mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-11-03 20:53:13 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			430 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			430 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* One way encryption based on SHA256 sum.
 | 
						|
   Copyright (C) 2007-2017 Free Software Foundation, Inc.
 | 
						|
   This file is part of the GNU C Library.
 | 
						|
   Contributed by Ulrich Drepper <drepper@redhat.com>, 2007.
 | 
						|
 | 
						|
   The GNU C Library is free software; you can redistribute it and/or
 | 
						|
   modify it under the terms of the GNU Lesser General Public
 | 
						|
   License as published by the Free Software Foundation; either
 | 
						|
   version 2.1 of the License, or (at your option) any later version.
 | 
						|
 | 
						|
   The GNU C Library is distributed in the hope that it will be useful,
 | 
						|
   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
   Lesser General Public License for more details.
 | 
						|
 | 
						|
   You should have received a copy of the GNU Lesser General Public
 | 
						|
   License along with the GNU C Library; if not, see
 | 
						|
   <http://www.gnu.org/licenses/>.  */
 | 
						|
 | 
						|
#include <assert.h>
 | 
						|
#include <errno.h>
 | 
						|
#include <stdbool.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdint.h>
 | 
						|
#include <sys/param.h>
 | 
						|
 | 
						|
#include "sha256.h"
 | 
						|
#include "crypt-private.h"
 | 
						|
 | 
						|
 | 
						|
#ifdef USE_NSS
 | 
						|
typedef int PRBool;
 | 
						|
# include <hasht.h>
 | 
						|
# include <nsslowhash.h>
 | 
						|
 | 
						|
# define sha256_init_ctx(ctxp, nss_ctxp) \
 | 
						|
  do									      \
 | 
						|
    {									      \
 | 
						|
      if (((nss_ctxp = NSSLOWHASH_NewContext (nss_ictx, HASH_AlgSHA256))      \
 | 
						|
	   == NULL))							      \
 | 
						|
	{								      \
 | 
						|
	  if (nss_ctx != NULL)						      \
 | 
						|
	    NSSLOWHASH_Destroy (nss_ctx);				      \
 | 
						|
	  if (nss_alt_ctx != NULL)					      \
 | 
						|
	    NSSLOWHASH_Destroy (nss_alt_ctx);				      \
 | 
						|
	  return NULL;							      \
 | 
						|
	}								      \
 | 
						|
      NSSLOWHASH_Begin (nss_ctxp);					      \
 | 
						|
    }									      \
 | 
						|
  while (0)
 | 
						|
 | 
						|
# define sha256_process_bytes(buf, len, ctxp, nss_ctxp) \
 | 
						|
  NSSLOWHASH_Update (nss_ctxp, (const unsigned char *) buf, len)
 | 
						|
 | 
						|
# define sha256_finish_ctx(ctxp, nss_ctxp, result) \
 | 
						|
  do									      \
 | 
						|
    {									      \
 | 
						|
      unsigned int ret;							      \
 | 
						|
      NSSLOWHASH_End (nss_ctxp, result, &ret, sizeof (result));		      \
 | 
						|
      assert (ret == sizeof (result));					      \
 | 
						|
      NSSLOWHASH_Destroy (nss_ctxp);					      \
 | 
						|
      nss_ctxp = NULL;							      \
 | 
						|
    }									      \
 | 
						|
  while (0)
 | 
						|
#else
 | 
						|
# define sha256_init_ctx(ctxp, nss_ctxp) \
 | 
						|
  __sha256_init_ctx (ctxp)
 | 
						|
 | 
						|
# define sha256_process_bytes(buf, len, ctxp, nss_ctxp) \
 | 
						|
  __sha256_process_bytes(buf, len, ctxp)
 | 
						|
 | 
						|
# define sha256_finish_ctx(ctxp, nss_ctxp, result) \
 | 
						|
  __sha256_finish_ctx (ctxp, result)
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/* Define our magic string to mark salt for SHA256 "encryption"
 | 
						|
   replacement.  */
 | 
						|
static const char sha256_salt_prefix[] = "$5$";
 | 
						|
 | 
						|
/* Prefix for optional rounds specification.  */
 | 
						|
static const char sha256_rounds_prefix[] = "rounds=";
 | 
						|
 | 
						|
/* Maximum salt string length.  */
 | 
						|
#define SALT_LEN_MAX 16
 | 
						|
/* Default number of rounds if not explicitly specified.  */
 | 
						|
#define ROUNDS_DEFAULT 5000
 | 
						|
/* Minimum number of rounds.  */
 | 
						|
#define ROUNDS_MIN 1000
 | 
						|
/* Maximum number of rounds.  */
 | 
						|
#define ROUNDS_MAX 999999999
 | 
						|
 | 
						|
 | 
						|
/* Prototypes for local functions.  */
 | 
						|
extern char *__sha256_crypt_r (const char *key, const char *salt,
 | 
						|
			       char *buffer, int buflen);
 | 
						|
extern char *__sha256_crypt (const char *key, const char *salt);
 | 
						|
 | 
						|
 | 
						|
char *
 | 
						|
__sha256_crypt_r (const char *key, const char *salt, char *buffer, int buflen)
 | 
						|
{
 | 
						|
  unsigned char alt_result[32]
 | 
						|
    __attribute__ ((__aligned__ (__alignof__ (uint32_t))));
 | 
						|
  unsigned char temp_result[32]
 | 
						|
    __attribute__ ((__aligned__ (__alignof__ (uint32_t))));
 | 
						|
  size_t salt_len;
 | 
						|
  size_t key_len;
 | 
						|
  size_t cnt;
 | 
						|
  char *cp;
 | 
						|
  char *copied_key = NULL;
 | 
						|
  char *copied_salt = NULL;
 | 
						|
  char *p_bytes;
 | 
						|
  char *s_bytes;
 | 
						|
  /* Default number of rounds.  */
 | 
						|
  size_t rounds = ROUNDS_DEFAULT;
 | 
						|
  bool rounds_custom = false;
 | 
						|
  size_t alloca_used = 0;
 | 
						|
  char *free_key = NULL;
 | 
						|
  char *free_pbytes = NULL;
 | 
						|
 | 
						|
  /* Find beginning of salt string.  The prefix should normally always
 | 
						|
     be present.  Just in case it is not.  */
 | 
						|
  if (strncmp (sha256_salt_prefix, salt, sizeof (sha256_salt_prefix) - 1) == 0)
 | 
						|
    /* Skip salt prefix.  */
 | 
						|
    salt += sizeof (sha256_salt_prefix) - 1;
 | 
						|
 | 
						|
  if (strncmp (salt, sha256_rounds_prefix, sizeof (sha256_rounds_prefix) - 1)
 | 
						|
      == 0)
 | 
						|
    {
 | 
						|
      const char *num = salt + sizeof (sha256_rounds_prefix) - 1;
 | 
						|
      char *endp;
 | 
						|
      unsigned long int srounds = strtoul (num, &endp, 10);
 | 
						|
      if (*endp == '$')
 | 
						|
	{
 | 
						|
	  salt = endp + 1;
 | 
						|
	  rounds = MAX (ROUNDS_MIN, MIN (srounds, ROUNDS_MAX));
 | 
						|
	  rounds_custom = true;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
  salt_len = MIN (strcspn (salt, "$"), SALT_LEN_MAX);
 | 
						|
  key_len = strlen (key);
 | 
						|
 | 
						|
  if ((key - (char *) 0) % __alignof__ (uint32_t) != 0)
 | 
						|
    {
 | 
						|
      char *tmp;
 | 
						|
 | 
						|
      if (__libc_use_alloca (alloca_used + key_len + __alignof__ (uint32_t)))
 | 
						|
	tmp = alloca_account (key_len + __alignof__ (uint32_t), alloca_used);
 | 
						|
      else
 | 
						|
	{
 | 
						|
	  free_key = tmp = (char *) malloc (key_len + __alignof__ (uint32_t));
 | 
						|
	  if (tmp == NULL)
 | 
						|
	    return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
      key = copied_key =
 | 
						|
	memcpy (tmp + __alignof__ (uint32_t)
 | 
						|
		- (tmp - (char *) 0) % __alignof__ (uint32_t),
 | 
						|
		key, key_len);
 | 
						|
      assert ((key - (char *) 0) % __alignof__ (uint32_t) == 0);
 | 
						|
    }
 | 
						|
 | 
						|
  if ((salt - (char *) 0) % __alignof__ (uint32_t) != 0)
 | 
						|
    {
 | 
						|
      char *tmp = (char *) alloca (salt_len + __alignof__ (uint32_t));
 | 
						|
      alloca_used += salt_len + __alignof__ (uint32_t);
 | 
						|
      salt = copied_salt =
 | 
						|
	memcpy (tmp + __alignof__ (uint32_t)
 | 
						|
		- (tmp - (char *) 0) % __alignof__ (uint32_t),
 | 
						|
		salt, salt_len);
 | 
						|
      assert ((salt - (char *) 0) % __alignof__ (uint32_t) == 0);
 | 
						|
    }
 | 
						|
 | 
						|
#ifdef USE_NSS
 | 
						|
  /* Initialize libfreebl3.  */
 | 
						|
  NSSLOWInitContext *nss_ictx = NSSLOW_Init ();
 | 
						|
  if (nss_ictx == NULL)
 | 
						|
    {
 | 
						|
      free (free_key);
 | 
						|
      return NULL;
 | 
						|
    }
 | 
						|
  NSSLOWHASHContext *nss_ctx = NULL;
 | 
						|
  NSSLOWHASHContext *nss_alt_ctx = NULL;
 | 
						|
#else
 | 
						|
  struct sha256_ctx ctx;
 | 
						|
  struct sha256_ctx alt_ctx;
 | 
						|
#endif
 | 
						|
 | 
						|
  /* Prepare for the real work.  */
 | 
						|
  sha256_init_ctx (&ctx, nss_ctx);
 | 
						|
 | 
						|
  /* Add the key string.  */
 | 
						|
  sha256_process_bytes (key, key_len, &ctx, nss_ctx);
 | 
						|
 | 
						|
  /* The last part is the salt string.  This must be at most 16
 | 
						|
     characters and it ends at the first `$' character.  */
 | 
						|
  sha256_process_bytes (salt, salt_len, &ctx, nss_ctx);
 | 
						|
 | 
						|
 | 
						|
  /* Compute alternate SHA256 sum with input KEY, SALT, and KEY.  The
 | 
						|
     final result will be added to the first context.  */
 | 
						|
  sha256_init_ctx (&alt_ctx, nss_alt_ctx);
 | 
						|
 | 
						|
  /* Add key.  */
 | 
						|
  sha256_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);
 | 
						|
 | 
						|
  /* Add salt.  */
 | 
						|
  sha256_process_bytes (salt, salt_len, &alt_ctx, nss_alt_ctx);
 | 
						|
 | 
						|
  /* Add key again.  */
 | 
						|
  sha256_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);
 | 
						|
 | 
						|
  /* Now get result of this (32 bytes) and add it to the other
 | 
						|
     context.  */
 | 
						|
  sha256_finish_ctx (&alt_ctx, nss_alt_ctx, alt_result);
 | 
						|
 | 
						|
  /* Add for any character in the key one byte of the alternate sum.  */
 | 
						|
  for (cnt = key_len; cnt > 32; cnt -= 32)
 | 
						|
    sha256_process_bytes (alt_result, 32, &ctx, nss_ctx);
 | 
						|
  sha256_process_bytes (alt_result, cnt, &ctx, nss_ctx);
 | 
						|
 | 
						|
  /* Take the binary representation of the length of the key and for every
 | 
						|
     1 add the alternate sum, for every 0 the key.  */
 | 
						|
  for (cnt = key_len; cnt > 0; cnt >>= 1)
 | 
						|
    if ((cnt & 1) != 0)
 | 
						|
      sha256_process_bytes (alt_result, 32, &ctx, nss_ctx);
 | 
						|
    else
 | 
						|
      sha256_process_bytes (key, key_len, &ctx, nss_ctx);
 | 
						|
 | 
						|
  /* Create intermediate result.  */
 | 
						|
  sha256_finish_ctx (&ctx, nss_ctx, alt_result);
 | 
						|
 | 
						|
  /* Start computation of P byte sequence.  */
 | 
						|
  sha256_init_ctx (&alt_ctx, nss_alt_ctx);
 | 
						|
 | 
						|
  /* For every character in the password add the entire password.  */
 | 
						|
  for (cnt = 0; cnt < key_len; ++cnt)
 | 
						|
    sha256_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);
 | 
						|
 | 
						|
  /* Finish the digest.  */
 | 
						|
  sha256_finish_ctx (&alt_ctx, nss_alt_ctx, temp_result);
 | 
						|
 | 
						|
  /* Create byte sequence P.  */
 | 
						|
  if (__libc_use_alloca (alloca_used + key_len))
 | 
						|
    cp = p_bytes = (char *) alloca (key_len);
 | 
						|
  else
 | 
						|
    {
 | 
						|
      free_pbytes = cp = p_bytes = (char *)malloc (key_len);
 | 
						|
      if (free_pbytes == NULL)
 | 
						|
	{
 | 
						|
	  free (free_key);
 | 
						|
	  return NULL;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
  for (cnt = key_len; cnt >= 32; cnt -= 32)
 | 
						|
    cp = mempcpy (cp, temp_result, 32);
 | 
						|
  memcpy (cp, temp_result, cnt);
 | 
						|
 | 
						|
  /* Start computation of S byte sequence.  */
 | 
						|
  sha256_init_ctx (&alt_ctx, nss_alt_ctx);
 | 
						|
 | 
						|
  /* For every character in the password add the entire password.  */
 | 
						|
  for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
 | 
						|
    sha256_process_bytes (salt, salt_len, &alt_ctx, nss_alt_ctx);
 | 
						|
 | 
						|
  /* Finish the digest.  */
 | 
						|
  sha256_finish_ctx (&alt_ctx, nss_alt_ctx, temp_result);
 | 
						|
 | 
						|
  /* Create byte sequence S.  */
 | 
						|
  cp = s_bytes = alloca (salt_len);
 | 
						|
  for (cnt = salt_len; cnt >= 32; cnt -= 32)
 | 
						|
    cp = mempcpy (cp, temp_result, 32);
 | 
						|
  memcpy (cp, temp_result, cnt);
 | 
						|
 | 
						|
  /* Repeatedly run the collected hash value through SHA256 to burn
 | 
						|
     CPU cycles.  */
 | 
						|
  for (cnt = 0; cnt < rounds; ++cnt)
 | 
						|
    {
 | 
						|
      /* New context.  */
 | 
						|
      sha256_init_ctx (&ctx, nss_ctx);
 | 
						|
 | 
						|
      /* Add key or last result.  */
 | 
						|
      if ((cnt & 1) != 0)
 | 
						|
	sha256_process_bytes (p_bytes, key_len, &ctx, nss_ctx);
 | 
						|
      else
 | 
						|
	sha256_process_bytes (alt_result, 32, &ctx, nss_ctx);
 | 
						|
 | 
						|
      /* Add salt for numbers not divisible by 3.  */
 | 
						|
      if (cnt % 3 != 0)
 | 
						|
	sha256_process_bytes (s_bytes, salt_len, &ctx, nss_ctx);
 | 
						|
 | 
						|
      /* Add key for numbers not divisible by 7.  */
 | 
						|
      if (cnt % 7 != 0)
 | 
						|
	sha256_process_bytes (p_bytes, key_len, &ctx, nss_ctx);
 | 
						|
 | 
						|
      /* Add key or last result.  */
 | 
						|
      if ((cnt & 1) != 0)
 | 
						|
	sha256_process_bytes (alt_result, 32, &ctx, nss_ctx);
 | 
						|
      else
 | 
						|
	sha256_process_bytes (p_bytes, key_len, &ctx, nss_ctx);
 | 
						|
 | 
						|
      /* Create intermediate result.  */
 | 
						|
      sha256_finish_ctx (&ctx, nss_ctx, alt_result);
 | 
						|
    }
 | 
						|
 | 
						|
#ifdef USE_NSS
 | 
						|
  /* Free libfreebl3 resources. */
 | 
						|
  NSSLOW_Shutdown (nss_ictx);
 | 
						|
#endif
 | 
						|
 | 
						|
  /* Now we can construct the result string.  It consists of three
 | 
						|
     parts.  */
 | 
						|
  cp = __stpncpy (buffer, sha256_salt_prefix, MAX (0, buflen));
 | 
						|
  buflen -= sizeof (sha256_salt_prefix) - 1;
 | 
						|
 | 
						|
  if (rounds_custom)
 | 
						|
    {
 | 
						|
      int n = __snprintf (cp, MAX (0, buflen), "%s%zu$",
 | 
						|
			  sha256_rounds_prefix, rounds);
 | 
						|
      cp += n;
 | 
						|
      buflen -= n;
 | 
						|
    }
 | 
						|
 | 
						|
  cp = __stpncpy (cp, salt, MIN ((size_t) MAX (0, buflen), salt_len));
 | 
						|
  buflen -= MIN ((size_t) MAX (0, buflen), salt_len);
 | 
						|
 | 
						|
  if (buflen > 0)
 | 
						|
    {
 | 
						|
      *cp++ = '$';
 | 
						|
      --buflen;
 | 
						|
    }
 | 
						|
 | 
						|
  __b64_from_24bit (&cp, &buflen,
 | 
						|
		    alt_result[0], alt_result[10], alt_result[20], 4);
 | 
						|
  __b64_from_24bit (&cp, &buflen,
 | 
						|
		    alt_result[21], alt_result[1], alt_result[11], 4);
 | 
						|
  __b64_from_24bit (&cp, &buflen,
 | 
						|
		    alt_result[12], alt_result[22], alt_result[2], 4);
 | 
						|
  __b64_from_24bit (&cp, &buflen,
 | 
						|
		    alt_result[3], alt_result[13], alt_result[23], 4);
 | 
						|
  __b64_from_24bit (&cp, &buflen,
 | 
						|
		    alt_result[24], alt_result[4], alt_result[14], 4);
 | 
						|
  __b64_from_24bit (&cp, &buflen,
 | 
						|
		    alt_result[15], alt_result[25], alt_result[5], 4);
 | 
						|
  __b64_from_24bit (&cp, &buflen,
 | 
						|
		    alt_result[6], alt_result[16], alt_result[26], 4);
 | 
						|
  __b64_from_24bit (&cp, &buflen,
 | 
						|
		    alt_result[27], alt_result[7], alt_result[17], 4);
 | 
						|
  __b64_from_24bit (&cp, &buflen,
 | 
						|
		    alt_result[18], alt_result[28], alt_result[8], 4);
 | 
						|
  __b64_from_24bit (&cp, &buflen,
 | 
						|
		    alt_result[9], alt_result[19], alt_result[29], 4);
 | 
						|
  __b64_from_24bit (&cp, &buflen,
 | 
						|
		    0, alt_result[31], alt_result[30], 3);
 | 
						|
  if (buflen <= 0)
 | 
						|
    {
 | 
						|
      __set_errno (ERANGE);
 | 
						|
      buffer = NULL;
 | 
						|
    }
 | 
						|
  else
 | 
						|
    *cp = '\0';		/* Terminate the string.  */
 | 
						|
 | 
						|
  /* Clear the buffer for the intermediate result so that people
 | 
						|
     attaching to processes or reading core dumps cannot get any
 | 
						|
     information.  We do it in this way to clear correct_words[]
 | 
						|
     inside the SHA256 implementation as well.  */
 | 
						|
#ifndef USE_NSS
 | 
						|
  __sha256_init_ctx (&ctx);
 | 
						|
  __sha256_finish_ctx (&ctx, alt_result);
 | 
						|
  explicit_bzero (&ctx, sizeof (ctx));
 | 
						|
  explicit_bzero (&alt_ctx, sizeof (alt_ctx));
 | 
						|
#endif
 | 
						|
  explicit_bzero (temp_result, sizeof (temp_result));
 | 
						|
  explicit_bzero (p_bytes, key_len);
 | 
						|
  explicit_bzero (s_bytes, salt_len);
 | 
						|
  if (copied_key != NULL)
 | 
						|
    explicit_bzero (copied_key, key_len);
 | 
						|
  if (copied_salt != NULL)
 | 
						|
    explicit_bzero (copied_salt, salt_len);
 | 
						|
 | 
						|
  free (free_key);
 | 
						|
  free (free_pbytes);
 | 
						|
  return buffer;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef _LIBC
 | 
						|
# define libc_freeres_ptr(decl) decl
 | 
						|
#endif
 | 
						|
libc_freeres_ptr (static char *buffer);
 | 
						|
 | 
						|
/* This entry point is equivalent to the `crypt' function in Unix
 | 
						|
   libcs.  */
 | 
						|
char *
 | 
						|
__sha256_crypt (const char *key, const char *salt)
 | 
						|
{
 | 
						|
  /* We don't want to have an arbitrary limit in the size of the
 | 
						|
     password.  We can compute an upper bound for the size of the
 | 
						|
     result in advance and so we can prepare the buffer we pass to
 | 
						|
     `sha256_crypt_r'.  */
 | 
						|
  static int buflen;
 | 
						|
  int needed = (sizeof (sha256_salt_prefix) - 1
 | 
						|
		+ sizeof (sha256_rounds_prefix) + 9 + 1
 | 
						|
		+ strlen (salt) + 1 + 43 + 1);
 | 
						|
 | 
						|
  if (buflen < needed)
 | 
						|
    {
 | 
						|
      char *new_buffer = (char *) realloc (buffer, needed);
 | 
						|
      if (new_buffer == NULL)
 | 
						|
	return NULL;
 | 
						|
 | 
						|
      buffer = new_buffer;
 | 
						|
      buflen = needed;
 | 
						|
    }
 | 
						|
 | 
						|
  return __sha256_crypt_r (key, salt, buffer, buflen);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef _LIBC
 | 
						|
static void
 | 
						|
__attribute__ ((__destructor__))
 | 
						|
free_mem (void)
 | 
						|
{
 | 
						|
  free (buffer);
 | 
						|
}
 | 
						|
#endif
 |