mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-30 10:45:40 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			455 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			455 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Copyright (C) 1997-2014 Free Software Foundation, Inc.
 | |
|    This file is part of the GNU C Library.
 | |
| 
 | |
|    The GNU C Library is free software; you can redistribute it and/or
 | |
|    modify it under the terms of the GNU Lesser General Public
 | |
|    License as published by the Free Software Foundation; either
 | |
|    version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|    The GNU C Library is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    Lesser General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Lesser General Public
 | |
|    License along with the GNU C Library; if not, see
 | |
|    <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| /*
 | |
|  *	ISO C99 Standard: 7.22 Type-generic math	<tgmath.h>
 | |
|  */
 | |
| 
 | |
| #ifndef _TGMATH_H
 | |
| #define _TGMATH_H	1
 | |
| 
 | |
| /* Include the needed headers.  */
 | |
| #include <math.h>
 | |
| #include <complex.h>
 | |
| 
 | |
| 
 | |
| /* Since `complex' is currently not really implemented in most C compilers
 | |
|    and if it is implemented, the implementations differ.  This makes it
 | |
|    quite difficult to write a generic implementation of this header.  We
 | |
|    do not try this for now and instead concentrate only on GNU CC.  Once
 | |
|    we have more information support for other compilers might follow.  */
 | |
| 
 | |
| #if __GNUC_PREREQ (2, 7)
 | |
| 
 | |
| # ifdef __NO_LONG_DOUBLE_MATH
 | |
| #  define __tgml(fct) fct
 | |
| # else
 | |
| #  define __tgml(fct) fct ## l
 | |
| # endif
 | |
| 
 | |
| /* This is ugly but unless gcc gets appropriate builtins we have to do
 | |
|    something like this.  Don't ask how it works.  */
 | |
| 
 | |
| /* 1 if 'type' is a floating type, 0 if 'type' is an integer type.
 | |
|    Allows for _Bool.  Expands to an integer constant expression.  */
 | |
| # if __GNUC_PREREQ (3, 1)
 | |
| #  define __floating_type(type) \
 | |
|   (__builtin_classify_type ((type) 0) == 8 \
 | |
|    || (__builtin_classify_type ((type) 0) == 9 \
 | |
|        && __builtin_classify_type (__real__ ((type) 0)) == 8))
 | |
| # else
 | |
| #  define __floating_type(type) (((type) 0.25) && ((type) 0.25 - 1))
 | |
| # endif
 | |
| 
 | |
| /* The tgmath real type for T, where E is 0 if T is an integer type and
 | |
|    1 for a floating type.  */
 | |
| # define __tgmath_real_type_sub(T, E) \
 | |
|   __typeof__ (*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0	      \
 | |
| 		  : (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0))
 | |
| 
 | |
| /* The tgmath real type of EXPR.  */
 | |
| # define __tgmath_real_type(expr) \
 | |
|   __tgmath_real_type_sub (__typeof__ ((__typeof__ (expr)) 0),		      \
 | |
| 			  __floating_type (__typeof__ (expr)))
 | |
| 
 | |
| 
 | |
| /* We have two kinds of generic macros: to support functions which are
 | |
|    only defined on real valued parameters and those which are defined
 | |
|    for complex functions as well.  */
 | |
| # define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \
 | |
|      (__extension__ ((sizeof (Val) == sizeof (double)			      \
 | |
| 		      || __builtin_classify_type (Val) != 8)		      \
 | |
| 		     ? (__tgmath_real_type (Val)) Fct (Val)		      \
 | |
| 		     : (sizeof (Val) == sizeof (float))			      \
 | |
| 		     ? (__tgmath_real_type (Val)) Fct##f (Val)		      \
 | |
| 		     : (__tgmath_real_type (Val)) __tgml(Fct) (Val)))
 | |
| 
 | |
| # define __TGMATH_UNARY_REAL_RET_ONLY(Val, RetType, Fct) \
 | |
|      (__extension__ ((sizeof (Val) == sizeof (double)			      \
 | |
| 		      || __builtin_classify_type (Val) != 8)		      \
 | |
| 		     ? (RetType) Fct (Val)				      \
 | |
| 		     : (sizeof (Val) == sizeof (float))			      \
 | |
| 		     ? (RetType) Fct##f (Val)				      \
 | |
| 		     : (RetType) __tgml(Fct) (Val)))
 | |
| 
 | |
| # define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
 | |
|      (__extension__ ((sizeof (Val1) == sizeof (double)			      \
 | |
| 		      || __builtin_classify_type (Val1) != 8)		      \
 | |
| 		     ? (__tgmath_real_type (Val1)) Fct (Val1, Val2)	      \
 | |
| 		     : (sizeof (Val1) == sizeof (float))		      \
 | |
| 		     ? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2)	      \
 | |
| 		     : (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2)))
 | |
| 
 | |
| # define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
 | |
|      (__extension__ (((sizeof (Val1) > sizeof (double)			      \
 | |
| 		       || sizeof (Val2) > sizeof (double))		      \
 | |
| 		      && __builtin_classify_type ((Val1) + (Val2)) == 8)      \
 | |
| 		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0))	      \
 | |
| 		       __tgml(Fct) (Val1, Val2)				      \
 | |
| 		     : (sizeof (Val1) == sizeof (double)		      \
 | |
| 			|| sizeof (Val2) == sizeof (double)		      \
 | |
| 			|| __builtin_classify_type (Val1) != 8		      \
 | |
| 			|| __builtin_classify_type (Val2) != 8)		      \
 | |
| 		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0))	      \
 | |
| 		       Fct (Val1, Val2)					      \
 | |
| 		     : (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0))	      \
 | |
| 		       Fct##f (Val1, Val2)))
 | |
| 
 | |
| # define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
 | |
|      (__extension__ (((sizeof (Val1) > sizeof (double)			      \
 | |
| 		       || sizeof (Val2) > sizeof (double))		      \
 | |
| 		      && __builtin_classify_type ((Val1) + (Val2)) == 8)      \
 | |
| 		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0))	      \
 | |
| 		       __tgml(Fct) (Val1, Val2, Val3)			      \
 | |
| 		     : (sizeof (Val1) == sizeof (double)		      \
 | |
| 			|| sizeof (Val2) == sizeof (double)		      \
 | |
| 			|| __builtin_classify_type (Val1) != 8		      \
 | |
| 			|| __builtin_classify_type (Val2) != 8)		      \
 | |
| 		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0))	      \
 | |
| 		       Fct (Val1, Val2, Val3)				      \
 | |
| 		     : (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0))	      \
 | |
| 		       Fct##f (Val1, Val2, Val3)))
 | |
| 
 | |
| # define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
 | |
|      (__extension__ (((sizeof (Val1) > sizeof (double)			      \
 | |
| 		       || sizeof (Val2) > sizeof (double)		      \
 | |
| 		       || sizeof (Val3) > sizeof (double))		      \
 | |
| 		      && __builtin_classify_type ((Val1) + (Val2) + (Val3))   \
 | |
| 			 == 8)						      \
 | |
| 		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0	      \
 | |
| 				   + (__tgmath_real_type (Val3)) 0))	      \
 | |
| 		       __tgml(Fct) (Val1, Val2, Val3)			      \
 | |
| 		     : (sizeof (Val1) == sizeof (double)		      \
 | |
| 			|| sizeof (Val2) == sizeof (double)		      \
 | |
| 			|| sizeof (Val3) == sizeof (double)		      \
 | |
| 			|| __builtin_classify_type (Val1) != 8		      \
 | |
| 			|| __builtin_classify_type (Val2) != 8		      \
 | |
| 			|| __builtin_classify_type (Val3) != 8)		      \
 | |
| 		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0	      \
 | |
| 				   + (__tgmath_real_type (Val3)) 0))	      \
 | |
| 		       Fct (Val1, Val2, Val3)				      \
 | |
| 		     : (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0	      \
 | |
| 				   + (__tgmath_real_type (Val3)) 0))	      \
 | |
| 		       Fct##f (Val1, Val2, Val3)))
 | |
| 
 | |
| /* XXX This definition has to be changed as soon as the compiler understands
 | |
|    the imaginary keyword.  */
 | |
| # define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
 | |
|      (__extension__ ((sizeof (__real__ (Val)) == sizeof (double)	      \
 | |
| 		      || __builtin_classify_type (__real__ (Val)) != 8)	      \
 | |
| 		     ? ((sizeof (__real__ (Val)) == sizeof (Val))	      \
 | |
| 			? (__tgmath_real_type (Val)) Fct (Val)		      \
 | |
| 			: (__tgmath_real_type (Val)) Cfct (Val))	      \
 | |
| 		     : (sizeof (__real__ (Val)) == sizeof (float))	      \
 | |
| 		     ? ((sizeof (__real__ (Val)) == sizeof (Val))	      \
 | |
| 			? (__tgmath_real_type (Val)) Fct##f (Val)	      \
 | |
| 			: (__tgmath_real_type (Val)) Cfct##f (Val))	      \
 | |
| 		     : ((sizeof (__real__ (Val)) == sizeof (Val))	      \
 | |
| 			? (__tgmath_real_type (Val)) __tgml(Fct) (Val)	      \
 | |
| 			: (__tgmath_real_type (Val)) __tgml(Cfct) (Val))))
 | |
| 
 | |
| # define __TGMATH_UNARY_IMAG(Val, Cfct) \
 | |
|      (__extension__ ((sizeof (__real__ (Val)) == sizeof (double)	      \
 | |
| 		      || __builtin_classify_type (__real__ (Val)) != 8)	      \
 | |
| 		     ? (__typeof__ ((__tgmath_real_type (Val)) 0	      \
 | |
| 				    + _Complex_I)) Cfct (Val)		      \
 | |
| 		     : (sizeof (__real__ (Val)) == sizeof (float))	      \
 | |
| 		     ? (__typeof__ ((__tgmath_real_type (Val)) 0	      \
 | |
| 				    + _Complex_I)) Cfct##f (Val)	      \
 | |
| 		     : (__typeof__ ((__tgmath_real_type (Val)) 0	      \
 | |
| 				    + _Complex_I)) __tgml(Cfct) (Val)))
 | |
| 
 | |
| /* XXX This definition has to be changed as soon as the compiler understands
 | |
|    the imaginary keyword.  */
 | |
| # define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \
 | |
|      (__extension__ ((sizeof (__real__ (Val)) == sizeof (double)	      \
 | |
| 		      || __builtin_classify_type (__real__ (Val)) != 8)	      \
 | |
| 		     ? ((sizeof (__real__ (Val)) == sizeof (Val))	      \
 | |
| 			? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
 | |
| 			  Fct (Val)					      \
 | |
| 			: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
 | |
| 			  Cfct (Val))					      \
 | |
| 		     : (sizeof (__real__ (Val)) == sizeof (float))	      \
 | |
| 		     ? ((sizeof (__real__ (Val)) == sizeof (Val))	      \
 | |
| 			? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
 | |
| 			  Fct##f (Val)					      \
 | |
| 			: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
 | |
| 			  Cfct##f (Val))				      \
 | |
| 		     : ((sizeof (__real__ (Val)) == sizeof (Val))	      \
 | |
| 			? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
 | |
| 			  __tgml(Fct) (Val)				      \
 | |
| 			: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
 | |
| 			  __tgml(Cfct) (Val))))
 | |
| 
 | |
| /* XXX This definition has to be changed as soon as the compiler understands
 | |
|    the imaginary keyword.  */
 | |
| # define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
 | |
|      (__extension__ (((sizeof (__real__ (Val1)) > sizeof (double)	      \
 | |
| 		       || sizeof (__real__ (Val2)) > sizeof (double))	      \
 | |
| 		      && __builtin_classify_type (__real__ (Val1)	      \
 | |
| 						  + __real__ (Val2)) == 8)    \
 | |
| 		     ? ((sizeof (__real__ (Val1)) == sizeof (Val1)	      \
 | |
| 			 && sizeof (__real__ (Val2)) == sizeof (Val2))	      \
 | |
| 			? (__typeof ((__tgmath_real_type (Val1)) 0	      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0))	      \
 | |
| 			  __tgml(Fct) (Val1, Val2)			      \
 | |
| 			: (__typeof ((__tgmath_real_type (Val1)) 0	      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0))	      \
 | |
| 			  __tgml(Cfct) (Val1, Val2))			      \
 | |
| 		     : (sizeof (__real__ (Val1)) == sizeof (double)	      \
 | |
| 			|| sizeof (__real__ (Val2)) == sizeof (double)	      \
 | |
| 			|| __builtin_classify_type (__real__ (Val1)) != 8     \
 | |
| 			|| __builtin_classify_type (__real__ (Val2)) != 8)    \
 | |
| 		     ? ((sizeof (__real__ (Val1)) == sizeof (Val1)	      \
 | |
| 			 && sizeof (__real__ (Val2)) == sizeof (Val2))	      \
 | |
| 			? (__typeof ((__tgmath_real_type (Val1)) 0	      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0))	      \
 | |
| 			  Fct (Val1, Val2)				      \
 | |
| 			: (__typeof ((__tgmath_real_type (Val1)) 0	      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0))	      \
 | |
| 			  Cfct (Val1, Val2))				      \
 | |
| 		     : ((sizeof (__real__ (Val1)) == sizeof (Val1)	      \
 | |
| 			 && sizeof (__real__ (Val2)) == sizeof (Val2))	      \
 | |
| 			? (__typeof ((__tgmath_real_type (Val1)) 0	      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0))	      \
 | |
| 			  Fct##f (Val1, Val2)				      \
 | |
| 			: (__typeof ((__tgmath_real_type (Val1)) 0	      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0))	      \
 | |
| 			  Cfct##f (Val1, Val2))))
 | |
| #else
 | |
| # error "Unsupported compiler; you cannot use <tgmath.h>"
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Unary functions defined for real and complex values.  */
 | |
| 
 | |
| 
 | |
| /* Trigonometric functions.  */
 | |
| 
 | |
| /* Arc cosine of X.  */
 | |
| #define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos)
 | |
| /* Arc sine of X.  */
 | |
| #define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin)
 | |
| /* Arc tangent of X.  */
 | |
| #define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan)
 | |
| /* Arc tangent of Y/X.  */
 | |
| #define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2)
 | |
| 
 | |
| /* Cosine of X.  */
 | |
| #define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos)
 | |
| /* Sine of X.  */
 | |
| #define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin)
 | |
| /* Tangent of X.  */
 | |
| #define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)
 | |
| 
 | |
| 
 | |
| /* Hyperbolic functions.  */
 | |
| 
 | |
| /* Hyperbolic arc cosine of X.  */
 | |
| #define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh)
 | |
| /* Hyperbolic arc sine of X.  */
 | |
| #define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh)
 | |
| /* Hyperbolic arc tangent of X.  */
 | |
| #define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)
 | |
| 
 | |
| /* Hyperbolic cosine of X.  */
 | |
| #define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh)
 | |
| /* Hyperbolic sine of X.  */
 | |
| #define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh)
 | |
| /* Hyperbolic tangent of X.  */
 | |
| #define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)
 | |
| 
 | |
| 
 | |
| /* Exponential and logarithmic functions.  */
 | |
| 
 | |
| /* Exponential function of X.  */
 | |
| #define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)
 | |
| 
 | |
| /* Break VALUE into a normalized fraction and an integral power of 2.  */
 | |
| #define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)
 | |
| 
 | |
| /* X times (two to the EXP power).  */
 | |
| #define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)
 | |
| 
 | |
| /* Natural logarithm of X.  */
 | |
| #define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)
 | |
| 
 | |
| /* Base-ten logarithm of X.  */
 | |
| #ifdef __USE_GNU
 | |
| # define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, __clog10)
 | |
| #else
 | |
| # define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10)
 | |
| #endif
 | |
| 
 | |
| /* Return exp(X) - 1.  */
 | |
| #define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)
 | |
| 
 | |
| /* Return log(1 + X).  */
 | |
| #define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)
 | |
| 
 | |
| /* Return the base 2 signed integral exponent of X.  */
 | |
| #define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)
 | |
| 
 | |
| /* Compute base-2 exponential of X.  */
 | |
| #define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)
 | |
| 
 | |
| /* Compute base-2 logarithm of X.  */
 | |
| #define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)
 | |
| 
 | |
| 
 | |
| /* Power functions.  */
 | |
| 
 | |
| /* Return X to the Y power.  */
 | |
| #define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)
 | |
| 
 | |
| /* Return the square root of X.  */
 | |
| #define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)
 | |
| 
 | |
| /* Return `sqrt(X*X + Y*Y)'.  */
 | |
| #define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)
 | |
| 
 | |
| /* Return the cube root of X.  */
 | |
| #define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)
 | |
| 
 | |
| 
 | |
| /* Nearest integer, absolute value, and remainder functions.  */
 | |
| 
 | |
| /* Smallest integral value not less than X.  */
 | |
| #define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)
 | |
| 
 | |
| /* Absolute value of X.  */
 | |
| #define fabs(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, fabs, cabs)
 | |
| 
 | |
| /* Largest integer not greater than X.  */
 | |
| #define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)
 | |
| 
 | |
| /* Floating-point modulo remainder of X/Y.  */
 | |
| #define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)
 | |
| 
 | |
| /* Round X to integral valuein floating-point format using current
 | |
|    rounding direction, but do not raise inexact exception.  */
 | |
| #define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)
 | |
| 
 | |
| /* Round X to nearest integral value, rounding halfway cases away from
 | |
|    zero.  */
 | |
| #define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)
 | |
| 
 | |
| /* Round X to the integral value in floating-point format nearest but
 | |
|    not larger in magnitude.  */
 | |
| #define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)
 | |
| 
 | |
| /* Compute remainder of X and Y and put in *QUO a value with sign of x/y
 | |
|    and magnitude congruent `mod 2^n' to the magnitude of the integral
 | |
|    quotient x/y, with n >= 3.  */
 | |
| #define remquo(Val1, Val2, Val3) \
 | |
|      __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)
 | |
| 
 | |
| /* Round X to nearest integral value according to current rounding
 | |
|    direction.  */
 | |
| #define lrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long int, lrint)
 | |
| #define llrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long long int, llrint)
 | |
| 
 | |
| /* Round X to nearest integral value, rounding halfway cases away from
 | |
|    zero.  */
 | |
| #define lround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long int, lround)
 | |
| #define llround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long long int, llround)
 | |
| 
 | |
| 
 | |
| /* Return X with its signed changed to Y's.  */
 | |
| #define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)
 | |
| 
 | |
| /* Error and gamma functions.  */
 | |
| #define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf)
 | |
| #define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc)
 | |
| #define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma)
 | |
| #define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)
 | |
| 
 | |
| 
 | |
| /* Return the integer nearest X in the direction of the
 | |
|    prevailing rounding mode.  */
 | |
| #define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)
 | |
| 
 | |
| /* Return X + epsilon if X < Y, X - epsilon if X > Y.  */
 | |
| #define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter)
 | |
| #define nexttoward(Val1, Val2) \
 | |
|      __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, nexttoward)
 | |
| 
 | |
| /* Return the remainder of integer divison X / Y with infinite precision.  */
 | |
| #define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)
 | |
| 
 | |
| /* Return X times (2 to the Nth power).  */
 | |
| #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED
 | |
| # define scalb(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, scalb)
 | |
| #endif
 | |
| 
 | |
| /* Return X times (2 to the Nth power).  */
 | |
| #define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)
 | |
| 
 | |
| /* Return X times (2 to the Nth power).  */
 | |
| #define scalbln(Val1, Val2) \
 | |
|      __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)
 | |
| 
 | |
| /* Return the binary exponent of X, which must be nonzero.  */
 | |
| #define ilogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, int, ilogb)
 | |
| 
 | |
| 
 | |
| /* Return positive difference between X and Y.  */
 | |
| #define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)
 | |
| 
 | |
| /* Return maximum numeric value from X and Y.  */
 | |
| #define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)
 | |
| 
 | |
| /* Return minimum numeric value from X and Y.  */
 | |
| #define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)
 | |
| 
 | |
| 
 | |
| /* Multiply-add function computed as a ternary operation.  */
 | |
| #define fma(Val1, Val2, Val3) \
 | |
|      __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)
 | |
| 
 | |
| 
 | |
| /* Absolute value, conjugates, and projection.  */
 | |
| 
 | |
| /* Argument value of Z.  */
 | |
| #define carg(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, carg, carg)
 | |
| 
 | |
| /* Complex conjugate of Z.  */
 | |
| #define conj(Val) __TGMATH_UNARY_IMAG (Val, conj)
 | |
| 
 | |
| /* Projection of Z onto the Riemann sphere.  */
 | |
| #define cproj(Val) __TGMATH_UNARY_IMAG (Val, cproj)
 | |
| 
 | |
| 
 | |
| /* Decomposing complex values.  */
 | |
| 
 | |
| /* Imaginary part of Z.  */
 | |
| #define cimag(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, cimag, cimag)
 | |
| 
 | |
| /* Real part of Z.  */
 | |
| #define creal(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, creal, creal)
 | |
| 
 | |
| #endif /* tgmath.h */
 |