mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-30 10:45:40 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			206 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			206 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Return arc hyperbolic sine for a complex float type, with the
 | |
|    imaginary part of the result possibly adjusted for use in
 | |
|    computing other functions.
 | |
|    Copyright (C) 1997-2017 Free Software Foundation, Inc.
 | |
|    This file is part of the GNU C Library.
 | |
| 
 | |
|    The GNU C Library is free software; you can redistribute it and/or
 | |
|    modify it under the terms of the GNU Lesser General Public
 | |
|    License as published by the Free Software Foundation; either
 | |
|    version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|    The GNU C Library is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    Lesser General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Lesser General Public
 | |
|    License along with the GNU C Library; if not, see
 | |
|    <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include <complex.h>
 | |
| #include <math.h>
 | |
| #include <math_private.h>
 | |
| #include <float.h>
 | |
| 
 | |
| /* Return the complex inverse hyperbolic sine of finite nonzero Z,
 | |
|    with the imaginary part of the result subtracted from pi/2 if ADJ
 | |
|    is nonzero.  */
 | |
| 
 | |
| CFLOAT
 | |
| M_DECL_FUNC (__kernel_casinh) (CFLOAT x, int adj)
 | |
| {
 | |
|   CFLOAT res;
 | |
|   FLOAT rx, ix;
 | |
|   CFLOAT y;
 | |
| 
 | |
|   /* Avoid cancellation by reducing to the first quadrant.  */
 | |
|   rx = M_FABS (__real__ x);
 | |
|   ix = M_FABS (__imag__ x);
 | |
| 
 | |
|   if (rx >= 1 / M_EPSILON || ix >= 1 / M_EPSILON)
 | |
|     {
 | |
|       /* For large x in the first quadrant, x + csqrt (1 + x * x)
 | |
| 	 is sufficiently close to 2 * x to make no significant
 | |
| 	 difference to the result; avoid possible overflow from
 | |
| 	 the squaring and addition.  */
 | |
|       __real__ y = rx;
 | |
|       __imag__ y = ix;
 | |
| 
 | |
|       if (adj)
 | |
| 	{
 | |
| 	  FLOAT t = __real__ y;
 | |
| 	  __real__ y = M_COPYSIGN (__imag__ y, __imag__ x);
 | |
| 	  __imag__ y = t;
 | |
| 	}
 | |
| 
 | |
|       res = M_SUF (__clog) (y);
 | |
|       __real__ res += (FLOAT) M_MLIT (M_LN2);
 | |
|     }
 | |
|   else if (rx >= M_LIT (0.5) && ix < M_EPSILON / 8)
 | |
|     {
 | |
|       FLOAT s = M_HYPOT (1, rx);
 | |
| 
 | |
|       __real__ res = M_LOG (rx + s);
 | |
|       if (adj)
 | |
| 	__imag__ res = M_ATAN2 (s, __imag__ x);
 | |
|       else
 | |
| 	__imag__ res = M_ATAN2 (ix, s);
 | |
|     }
 | |
|   else if (rx < M_EPSILON / 8 && ix >= M_LIT (1.5))
 | |
|     {
 | |
|       FLOAT s = M_SQRT ((ix + 1) * (ix - 1));
 | |
| 
 | |
|       __real__ res = M_LOG (ix + s);
 | |
|       if (adj)
 | |
| 	__imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x));
 | |
|       else
 | |
| 	__imag__ res = M_ATAN2 (s, rx);
 | |
|     }
 | |
|   else if (ix > 1 && ix < M_LIT (1.5) && rx < M_LIT (0.5))
 | |
|     {
 | |
|       if (rx < M_EPSILON * M_EPSILON)
 | |
| 	{
 | |
| 	  FLOAT ix2m1 = (ix + 1) * (ix - 1);
 | |
| 	  FLOAT s = M_SQRT (ix2m1);
 | |
| 
 | |
| 	  __real__ res = M_LOG1P (2 * (ix2m1 + ix * s)) / 2;
 | |
| 	  if (adj)
 | |
| 	    __imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x));
 | |
| 	  else
 | |
| 	    __imag__ res = M_ATAN2 (s, rx);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  FLOAT ix2m1 = (ix + 1) * (ix - 1);
 | |
| 	  FLOAT rx2 = rx * rx;
 | |
| 	  FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix);
 | |
| 	  FLOAT d = M_SQRT (ix2m1 * ix2m1 + f);
 | |
| 	  FLOAT dp = d + ix2m1;
 | |
| 	  FLOAT dm = f / dp;
 | |
| 	  FLOAT r1 = M_SQRT ((dm + rx2) / 2);
 | |
| 	  FLOAT r2 = rx * ix / r1;
 | |
| 
 | |
| 	  __real__ res = M_LOG1P (rx2 + dp + 2 * (rx * r1 + ix * r2)) / 2;
 | |
| 	  if (adj)
 | |
| 	    __imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2, __imag__ x));
 | |
| 	  else
 | |
| 	    __imag__ res = M_ATAN2 (ix + r2, rx + r1);
 | |
| 	}
 | |
|     }
 | |
|   else if (ix == 1 && rx < M_LIT (0.5))
 | |
|     {
 | |
|       if (rx < M_EPSILON / 8)
 | |
| 	{
 | |
| 	  __real__ res = M_LOG1P (2 * (rx + M_SQRT (rx))) / 2;
 | |
| 	  if (adj)
 | |
| 	    __imag__ res = M_ATAN2 (M_SQRT (rx), M_COPYSIGN (1, __imag__ x));
 | |
| 	  else
 | |
| 	    __imag__ res = M_ATAN2 (1, M_SQRT (rx));
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  FLOAT d = rx * M_SQRT (4 + rx * rx);
 | |
| 	  FLOAT s1 = M_SQRT ((d + rx * rx) / 2);
 | |
| 	  FLOAT s2 = M_SQRT ((d - rx * rx) / 2);
 | |
| 
 | |
| 	  __real__ res = M_LOG1P (rx * rx + d + 2 * (rx * s1 + s2)) / 2;
 | |
| 	  if (adj)
 | |
| 	    __imag__ res = M_ATAN2 (rx + s1, M_COPYSIGN (1 + s2, __imag__ x));
 | |
| 	  else
 | |
| 	    __imag__ res = M_ATAN2 (1 + s2, rx + s1);
 | |
| 	}
 | |
|     }
 | |
|   else if (ix < 1 && rx < M_LIT (0.5))
 | |
|     {
 | |
|       if (ix >= M_EPSILON)
 | |
| 	{
 | |
| 	  if (rx < M_EPSILON * M_EPSILON)
 | |
| 	    {
 | |
| 	      FLOAT onemix2 = (1 + ix) * (1 - ix);
 | |
| 	      FLOAT s = M_SQRT (onemix2);
 | |
| 
 | |
| 	      __real__ res = M_LOG1P (2 * rx / s) / 2;
 | |
| 	      if (adj)
 | |
| 		__imag__ res = M_ATAN2 (s, __imag__ x);
 | |
| 	      else
 | |
| 		__imag__ res = M_ATAN2 (ix, s);
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      FLOAT onemix2 = (1 + ix) * (1 - ix);
 | |
| 	      FLOAT rx2 = rx * rx;
 | |
| 	      FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix);
 | |
| 	      FLOAT d = M_SQRT (onemix2 * onemix2 + f);
 | |
| 	      FLOAT dp = d + onemix2;
 | |
| 	      FLOAT dm = f / dp;
 | |
| 	      FLOAT r1 = M_SQRT ((dp + rx2) / 2);
 | |
| 	      FLOAT r2 = rx * ix / r1;
 | |
| 
 | |
| 	      __real__ res = M_LOG1P (rx2 + dm + 2 * (rx * r1 + ix * r2)) / 2;
 | |
| 	      if (adj)
 | |
| 		__imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2,
 | |
| 							     __imag__ x));
 | |
| 	      else
 | |
| 		__imag__ res = M_ATAN2 (ix + r2, rx + r1);
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  FLOAT s = M_HYPOT (1, rx);
 | |
| 
 | |
| 	  __real__ res = M_LOG1P (2 * rx * (rx + s)) / 2;
 | |
| 	  if (adj)
 | |
| 	    __imag__ res = M_ATAN2 (s, __imag__ x);
 | |
| 	  else
 | |
| 	    __imag__ res = M_ATAN2 (ix, s);
 | |
| 	}
 | |
|       math_check_force_underflow_nonneg (__real__ res);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       __real__ y = (rx - ix) * (rx + ix) + 1;
 | |
|       __imag__ y = 2 * rx * ix;
 | |
| 
 | |
|       y = M_SUF (__csqrt) (y);
 | |
| 
 | |
|       __real__ y += rx;
 | |
|       __imag__ y += ix;
 | |
| 
 | |
|       if (adj)
 | |
| 	{
 | |
| 	  FLOAT t = __real__ y;
 | |
| 	  __real__ y = M_COPYSIGN (__imag__ y, __imag__ x);
 | |
| 	  __imag__ y = t;
 | |
| 	}
 | |
| 
 | |
|       res = M_SUF (__clog) (y);
 | |
|     }
 | |
| 
 | |
|   /* Give results the correct sign for the original argument.  */
 | |
|   __real__ res = M_COPYSIGN (__real__ res, __real__ x);
 | |
|   __imag__ res = M_COPYSIGN (__imag__ res, (adj ? 1 : __imag__ x));
 | |
| 
 | |
|   return res;
 | |
| }
 |