mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-30 10:45:40 +03:00 
			
		
		
		
	These functions are invoked from other DSOs and should therefore use the standard calling convention.
		
			
				
	
	
		
			714 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			714 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Load a shared object at runtime, relocate it, and run its initializer.
 | |
|    Copyright (C) 1996-2017 Free Software Foundation, Inc.
 | |
|    This file is part of the GNU C Library.
 | |
| 
 | |
|    The GNU C Library is free software; you can redistribute it and/or
 | |
|    modify it under the terms of the GNU Lesser General Public
 | |
|    License as published by the Free Software Foundation; either
 | |
|    version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|    The GNU C Library is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    Lesser General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Lesser General Public
 | |
|    License along with the GNU C Library; if not, see
 | |
|    <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <dlfcn.h>
 | |
| #include <errno.h>
 | |
| #include <libintl.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <unistd.h>
 | |
| #include <sys/mman.h>		/* Check whether MAP_COPY is defined.  */
 | |
| #include <sys/param.h>
 | |
| #include <libc-lock.h>
 | |
| #include <ldsodefs.h>
 | |
| #include <caller.h>
 | |
| #include <sysdep-cancel.h>
 | |
| #include <tls.h>
 | |
| #include <stap-probe.h>
 | |
| #include <atomic.h>
 | |
| 
 | |
| #include <dl-dst.h>
 | |
| 
 | |
| 
 | |
| extern int __libc_multiple_libcs;	/* Defined in init-first.c.  */
 | |
| 
 | |
| /* We must be careful not to leave us in an inconsistent state.  Thus we
 | |
|    catch any error and re-raise it after cleaning up.  */
 | |
| 
 | |
| struct dl_open_args
 | |
| {
 | |
|   const char *file;
 | |
|   int mode;
 | |
|   /* This is the caller of the dlopen() function.  */
 | |
|   const void *caller_dlopen;
 | |
|   /* This is the caller of _dl_open().  */
 | |
|   const void *caller_dl_open;
 | |
|   struct link_map *map;
 | |
|   /* Namespace ID.  */
 | |
|   Lmid_t nsid;
 | |
|   /* Original parameters to the program and the current environment.  */
 | |
|   int argc;
 | |
|   char **argv;
 | |
|   char **env;
 | |
| };
 | |
| 
 | |
| 
 | |
| static int
 | |
| add_to_global (struct link_map *new)
 | |
| {
 | |
|   struct link_map **new_global;
 | |
|   unsigned int to_add = 0;
 | |
|   unsigned int cnt;
 | |
| 
 | |
|   /* Count the objects we have to put in the global scope.  */
 | |
|   for (cnt = 0; cnt < new->l_searchlist.r_nlist; ++cnt)
 | |
|     if (new->l_searchlist.r_list[cnt]->l_global == 0)
 | |
|       ++to_add;
 | |
| 
 | |
|   /* The symbols of the new objects and its dependencies are to be
 | |
|      introduced into the global scope that will be used to resolve
 | |
|      references from other dynamically-loaded objects.
 | |
| 
 | |
|      The global scope is the searchlist in the main link map.  We
 | |
|      extend this list if necessary.  There is one problem though:
 | |
|      since this structure was allocated very early (before the libc
 | |
|      is loaded) the memory it uses is allocated by the malloc()-stub
 | |
|      in the ld.so.  When we come here these functions are not used
 | |
|      anymore.  Instead the malloc() implementation of the libc is
 | |
|      used.  But this means the block from the main map cannot be used
 | |
|      in an realloc() call.  Therefore we allocate a completely new
 | |
|      array the first time we have to add something to the locale scope.  */
 | |
| 
 | |
|   struct link_namespaces *ns = &GL(dl_ns)[new->l_ns];
 | |
|   if (ns->_ns_global_scope_alloc == 0)
 | |
|     {
 | |
|       /* This is the first dynamic object given global scope.  */
 | |
|       ns->_ns_global_scope_alloc
 | |
| 	= ns->_ns_main_searchlist->r_nlist + to_add + 8;
 | |
|       new_global = (struct link_map **)
 | |
| 	malloc (ns->_ns_global_scope_alloc * sizeof (struct link_map *));
 | |
|       if (new_global == NULL)
 | |
| 	{
 | |
| 	  ns->_ns_global_scope_alloc = 0;
 | |
| 	nomem:
 | |
| 	  _dl_signal_error (ENOMEM, new->l_libname->name, NULL,
 | |
| 			    N_("cannot extend global scope"));
 | |
| 	  return 1;
 | |
| 	}
 | |
| 
 | |
|       /* Copy over the old entries.  */
 | |
|       ns->_ns_main_searchlist->r_list
 | |
| 	= memcpy (new_global, ns->_ns_main_searchlist->r_list,
 | |
| 		  (ns->_ns_main_searchlist->r_nlist
 | |
| 		   * sizeof (struct link_map *)));
 | |
|     }
 | |
|   else if (ns->_ns_main_searchlist->r_nlist + to_add
 | |
| 	   > ns->_ns_global_scope_alloc)
 | |
|     {
 | |
|       /* We have to extend the existing array of link maps in the
 | |
| 	 main map.  */
 | |
|       struct link_map **old_global
 | |
| 	= GL(dl_ns)[new->l_ns]._ns_main_searchlist->r_list;
 | |
|       size_t new_nalloc = ((ns->_ns_global_scope_alloc + to_add) * 2);
 | |
| 
 | |
|       new_global = (struct link_map **)
 | |
| 	malloc (new_nalloc * sizeof (struct link_map *));
 | |
|       if (new_global == NULL)
 | |
| 	goto nomem;
 | |
| 
 | |
|       memcpy (new_global, old_global,
 | |
| 	      ns->_ns_global_scope_alloc * sizeof (struct link_map *));
 | |
| 
 | |
|       ns->_ns_global_scope_alloc = new_nalloc;
 | |
|       ns->_ns_main_searchlist->r_list = new_global;
 | |
| 
 | |
|       if (!RTLD_SINGLE_THREAD_P)
 | |
| 	THREAD_GSCOPE_WAIT ();
 | |
| 
 | |
|       free (old_global);
 | |
|     }
 | |
| 
 | |
|   /* Now add the new entries.  */
 | |
|   unsigned int new_nlist = ns->_ns_main_searchlist->r_nlist;
 | |
|   for (cnt = 0; cnt < new->l_searchlist.r_nlist; ++cnt)
 | |
|     {
 | |
|       struct link_map *map = new->l_searchlist.r_list[cnt];
 | |
| 
 | |
|       if (map->l_global == 0)
 | |
| 	{
 | |
| 	  map->l_global = 1;
 | |
| 	  ns->_ns_main_searchlist->r_list[new_nlist++] = map;
 | |
| 
 | |
| 	  /* We modify the global scope.  Report this.  */
 | |
| 	  if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_SCOPES))
 | |
| 	    _dl_debug_printf ("\nadd %s [%lu] to global scope\n",
 | |
| 			      map->l_name, map->l_ns);
 | |
| 	}
 | |
|     }
 | |
|   atomic_write_barrier ();
 | |
|   ns->_ns_main_searchlist->r_nlist = new_nlist;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* Search link maps in all namespaces for the DSO that contains the object at
 | |
|    address ADDR.  Returns the pointer to the link map of the matching DSO, or
 | |
|    NULL if a match is not found.  */
 | |
| struct link_map *
 | |
| _dl_find_dso_for_object (const ElfW(Addr) addr)
 | |
| {
 | |
|   struct link_map *l;
 | |
| 
 | |
|   /* Find the highest-addressed object that ADDR is not below.  */
 | |
|   for (Lmid_t ns = 0; ns < GL(dl_nns); ++ns)
 | |
|     for (l = GL(dl_ns)[ns]._ns_loaded; l != NULL; l = l->l_next)
 | |
|       if (addr >= l->l_map_start && addr < l->l_map_end
 | |
| 	  && (l->l_contiguous
 | |
| 	      || _dl_addr_inside_object (l, (ElfW(Addr)) addr)))
 | |
| 	{
 | |
| 	  assert (ns == l->l_ns);
 | |
| 	  return l;
 | |
| 	}
 | |
|   return NULL;
 | |
| }
 | |
| rtld_hidden_def (_dl_find_dso_for_object);
 | |
| 
 | |
| static void
 | |
| dl_open_worker (void *a)
 | |
| {
 | |
|   struct dl_open_args *args = a;
 | |
|   const char *file = args->file;
 | |
|   int mode = args->mode;
 | |
|   struct link_map *call_map = NULL;
 | |
| 
 | |
|   /* Check whether _dl_open() has been called from a valid DSO.  */
 | |
|   if (__check_caller (args->caller_dl_open,
 | |
| 		      allow_libc|allow_libdl|allow_ldso) != 0)
 | |
|     _dl_signal_error (0, "dlopen", NULL, N_("invalid caller"));
 | |
| 
 | |
|   /* Determine the caller's map if necessary.  This is needed in case
 | |
|      we have a DST, when we don't know the namespace ID we have to put
 | |
|      the new object in, or when the file name has no path in which
 | |
|      case we need to look along the RUNPATH/RPATH of the caller.  */
 | |
|   const char *dst = strchr (file, '$');
 | |
|   if (dst != NULL || args->nsid == __LM_ID_CALLER
 | |
|       || strchr (file, '/') == NULL)
 | |
|     {
 | |
|       const void *caller_dlopen = args->caller_dlopen;
 | |
| 
 | |
|       /* We have to find out from which object the caller is calling.
 | |
| 	 By default we assume this is the main application.  */
 | |
|       call_map = GL(dl_ns)[LM_ID_BASE]._ns_loaded;
 | |
| 
 | |
|       struct link_map *l = _dl_find_dso_for_object ((ElfW(Addr)) caller_dlopen);
 | |
| 
 | |
|       if (l)
 | |
| 	call_map = l;
 | |
| 
 | |
|       if (args->nsid == __LM_ID_CALLER)
 | |
| 	args->nsid = call_map->l_ns;
 | |
|     }
 | |
| 
 | |
|   /* One might be tempted to assert that we are RT_CONSISTENT at this point, but that
 | |
|      may not be true if this is a recursive call to dlopen.  */
 | |
|   _dl_debug_initialize (0, args->nsid);
 | |
| 
 | |
|   /* Load the named object.  */
 | |
|   struct link_map *new;
 | |
|   args->map = new = _dl_map_object (call_map, file, lt_loaded, 0,
 | |
| 				    mode | __RTLD_CALLMAP, args->nsid);
 | |
| 
 | |
|   /* If the pointer returned is NULL this means the RTLD_NOLOAD flag is
 | |
|      set and the object is not already loaded.  */
 | |
|   if (new == NULL)
 | |
|     {
 | |
|       assert (mode & RTLD_NOLOAD);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   /* Mark the object as not deletable if the RTLD_NODELETE flags was passed.
 | |
|      Do this early so that we don't skip marking the object if it was
 | |
|      already loaded.  */
 | |
|   if (__glibc_unlikely (mode & RTLD_NODELETE))
 | |
|     new->l_flags_1 |= DF_1_NODELETE;
 | |
| 
 | |
|   if (__glibc_unlikely (mode & __RTLD_SPROF))
 | |
|     /* This happens only if we load a DSO for 'sprof'.  */
 | |
|     return;
 | |
| 
 | |
|   /* This object is directly loaded.  */
 | |
|   ++new->l_direct_opencount;
 | |
| 
 | |
|   /* It was already open.  */
 | |
|   if (__glibc_unlikely (new->l_searchlist.r_list != NULL))
 | |
|     {
 | |
|       /* Let the user know about the opencount.  */
 | |
|       if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_FILES))
 | |
| 	_dl_debug_printf ("opening file=%s [%lu]; direct_opencount=%u\n\n",
 | |
| 			  new->l_name, new->l_ns, new->l_direct_opencount);
 | |
| 
 | |
|       /* If the user requested the object to be in the global namespace
 | |
| 	 but it is not so far, add it now.  */
 | |
|       if ((mode & RTLD_GLOBAL) && new->l_global == 0)
 | |
| 	(void) add_to_global (new);
 | |
| 
 | |
|       assert (_dl_debug_initialize (0, args->nsid)->r_state == RT_CONSISTENT);
 | |
| 
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   /* Load that object's dependencies.  */
 | |
|   _dl_map_object_deps (new, NULL, 0, 0,
 | |
| 		       mode & (__RTLD_DLOPEN | RTLD_DEEPBIND | __RTLD_AUDIT));
 | |
| 
 | |
|   /* So far, so good.  Now check the versions.  */
 | |
|   for (unsigned int i = 0; i < new->l_searchlist.r_nlist; ++i)
 | |
|     if (new->l_searchlist.r_list[i]->l_real->l_versions == NULL)
 | |
|       (void) _dl_check_map_versions (new->l_searchlist.r_list[i]->l_real,
 | |
| 				     0, 0);
 | |
| 
 | |
| #ifdef SHARED
 | |
|   /* Auditing checkpoint: we have added all objects.  */
 | |
|   if (__glibc_unlikely (GLRO(dl_naudit) > 0))
 | |
|     {
 | |
|       struct link_map *head = GL(dl_ns)[new->l_ns]._ns_loaded;
 | |
|       /* Do not call the functions for any auditing object.  */
 | |
|       if (head->l_auditing == 0)
 | |
| 	{
 | |
| 	  struct audit_ifaces *afct = GLRO(dl_audit);
 | |
| 	  for (unsigned int cnt = 0; cnt < GLRO(dl_naudit); ++cnt)
 | |
| 	    {
 | |
| 	      if (afct->activity != NULL)
 | |
| 		afct->activity (&head->l_audit[cnt].cookie, LA_ACT_CONSISTENT);
 | |
| 
 | |
| 	      afct = afct->next;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|   /* Notify the debugger all new objects are now ready to go.  */
 | |
|   struct r_debug *r = _dl_debug_initialize (0, args->nsid);
 | |
|   r->r_state = RT_CONSISTENT;
 | |
|   _dl_debug_state ();
 | |
|   LIBC_PROBE (map_complete, 3, args->nsid, r, new);
 | |
| 
 | |
|   /* Print scope information.  */
 | |
|   if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_SCOPES))
 | |
|     _dl_show_scope (new, 0);
 | |
| 
 | |
|   /* Only do lazy relocation if `LD_BIND_NOW' is not set.  */
 | |
|   int reloc_mode = mode & __RTLD_AUDIT;
 | |
|   if (GLRO(dl_lazy))
 | |
|     reloc_mode |= mode & RTLD_LAZY;
 | |
| 
 | |
|   /* Sort the objects by dependency for the relocation process.  This
 | |
|      allows IFUNC relocations to work and it also means copy
 | |
|      relocation of dependencies are if necessary overwritten.  */
 | |
|   size_t nmaps = 0;
 | |
|   struct link_map *l = new;
 | |
|   do
 | |
|     {
 | |
|       if (! l->l_real->l_relocated)
 | |
| 	++nmaps;
 | |
|       l = l->l_next;
 | |
|     }
 | |
|   while (l != NULL);
 | |
|   struct link_map *maps[nmaps];
 | |
|   nmaps = 0;
 | |
|   l = new;
 | |
|   do
 | |
|     {
 | |
|       if (! l->l_real->l_relocated)
 | |
| 	maps[nmaps++] = l;
 | |
|       l = l->l_next;
 | |
|     }
 | |
|   while (l != NULL);
 | |
|   if (nmaps > 1)
 | |
|     {
 | |
|       uint16_t seen[nmaps];
 | |
|       memset (seen, '\0', sizeof (seen));
 | |
|       size_t i = 0;
 | |
|       while (1)
 | |
| 	{
 | |
| 	  ++seen[i];
 | |
| 	  struct link_map *thisp = maps[i];
 | |
| 
 | |
| 	  /* Find the last object in the list for which the current one is
 | |
| 	     a dependency and move the current object behind the object
 | |
| 	     with the dependency.  */
 | |
| 	  size_t k = nmaps - 1;
 | |
| 	  while (k > i)
 | |
| 	    {
 | |
| 	      struct link_map **runp = maps[k]->l_initfini;
 | |
| 	      if (runp != NULL)
 | |
| 		/* Look through the dependencies of the object.  */
 | |
| 		while (*runp != NULL)
 | |
| 		  if (__glibc_unlikely (*runp++ == thisp))
 | |
| 		    {
 | |
| 		      /* Move the current object to the back past the last
 | |
| 			 object with it as the dependency.  */
 | |
| 		      memmove (&maps[i], &maps[i + 1],
 | |
| 			       (k - i) * sizeof (maps[0]));
 | |
| 		      maps[k] = thisp;
 | |
| 
 | |
| 		      if (seen[i + 1] > nmaps - i)
 | |
| 			{
 | |
| 			  ++i;
 | |
| 			  goto next_clear;
 | |
| 			}
 | |
| 
 | |
| 		      uint16_t this_seen = seen[i];
 | |
| 		      memmove (&seen[i], &seen[i + 1],
 | |
| 			       (k - i) * sizeof (seen[0]));
 | |
| 		      seen[k] = this_seen;
 | |
| 
 | |
| 		      goto next;
 | |
| 		    }
 | |
| 
 | |
| 	      --k;
 | |
| 	    }
 | |
| 
 | |
| 	  if (++i == nmaps)
 | |
| 	    break;
 | |
| 	next_clear:
 | |
| 	  memset (&seen[i], 0, (nmaps - i) * sizeof (seen[0]));
 | |
| 	next:;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   int relocation_in_progress = 0;
 | |
| 
 | |
|   for (size_t i = nmaps; i-- > 0; )
 | |
|     {
 | |
|       l = maps[i];
 | |
| 
 | |
|       if (! relocation_in_progress)
 | |
| 	{
 | |
| 	  /* Notify the debugger that relocations are about to happen.  */
 | |
| 	  LIBC_PROBE (reloc_start, 2, args->nsid, r);
 | |
| 	  relocation_in_progress = 1;
 | |
| 	}
 | |
| 
 | |
| #ifdef SHARED
 | |
|       if (__glibc_unlikely (GLRO(dl_profile) != NULL))
 | |
| 	{
 | |
| 	  /* If this here is the shared object which we want to profile
 | |
| 	     make sure the profile is started.  We can find out whether
 | |
| 	     this is necessary or not by observing the `_dl_profile_map'
 | |
| 	     variable.  If it was NULL but is not NULL afterwards we must
 | |
| 	     start the profiling.  */
 | |
| 	  struct link_map *old_profile_map = GL(dl_profile_map);
 | |
| 
 | |
| 	  _dl_relocate_object (l, l->l_scope, reloc_mode | RTLD_LAZY, 1);
 | |
| 
 | |
| 	  if (old_profile_map == NULL && GL(dl_profile_map) != NULL)
 | |
| 	    {
 | |
| 	      /* We must prepare the profiling.  */
 | |
| 	      _dl_start_profile ();
 | |
| 
 | |
| 	      /* Prevent unloading the object.  */
 | |
| 	      GL(dl_profile_map)->l_flags_1 |= DF_1_NODELETE;
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| #endif
 | |
| 	_dl_relocate_object (l, l->l_scope, reloc_mode, 0);
 | |
|     }
 | |
| 
 | |
|   /* If the file is not loaded now as a dependency, add the search
 | |
|      list of the newly loaded object to the scope.  */
 | |
|   bool any_tls = false;
 | |
|   unsigned int first_static_tls = new->l_searchlist.r_nlist;
 | |
|   for (unsigned int i = 0; i < new->l_searchlist.r_nlist; ++i)
 | |
|     {
 | |
|       struct link_map *imap = new->l_searchlist.r_list[i];
 | |
|       int from_scope = 0;
 | |
| 
 | |
|       /* If the initializer has been called already, the object has
 | |
| 	 not been loaded here and now.  */
 | |
|       if (imap->l_init_called && imap->l_type == lt_loaded)
 | |
| 	{
 | |
| 	  struct r_scope_elem **runp = imap->l_scope;
 | |
| 	  size_t cnt = 0;
 | |
| 
 | |
| 	  while (*runp != NULL)
 | |
| 	    {
 | |
| 	      if (*runp == &new->l_searchlist)
 | |
| 		break;
 | |
| 	      ++cnt;
 | |
| 	      ++runp;
 | |
| 	    }
 | |
| 
 | |
| 	  if (*runp != NULL)
 | |
| 	    /* Avoid duplicates.  */
 | |
| 	    continue;
 | |
| 
 | |
| 	  if (__glibc_unlikely (cnt + 1 >= imap->l_scope_max))
 | |
| 	    {
 | |
| 	      /* The 'r_scope' array is too small.  Allocate a new one
 | |
| 		 dynamically.  */
 | |
| 	      size_t new_size;
 | |
| 	      struct r_scope_elem **newp;
 | |
| 
 | |
| #define SCOPE_ELEMS(imap) \
 | |
|   (sizeof (imap->l_scope_mem) / sizeof (imap->l_scope_mem[0]))
 | |
| 
 | |
| 	      if (imap->l_scope != imap->l_scope_mem
 | |
| 		  && imap->l_scope_max < SCOPE_ELEMS (imap))
 | |
| 		{
 | |
| 		  new_size = SCOPE_ELEMS (imap);
 | |
| 		  newp = imap->l_scope_mem;
 | |
| 		}
 | |
| 	      else
 | |
| 		{
 | |
| 		  new_size = imap->l_scope_max * 2;
 | |
| 		  newp = (struct r_scope_elem **)
 | |
| 		    malloc (new_size * sizeof (struct r_scope_elem *));
 | |
| 		  if (newp == NULL)
 | |
| 		    _dl_signal_error (ENOMEM, "dlopen", NULL,
 | |
| 				      N_("cannot create scope list"));
 | |
| 		}
 | |
| 
 | |
| 	      memcpy (newp, imap->l_scope, cnt * sizeof (imap->l_scope[0]));
 | |
| 	      struct r_scope_elem **old = imap->l_scope;
 | |
| 
 | |
| 	      imap->l_scope = newp;
 | |
| 
 | |
| 	      if (old != imap->l_scope_mem)
 | |
| 		_dl_scope_free (old);
 | |
| 
 | |
| 	      imap->l_scope_max = new_size;
 | |
| 	    }
 | |
| 
 | |
| 	  /* First terminate the extended list.  Otherwise a thread
 | |
| 	     might use the new last element and then use the garbage
 | |
| 	     at offset IDX+1.  */
 | |
| 	  imap->l_scope[cnt + 1] = NULL;
 | |
| 	  atomic_write_barrier ();
 | |
| 	  imap->l_scope[cnt] = &new->l_searchlist;
 | |
| 
 | |
| 	  /* Print only new scope information.  */
 | |
| 	  from_scope = cnt;
 | |
| 	}
 | |
|       /* Only add TLS memory if this object is loaded now and
 | |
| 	 therefore is not yet initialized.  */
 | |
|       else if (! imap->l_init_called
 | |
| 	       /* Only if the module defines thread local data.  */
 | |
| 	       && __builtin_expect (imap->l_tls_blocksize > 0, 0))
 | |
| 	{
 | |
| 	  /* Now that we know the object is loaded successfully add
 | |
| 	     modules containing TLS data to the slot info table.  We
 | |
| 	     might have to increase its size.  */
 | |
| 	  _dl_add_to_slotinfo (imap);
 | |
| 
 | |
| 	  if (imap->l_need_tls_init
 | |
| 	      && first_static_tls == new->l_searchlist.r_nlist)
 | |
| 	    first_static_tls = i;
 | |
| 
 | |
| 	  /* We have to bump the generation counter.  */
 | |
| 	  any_tls = true;
 | |
| 	}
 | |
| 
 | |
|       /* Print scope information.  */
 | |
|       if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_SCOPES))
 | |
| 	_dl_show_scope (imap, from_scope);
 | |
|     }
 | |
| 
 | |
|   /* Bump the generation number if necessary.  */
 | |
|   if (any_tls && __builtin_expect (++GL(dl_tls_generation) == 0, 0))
 | |
|     _dl_fatal_printf (N_("\
 | |
| TLS generation counter wrapped!  Please report this."));
 | |
| 
 | |
|   /* We need a second pass for static tls data, because _dl_update_slotinfo
 | |
|      must not be run while calls to _dl_add_to_slotinfo are still pending.  */
 | |
|   for (unsigned int i = first_static_tls; i < new->l_searchlist.r_nlist; ++i)
 | |
|     {
 | |
|       struct link_map *imap = new->l_searchlist.r_list[i];
 | |
| 
 | |
|       if (imap->l_need_tls_init
 | |
| 	  && ! imap->l_init_called
 | |
| 	  && imap->l_tls_blocksize > 0)
 | |
| 	{
 | |
| 	  /* For static TLS we have to allocate the memory here and
 | |
| 	     now, but we can delay updating the DTV.  */
 | |
| 	  imap->l_need_tls_init = 0;
 | |
| #ifdef SHARED
 | |
| 	  /* Update the slot information data for at least the
 | |
| 	     generation of the DSO we are allocating data for.  */
 | |
| 	  _dl_update_slotinfo (imap->l_tls_modid);
 | |
| #endif
 | |
| 
 | |
| 	  GL(dl_init_static_tls) (imap);
 | |
| 	  assert (imap->l_need_tls_init == 0);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   /* Notify the debugger all new objects have been relocated.  */
 | |
|   if (relocation_in_progress)
 | |
|     LIBC_PROBE (reloc_complete, 3, args->nsid, r, new);
 | |
| 
 | |
| #ifndef SHARED
 | |
|   DL_STATIC_INIT (new);
 | |
| #endif
 | |
| 
 | |
|   /* Run the initializer functions of new objects.  */
 | |
|   _dl_init (new, args->argc, args->argv, args->env);
 | |
| 
 | |
|   /* Now we can make the new map available in the global scope.  */
 | |
|   if (mode & RTLD_GLOBAL)
 | |
|     /* Move the object in the global namespace.  */
 | |
|     if (add_to_global (new) != 0)
 | |
|       /* It failed.  */
 | |
|       return;
 | |
| 
 | |
| #ifndef SHARED
 | |
|   /* We must be the static _dl_open in libc.a.  A static program that
 | |
|      has loaded a dynamic object now has competition.  */
 | |
|   __libc_multiple_libcs = 1;
 | |
| #endif
 | |
| 
 | |
|   /* Let the user know about the opencount.  */
 | |
|   if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_FILES))
 | |
|     _dl_debug_printf ("opening file=%s [%lu]; direct_opencount=%u\n\n",
 | |
| 		      new->l_name, new->l_ns, new->l_direct_opencount);
 | |
| }
 | |
| 
 | |
| 
 | |
| void *
 | |
| _dl_open (const char *file, int mode, const void *caller_dlopen, Lmid_t nsid,
 | |
| 	  int argc, char *argv[], char *env[])
 | |
| {
 | |
|   if ((mode & RTLD_BINDING_MASK) == 0)
 | |
|     /* One of the flags must be set.  */
 | |
|     _dl_signal_error (EINVAL, file, NULL, N_("invalid mode for dlopen()"));
 | |
| 
 | |
|   /* Make sure we are alone.  */
 | |
|   __rtld_lock_lock_recursive (GL(dl_load_lock));
 | |
| 
 | |
|   if (__glibc_unlikely (nsid == LM_ID_NEWLM))
 | |
|     {
 | |
|       /* Find a new namespace.  */
 | |
|       for (nsid = 1; DL_NNS > 1 && nsid < GL(dl_nns); ++nsid)
 | |
| 	if (GL(dl_ns)[nsid]._ns_loaded == NULL)
 | |
| 	  break;
 | |
| 
 | |
|       if (__glibc_unlikely (nsid == DL_NNS))
 | |
| 	{
 | |
| 	  /* No more namespace available.  */
 | |
| 	  __rtld_lock_unlock_recursive (GL(dl_load_lock));
 | |
| 
 | |
| 	  _dl_signal_error (EINVAL, file, NULL, N_("\
 | |
| no more namespaces available for dlmopen()"));
 | |
| 	}
 | |
|       else if (nsid == GL(dl_nns))
 | |
| 	{
 | |
| 	  __rtld_lock_initialize (GL(dl_ns)[nsid]._ns_unique_sym_table.lock);
 | |
| 	  ++GL(dl_nns);
 | |
| 	}
 | |
| 
 | |
|       _dl_debug_initialize (0, nsid)->r_state = RT_CONSISTENT;
 | |
|     }
 | |
|   /* Never allow loading a DSO in a namespace which is empty.  Such
 | |
|      direct placements is only causing problems.  Also don't allow
 | |
|      loading into a namespace used for auditing.  */
 | |
|   else if (__glibc_unlikely (nsid != LM_ID_BASE && nsid != __LM_ID_CALLER)
 | |
| 	   && (__glibc_unlikely (nsid < 0 || nsid >= GL(dl_nns))
 | |
| 	       /* This prevents the [NSID] index expressions from being
 | |
| 		  evaluated, so the compiler won't think that we are
 | |
| 		  accessing an invalid index here in the !SHARED case where
 | |
| 		  DL_NNS is 1 and so any NSID != 0 is invalid.  */
 | |
| 	       || DL_NNS == 1
 | |
| 	       || GL(dl_ns)[nsid]._ns_nloaded == 0
 | |
| 	       || GL(dl_ns)[nsid]._ns_loaded->l_auditing))
 | |
|     _dl_signal_error (EINVAL, file, NULL,
 | |
| 		      N_("invalid target namespace in dlmopen()"));
 | |
| 
 | |
|   struct dl_open_args args;
 | |
|   args.file = file;
 | |
|   args.mode = mode;
 | |
|   args.caller_dlopen = caller_dlopen;
 | |
|   args.caller_dl_open = RETURN_ADDRESS (0);
 | |
|   args.map = NULL;
 | |
|   args.nsid = nsid;
 | |
|   args.argc = argc;
 | |
|   args.argv = argv;
 | |
|   args.env = env;
 | |
| 
 | |
|   struct dl_exception exception;
 | |
|   int errcode = _dl_catch_exception (&exception, dl_open_worker, &args);
 | |
| 
 | |
| #if defined USE_LDCONFIG && !defined MAP_COPY
 | |
|   /* We must unmap the cache file.  */
 | |
|   _dl_unload_cache ();
 | |
| #endif
 | |
| 
 | |
|   /* See if an error occurred during loading.  */
 | |
|   if (__glibc_unlikely (exception.errstring != NULL))
 | |
|     {
 | |
|       /* Remove the object from memory.  It may be in an inconsistent
 | |
| 	 state if relocation failed, for example.  */
 | |
|       if (args.map)
 | |
| 	{
 | |
| 	  /* Maybe some of the modules which were loaded use TLS.
 | |
| 	     Since it will be removed in the following _dl_close call
 | |
| 	     we have to mark the dtv array as having gaps to fill the
 | |
| 	     holes.  This is a pessimistic assumption which won't hurt
 | |
| 	     if not true.  There is no need to do this when we are
 | |
| 	     loading the auditing DSOs since TLS has not yet been set
 | |
| 	     up.  */
 | |
| 	  if ((mode & __RTLD_AUDIT) == 0)
 | |
| 	    GL(dl_tls_dtv_gaps) = true;
 | |
| 
 | |
| 	  _dl_close_worker (args.map, true);
 | |
| 	}
 | |
| 
 | |
|       assert (_dl_debug_initialize (0, args.nsid)->r_state == RT_CONSISTENT);
 | |
| 
 | |
|       /* Release the lock.  */
 | |
|       __rtld_lock_unlock_recursive (GL(dl_load_lock));
 | |
| 
 | |
|       /* Reraise the error.  */
 | |
|       _dl_signal_exception (errcode, &exception, NULL);
 | |
|     }
 | |
| 
 | |
|   assert (_dl_debug_initialize (0, args.nsid)->r_state == RT_CONSISTENT);
 | |
| 
 | |
|   /* Release the lock.  */
 | |
|   __rtld_lock_unlock_recursive (GL(dl_load_lock));
 | |
| 
 | |
|   return args.map;
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| _dl_show_scope (struct link_map *l, int from)
 | |
| {
 | |
|   _dl_debug_printf ("object=%s [%lu]\n",
 | |
| 		    DSO_FILENAME (l->l_name), l->l_ns);
 | |
|   if (l->l_scope != NULL)
 | |
|     for (int scope_cnt = from; l->l_scope[scope_cnt] != NULL; ++scope_cnt)
 | |
|       {
 | |
| 	_dl_debug_printf (" scope %u:", scope_cnt);
 | |
| 
 | |
| 	for (unsigned int cnt = 0; cnt < l->l_scope[scope_cnt]->r_nlist; ++cnt)
 | |
| 	  if (*l->l_scope[scope_cnt]->r_list[cnt]->l_name)
 | |
| 	    _dl_debug_printf_c (" %s",
 | |
| 				l->l_scope[scope_cnt]->r_list[cnt]->l_name);
 | |
| 	  else
 | |
| 	    _dl_debug_printf_c (" %s", RTLD_PROGNAME);
 | |
| 
 | |
| 	_dl_debug_printf_c ("\n");
 | |
|       }
 | |
|   else
 | |
|     _dl_debug_printf (" no scope\n");
 | |
|   _dl_debug_printf ("\n");
 | |
| }
 |