mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-30 10:45:40 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			155 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			155 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Return value of complex exponential function for a float type.
 | |
|    Copyright (C) 1997-2017 Free Software Foundation, Inc.
 | |
|    This file is part of the GNU C Library.
 | |
|    Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
 | |
| 
 | |
|    The GNU C Library is free software; you can redistribute it and/or
 | |
|    modify it under the terms of the GNU Lesser General Public
 | |
|    License as published by the Free Software Foundation; either
 | |
|    version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|    The GNU C Library is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    Lesser General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Lesser General Public
 | |
|    License along with the GNU C Library; if not, see
 | |
|    <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include <complex.h>
 | |
| #include <fenv.h>
 | |
| #include <math.h>
 | |
| #include <math_private.h>
 | |
| #include <float.h>
 | |
| 
 | |
| CFLOAT
 | |
| M_DECL_FUNC (__cexp) (CFLOAT x)
 | |
| {
 | |
|   CFLOAT retval;
 | |
|   int rcls = fpclassify (__real__ x);
 | |
|   int icls = fpclassify (__imag__ x);
 | |
| 
 | |
|   if (__glibc_likely (rcls >= FP_ZERO))
 | |
|     {
 | |
|       /* Real part is finite.  */
 | |
|       if (__glibc_likely (icls >= FP_ZERO))
 | |
| 	{
 | |
| 	  /* Imaginary part is finite.  */
 | |
| 	  const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2));
 | |
| 	  FLOAT sinix, cosix;
 | |
| 
 | |
| 	  if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
 | |
| 	    {
 | |
| 	      M_SINCOS (__imag__ x, &sinix, &cosix);
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      sinix = __imag__ x;
 | |
| 	      cosix = 1;
 | |
| 	    }
 | |
| 
 | |
| 	  if (__real__ x > t)
 | |
| 	    {
 | |
| 	      FLOAT exp_t = M_EXP (t);
 | |
| 	      __real__ x -= t;
 | |
| 	      sinix *= exp_t;
 | |
| 	      cosix *= exp_t;
 | |
| 	      if (__real__ x > t)
 | |
| 		{
 | |
| 		  __real__ x -= t;
 | |
| 		  sinix *= exp_t;
 | |
| 		  cosix *= exp_t;
 | |
| 		}
 | |
| 	    }
 | |
| 	  if (__real__ x > t)
 | |
| 	    {
 | |
| 	      /* Overflow (original real part of x > 3t).  */
 | |
| 	      __real__ retval = M_MAX * cosix;
 | |
| 	      __imag__ retval = M_MAX * sinix;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      FLOAT exp_val = M_EXP (__real__ x);
 | |
| 	      __real__ retval = exp_val * cosix;
 | |
| 	      __imag__ retval = exp_val * sinix;
 | |
| 	    }
 | |
| 	  math_check_force_underflow_complex (retval);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  /* If the imaginary part is +-inf or NaN and the real part
 | |
| 	     is not +-inf the result is NaN + iNaN.  */
 | |
| 	  __real__ retval = M_NAN;
 | |
| 	  __imag__ retval = M_NAN;
 | |
| 
 | |
| 	  feraiseexcept (FE_INVALID);
 | |
| 	}
 | |
|     }
 | |
|   else if (__glibc_likely (rcls == FP_INFINITE))
 | |
|     {
 | |
|       /* Real part is infinite.  */
 | |
|       if (__glibc_likely (icls >= FP_ZERO))
 | |
| 	{
 | |
| 	  /* Imaginary part is finite.  */
 | |
| 	  FLOAT value = signbit (__real__ x) ? 0 : M_HUGE_VAL;
 | |
| 
 | |
| 	  if (icls == FP_ZERO)
 | |
| 	    {
 | |
| 	      /* Imaginary part is 0.0.  */
 | |
| 	      __real__ retval = value;
 | |
| 	      __imag__ retval = __imag__ x;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      FLOAT sinix, cosix;
 | |
| 
 | |
| 	      if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
 | |
| 		{
 | |
| 		  M_SINCOS (__imag__ x, &sinix, &cosix);
 | |
| 		}
 | |
| 	      else
 | |
| 		{
 | |
| 		  sinix = __imag__ x;
 | |
| 		  cosix = 1;
 | |
| 		}
 | |
| 
 | |
| 	      __real__ retval = M_COPYSIGN (value, cosix);
 | |
| 	      __imag__ retval = M_COPYSIGN (value, sinix);
 | |
| 	    }
 | |
| 	}
 | |
|       else if (signbit (__real__ x) == 0)
 | |
| 	{
 | |
| 	  __real__ retval = M_HUGE_VAL;
 | |
| 	  __imag__ retval = __imag__ x - __imag__ x;
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  __real__ retval = 0;
 | |
| 	  __imag__ retval = M_COPYSIGN (0, __imag__ x);
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       /* If the real part is NaN the result is NaN + iNaN unless the
 | |
| 	 imaginary part is zero.  */
 | |
|       __real__ retval = M_NAN;
 | |
|       if (icls == FP_ZERO)
 | |
| 	__imag__ retval = __imag__ x;
 | |
|       else
 | |
| 	{
 | |
| 	  __imag__ retval = M_NAN;
 | |
| 
 | |
| 	  if (rcls != FP_NAN || icls != FP_NAN)
 | |
| 	    feraiseexcept (FE_INVALID);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   return retval;
 | |
| }
 | |
| declare_mgen_alias (__cexp, cexp)
 | |
| 
 | |
| #if M_LIBM_NEED_COMPAT (cexp)
 | |
| declare_mgen_libm_compat (__cexp, cexp)
 | |
| #endif
 |