mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-27 12:15:39 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			216 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			216 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Machine-dependent software floating-point definitions.
 | |
|    Sparc userland (_Q_*) version.
 | |
|    Copyright (C) 1997-2025 Free Software Foundation, Inc.
 | |
|    This file is part of the GNU C Library.
 | |
| 
 | |
|    The GNU C Library is free software; you can redistribute it and/or
 | |
|    modify it under the terms of the GNU Lesser General Public
 | |
|    License as published by the Free Software Foundation; either
 | |
|    version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|    The GNU C Library is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    Lesser General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Lesser General Public
 | |
|    License along with the GNU C Library; if not, see
 | |
|    <https://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include <fpu_control.h>
 | |
| #include <stdlib.h>
 | |
| 
 | |
| #define _FP_W_TYPE_SIZE		32
 | |
| #define _FP_W_TYPE		unsigned long
 | |
| #define _FP_WS_TYPE		signed long
 | |
| #define _FP_I_TYPE		long
 | |
| 
 | |
| #define _FP_MUL_MEAT_S(R,X,Y)				\
 | |
|   _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm)
 | |
| #define _FP_MUL_MEAT_D(R,X,Y)				\
 | |
|   _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm)
 | |
| #define _FP_MUL_MEAT_Q(R,X,Y)				\
 | |
|   _FP_MUL_MEAT_4_wide(_FP_WFRACBITS_Q,R,X,Y,umul_ppmm)
 | |
| 
 | |
| #define _FP_DIV_MEAT_S(R,X,Y)	_FP_DIV_MEAT_1_udiv(S,R,X,Y)
 | |
| #define _FP_DIV_MEAT_D(R,X,Y)	_FP_DIV_MEAT_2_udiv(D,R,X,Y)
 | |
| #define _FP_DIV_MEAT_Q(R,X,Y)	_FP_DIV_MEAT_4_udiv(Q,R,X,Y)
 | |
| 
 | |
| #define _FP_NANFRAC_S		((_FP_QNANBIT_S << 1) - 1)
 | |
| #define _FP_NANFRAC_D		((_FP_QNANBIT_D << 1) - 1), -1
 | |
| #define _FP_NANFRAC_Q		((_FP_QNANBIT_Q << 1) - 1), -1, -1, -1
 | |
| #define _FP_NANSIGN_S		0
 | |
| #define _FP_NANSIGN_D		0
 | |
| #define _FP_NANSIGN_Q		0
 | |
| 
 | |
| #define _FP_KEEPNANFRACP 1
 | |
| #define _FP_QNANNEGATEDP 0
 | |
| 
 | |
| /* If one NaN is signaling and the other is not,
 | |
|  * we choose that one, otherwise we choose X.
 | |
|  */
 | |
| /* For _Qp_* and _Q_*, this should prefer X, for
 | |
|  * CPU instruction emulation this should prefer Y.
 | |
|  * (see SPAMv9 B.2.2 section).
 | |
|  */
 | |
| #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP)			\
 | |
|   do {								\
 | |
|     if ((_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)		\
 | |
| 	&& !(_FP_FRAC_HIGH_RAW_##fs(Y) & _FP_QNANBIT_##fs))	\
 | |
|       {								\
 | |
| 	R##_s = Y##_s;						\
 | |
| 	_FP_FRAC_COPY_##wc(R,Y);				\
 | |
|       }								\
 | |
|     else							\
 | |
|       {								\
 | |
| 	R##_s = X##_s;						\
 | |
| 	_FP_FRAC_COPY_##wc(R,X);				\
 | |
|       }								\
 | |
|     R##_c = FP_CLS_NAN;						\
 | |
|   } while (0)
 | |
| 
 | |
| /* Some assembly to speed things up. */
 | |
| #define __FP_FRAC_ADD_3(r2,r1,r0,x2,x1,x0,y2,y1,y0)			\
 | |
|   __asm__ ("addcc %r7,%8,%2\n\
 | |
| 	    addxcc %r5,%6,%1\n\
 | |
| 	    addx %r3,%4,%0"						\
 | |
| 	   : "=r" ((USItype)(r2)),					\
 | |
| 	     "=&r" ((USItype)(r1)),					\
 | |
| 	     "=&r" ((USItype)(r0))					\
 | |
| 	   : "%rJ" ((USItype)(x2)),					\
 | |
| 	     "rI" ((USItype)(y2)),					\
 | |
| 	     "%rJ" ((USItype)(x1)),					\
 | |
| 	     "rI" ((USItype)(y1)),					\
 | |
| 	     "%rJ" ((USItype)(x0)),					\
 | |
| 	     "rI" ((USItype)(y0))					\
 | |
| 	   : "cc")
 | |
| 
 | |
| #define __FP_FRAC_SUB_3(r2,r1,r0,x2,x1,x0,y2,y1,y0)			\
 | |
|   __asm__ ("subcc %r7,%8,%2\n\
 | |
| 	    subxcc %r5,%6,%1\n\
 | |
| 	    subx %r3,%4,%0"						\
 | |
| 	   : "=r" ((USItype)(r2)),					\
 | |
| 	     "=&r" ((USItype)(r1)),					\
 | |
| 	     "=&r" ((USItype)(r0))					\
 | |
| 	   : "%rJ" ((USItype)(x2)),					\
 | |
| 	     "rI" ((USItype)(y2)),					\
 | |
| 	     "%rJ" ((USItype)(x1)),					\
 | |
| 	     "rI" ((USItype)(y1)),					\
 | |
| 	     "%rJ" ((USItype)(x0)),					\
 | |
| 	     "rI" ((USItype)(y0))					\
 | |
| 	   : "cc")
 | |
| 
 | |
| #define __FP_FRAC_ADD_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0)		\
 | |
|   do {									\
 | |
|     /* We need to fool gcc,  as we need to pass more than 10		\
 | |
|        input/outputs.  */						\
 | |
|     register USItype _t1 __asm__ ("g1"), _t2 __asm__ ("g2");		\
 | |
|     __asm__ __volatile__ ("\
 | |
| 	    addcc %r8,%9,%1\n\
 | |
| 	    addxcc %r6,%7,%0\n\
 | |
| 	    addxcc %r4,%5,%%g2\n\
 | |
| 	    addx %r2,%3,%%g1"						\
 | |
| 	   : "=&r" ((USItype)(r1)),					\
 | |
| 	     "=&r" ((USItype)(r0))					\
 | |
| 	   : "%rJ" ((USItype)(x3)),					\
 | |
| 	     "rI" ((USItype)(y3)),					\
 | |
| 	     "%rJ" ((USItype)(x2)),					\
 | |
| 	     "rI" ((USItype)(y2)),					\
 | |
| 	     "%rJ" ((USItype)(x1)),					\
 | |
| 	     "rI" ((USItype)(y1)),					\
 | |
| 	     "%rJ" ((USItype)(x0)),					\
 | |
| 	     "rI" ((USItype)(y0))					\
 | |
| 	   : "cc", "g1", "g2");						\
 | |
|     __asm__ __volatile__ ("" : "=r" (_t1), "=r" (_t2));			\
 | |
|     r3 = _t1; r2 = _t2;							\
 | |
|   } while (0)
 | |
| 
 | |
| #define __FP_FRAC_SUB_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0)		\
 | |
|   do {									\
 | |
|     /* We need to fool gcc,  as we need to pass more than 10		\
 | |
|        input/outputs.  */						\
 | |
|     register USItype _t1 __asm__ ("g1"), _t2 __asm__ ("g2");		\
 | |
|     __asm__ __volatile__ ("\
 | |
| 	    subcc %r8,%9,%1\n\
 | |
| 	    subxcc %r6,%7,%0\n\
 | |
| 	    subxcc %r4,%5,%%g2\n\
 | |
| 	    subx %r2,%3,%%g1"						\
 | |
| 	   : "=&r" ((USItype)(r1)),					\
 | |
| 	     "=&r" ((USItype)(r0))					\
 | |
| 	   : "%rJ" ((USItype)(x3)),					\
 | |
| 	     "rI" ((USItype)(y3)),					\
 | |
| 	     "%rJ" ((USItype)(x2)),					\
 | |
| 	     "rI" ((USItype)(y2)),					\
 | |
| 	     "%rJ" ((USItype)(x1)),					\
 | |
| 	     "rI" ((USItype)(y1)),					\
 | |
| 	     "%rJ" ((USItype)(x0)),					\
 | |
| 	     "rI" ((USItype)(y0))					\
 | |
| 	   : "cc", "g1", "g2");						\
 | |
|     __asm__ __volatile__ ("" : "=r" (_t1), "=r" (_t2));			\
 | |
|     r3 = _t1; r2 = _t2;							\
 | |
|   } while (0)
 | |
| 
 | |
| #define __FP_FRAC_DEC_3(x2,x1,x0,y2,y1,y0) __FP_FRAC_SUB_3(x2,x1,x0,x2,x1,x0,y2,y1,y0)
 | |
| 
 | |
| #define __FP_FRAC_DEC_4(x3,x2,x1,x0,y3,y2,y1,y0) __FP_FRAC_SUB_4(x3,x2,x1,x0,x3,x2,x1,x0,y3,y2,y1,y0)
 | |
| 
 | |
| #define __FP_FRAC_ADDI_4(x3,x2,x1,x0,i)					\
 | |
|   __asm__ ("addcc %3,%4,%3\n\
 | |
| 	    addxcc %2,%%g0,%2\n\
 | |
| 	    addxcc %1,%%g0,%1\n\
 | |
| 	    addx %0,%%g0,%0"						\
 | |
| 	   : "=&r" ((USItype)(x3)),					\
 | |
| 	     "=&r" ((USItype)(x2)),					\
 | |
| 	     "=&r" ((USItype)(x1)),					\
 | |
| 	     "=&r" ((USItype)(x0))					\
 | |
| 	   : "rI" ((USItype)(i)),					\
 | |
| 	     "0" ((USItype)(x3)),					\
 | |
| 	     "1" ((USItype)(x2)),					\
 | |
| 	     "2" ((USItype)(x1)),					\
 | |
| 	     "3" ((USItype)(x0))					\
 | |
| 	   : "cc")
 | |
| 
 | |
| /* Obtain the current rounding mode. */
 | |
| #ifndef FP_ROUNDMODE
 | |
| #define FP_ROUNDMODE	((_fcw >> 30) & 0x3)
 | |
| #endif
 | |
| 
 | |
| /* Exception flags. */
 | |
| #define FP_EX_INVALID		(1 << 4)
 | |
| #define FP_EX_OVERFLOW		(1 << 3)
 | |
| #define FP_EX_UNDERFLOW		(1 << 2)
 | |
| #define FP_EX_DIVZERO		(1 << 1)
 | |
| #define FP_EX_INEXACT		(1 << 0)
 | |
| 
 | |
| #define _FP_TININESS_AFTER_ROUNDING 0
 | |
| 
 | |
| #define _FP_DECL_EX \
 | |
|   fpu_control_t _fcw __attribute__ ((unused)) = (FP_RND_NEAREST << 30)
 | |
| 
 | |
| #define FP_INIT_ROUNDMODE					\
 | |
| do {								\
 | |
|   _FPU_GETCW(_fcw);						\
 | |
| } while (0)
 | |
| 
 | |
| #define FP_TRAPPING_EXCEPTIONS ((_fcw >> 23) & 0x1f)
 | |
| #define FP_INHIBIT_RESULTS ((_fcw >> 23) & _fex)
 | |
| 
 | |
| /* Simulate exceptions using double arithmetics. */
 | |
| extern void ___Q_simulate_exceptions(int exc);
 | |
| 
 | |
| #define FP_HANDLE_EXCEPTIONS					\
 | |
| do {								\
 | |
|   if (!_fex)							\
 | |
|     {								\
 | |
|       /* This is the common case, so we do it inline.		\
 | |
|        * We need to clear cexc bits if any.			\
 | |
|        */							\
 | |
|       extern unsigned long long ___Q_zero;			\
 | |
|       __asm__ __volatile__("ldd [%0], %%f30\n\t"		\
 | |
| 			   "faddd %%f30, %%f30, %%f30"		\
 | |
| 			   : : "r" (&___Q_zero) : "f30");	\
 | |
|     }								\
 | |
|   else								\
 | |
|     ___Q_simulate_exceptions (_fex);			        \
 | |
| } while (0)
 |