mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-30 10:45:40 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			140 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			140 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Return arc hyperbolic tangent for a complex float type.
 | |
|    Copyright (C) 1997-2017 Free Software Foundation, Inc.
 | |
|    This file is part of the GNU C Library.
 | |
|    Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
 | |
| 
 | |
|    The GNU C Library is free software; you can redistribute it and/or
 | |
|    modify it under the terms of the GNU Lesser General Public
 | |
|    License as published by the Free Software Foundation; either
 | |
|    version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|    The GNU C Library is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    Lesser General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Lesser General Public
 | |
|    License along with the GNU C Library; if not, see
 | |
|    <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include <complex.h>
 | |
| #include <math.h>
 | |
| #include <math_private.h>
 | |
| #include <float.h>
 | |
| 
 | |
| CFLOAT
 | |
| M_DECL_FUNC (__catanh) (CFLOAT x)
 | |
| {
 | |
|   CFLOAT res;
 | |
|   int rcls = fpclassify (__real__ x);
 | |
|   int icls = fpclassify (__imag__ x);
 | |
| 
 | |
|   if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
 | |
|     {
 | |
|       if (icls == FP_INFINITE)
 | |
| 	{
 | |
| 	  __real__ res = M_COPYSIGN (0, __real__ x);
 | |
| 	  __imag__ res = M_COPYSIGN (M_MLIT (M_PI_2), __imag__ x);
 | |
| 	}
 | |
|       else if (rcls == FP_INFINITE || rcls == FP_ZERO)
 | |
| 	{
 | |
| 	  __real__ res = M_COPYSIGN (0, __real__ x);
 | |
| 	  if (icls >= FP_ZERO)
 | |
| 	    __imag__ res = M_COPYSIGN (M_MLIT (M_PI_2), __imag__ x);
 | |
| 	  else
 | |
| 	    __imag__ res = M_NAN;
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  __real__ res = M_NAN;
 | |
| 	  __imag__ res = M_NAN;
 | |
| 	}
 | |
|     }
 | |
|   else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
 | |
|     {
 | |
|       res = x;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       if (M_FABS (__real__ x) >= 16 / M_EPSILON
 | |
| 	  || M_FABS (__imag__ x) >= 16 / M_EPSILON)
 | |
| 	{
 | |
| 	  __imag__ res = M_COPYSIGN (M_MLIT (M_PI_2), __imag__ x);
 | |
| 	  if (M_FABS (__imag__ x) <= 1)
 | |
| 	    __real__ res = 1 / __real__ x;
 | |
| 	  else if (M_FABS (__real__ x) <= 1)
 | |
| 	    __real__ res = __real__ x / __imag__ x / __imag__ x;
 | |
| 	  else
 | |
| 	    {
 | |
| 	      FLOAT h = M_HYPOT (__real__ x / 2, __imag__ x / 2);
 | |
| 	      __real__ res = __real__ x / h / h / 4;
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  if (M_FABS (__real__ x) == 1
 | |
| 	      && M_FABS (__imag__ x) < M_EPSILON * M_EPSILON)
 | |
| 	    __real__ res = (M_COPYSIGN (M_LIT (0.5), __real__ x)
 | |
| 			    * ((FLOAT) M_MLIT (M_LN2)
 | |
| 			       - M_LOG (M_FABS (__imag__ x))));
 | |
| 	  else
 | |
| 	    {
 | |
| 	      FLOAT i2 = 0;
 | |
| 	      if (M_FABS (__imag__ x) >= M_EPSILON * M_EPSILON)
 | |
| 		i2 = __imag__ x * __imag__ x;
 | |
| 
 | |
| 	      FLOAT num = 1 + __real__ x;
 | |
| 	      num = i2 + num * num;
 | |
| 
 | |
| 	      FLOAT den = 1 - __real__ x;
 | |
| 	      den = i2 + den * den;
 | |
| 
 | |
| 	      FLOAT f = num / den;
 | |
| 	      if (f < M_LIT (0.5))
 | |
| 		__real__ res = M_LIT (0.25) * M_LOG (f);
 | |
| 	      else
 | |
| 		{
 | |
| 		  num = 4 * __real__ x;
 | |
| 		  __real__ res = M_LIT (0.25) * M_LOG1P (num / den);
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	  FLOAT absx, absy, den;
 | |
| 
 | |
| 	  absx = M_FABS (__real__ x);
 | |
| 	  absy = M_FABS (__imag__ x);
 | |
| 	  if (absx < absy)
 | |
| 	    {
 | |
| 	      FLOAT t = absx;
 | |
| 	      absx = absy;
 | |
| 	      absy = t;
 | |
| 	    }
 | |
| 
 | |
| 	  if (absy < M_EPSILON / 2)
 | |
| 	    {
 | |
| 	      den = (1 - absx) * (1 + absx);
 | |
| 	      if (den == 0)
 | |
| 		den = 0;
 | |
| 	    }
 | |
| 	  else if (absx >= 1)
 | |
| 	    den = (1 - absx) * (1 + absx) - absy * absy;
 | |
| 	  else if (absx >= M_LIT (0.75) || absy >= M_LIT (0.5))
 | |
| 	    den = -M_SUF (__x2y2m1) (absx, absy);
 | |
| 	  else
 | |
| 	    den = (1 - absx) * (1 + absx) - absy * absy;
 | |
| 
 | |
| 	  __imag__ res = M_LIT (0.5) * M_ATAN2 (2 * __imag__ x, den);
 | |
| 	}
 | |
| 
 | |
|       math_check_force_underflow_complex (res);
 | |
|     }
 | |
| 
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| declare_mgen_alias (__catanh, catanh)
 | |
| 
 | |
| #if M_LIBM_NEED_COMPAT (catanh)
 | |
| declare_mgen_libm_compat (__catanh, catanh)
 | |
| #endif
 |