    }
 | |
| 
 | |
| 	  if (scale)
 | |
| 	    {
 | |
| 	      r = M_SCALBN (r, scale);
 | |
| 	      s = M_SCALBN (s, scale);
 | |
| 	    }
 | |
| 
 | |
| 	  math_check_force_underflow (r);
 | |
| 	  math_check_force_underflow (s);
 | |
| 
 | |
| 	  __real__ res = r;
 | |
| 	  __imag__ res = M_COPYSIGN (s, __imag__ x);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   return res;
 | |
| }
 | |
| declare_mgen_alias (__csqrt, csqrt)
 | |
| 
 | |
| #if M_LIBM_NEED_COMPAT (csqrt)
 | |
| declare_mgen_libm_compat (__csqrt, csqrt)
 | |
| #endif
 |