mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-11-03 20:53:13 +03:00 
			
		
		
		
	Also, change sources.redhat.com to sourceware.org.
This patch was automatically generated by running the following shell
script, which uses GNU sed, and which avoids modifying files imported
from upstream:
sed -ri '
  s,(http|ftp)(://(.*\.)?(gnu|fsf|sourceware)\.org($|[^.]|\.[^a-z])),https\2,g
  s,(http|ftp)(://(.*\.)?)sources\.redhat\.com($|[^.]|\.[^a-z]),https\2sourceware.org\4,g
' \
  $(find $(git ls-files) -prune -type f \
      ! -name '*.po' \
      ! -name 'ChangeLog*' \
      ! -path COPYING ! -path COPYING.LIB \
      ! -path manual/fdl-1.3.texi ! -path manual/lgpl-2.1.texi \
      ! -path manual/texinfo.tex ! -path scripts/config.guess \
      ! -path scripts/config.sub ! -path scripts/install-sh \
      ! -path scripts/mkinstalldirs ! -path scripts/move-if-change \
      ! -path INSTALL ! -path  locale/programs/charmap-kw.h \
      ! -path po/libc.pot ! -path sysdeps/gnu/errlist.c \
      ! '(' -name configure \
            -execdir test -f configure.ac -o -f configure.in ';' ')' \
      ! '(' -name preconfigure \
            -execdir test -f preconfigure.ac ';' ')' \
      -print)
and then by running 'make dist-prepare' to regenerate files built
from the altered files, and then executing the following to cleanup:
  chmod a+x sysdeps/unix/sysv/linux/riscv/configure
  # Omit irrelevant whitespace and comment-only changes,
  # perhaps from a slightly-different Autoconf version.
  git checkout -f \
    sysdeps/csky/configure \
    sysdeps/hppa/configure \
    sysdeps/riscv/configure \
    sysdeps/unix/sysv/linux/csky/configure
  # Omit changes that caused a pre-commit check to fail like this:
  # remote: *** error: sysdeps/powerpc/powerpc64/ppc-mcount.S: trailing lines
  git checkout -f \
    sysdeps/powerpc/powerpc64/ppc-mcount.S \
    sysdeps/unix/sysv/linux/s390/s390-64/syscall.S
  # Omit change that caused a pre-commit check to fail like this:
  # remote: *** error: sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S: last line does not end in newline
  git checkout -f sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S
		
	
		
			
				
	
	
		
			317 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			317 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * ====================================================
 | 
						|
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | 
						|
 *
 | 
						|
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 | 
						|
 * Permission to use, copy, modify, and distribute this
 | 
						|
 * software is freely granted, provided that this notice
 | 
						|
 * is preserved.
 | 
						|
 * ====================================================
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
   Long double expansions are
 | 
						|
   Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
 | 
						|
   and are incorporated herein by permission of the author.  The author
 | 
						|
   reserves the right to distribute this material elsewhere under different
 | 
						|
   copying permissions.  These modifications are distributed here under
 | 
						|
   the following terms:
 | 
						|
 | 
						|
    This library is free software; you can redistribute it and/or
 | 
						|
    modify it under the terms of the GNU Lesser General Public
 | 
						|
    License as published by the Free Software Foundation; either
 | 
						|
    version 2.1 of the License, or (at your option) any later version.
 | 
						|
 | 
						|
    This library is distributed in the hope that it will be useful,
 | 
						|
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
    Lesser General Public License for more details.
 | 
						|
 | 
						|
    You should have received a copy of the GNU Lesser General Public
 | 
						|
    License along with this library; if not, see
 | 
						|
    <https://www.gnu.org/licenses/>.  */
 | 
						|
 | 
						|
/* __ieee754_acosl(x)
 | 
						|
 * Method :
 | 
						|
 *      acos(x)  = pi/2 - asin(x)
 | 
						|
 *      acos(-x) = pi/2 + asin(x)
 | 
						|
 * For |x| <= 0.375
 | 
						|
 *      acos(x) = pi/2 - asin(x)
 | 
						|
 * Between .375 and .5 the approximation is
 | 
						|
 *      acos(0.4375 + x) = acos(0.4375) + x P(x) / Q(x)
 | 
						|
 * Between .5 and .625 the approximation is
 | 
						|
 *      acos(0.5625 + x) = acos(0.5625) + x rS(x) / sS(x)
 | 
						|
 * For x > 0.625,
 | 
						|
 *      acos(x) = 2 asin(sqrt((1-x)/2))
 | 
						|
 *      computed with an extended precision square root in the leading term.
 | 
						|
 * For x < -0.625
 | 
						|
 *      acos(x) = pi - 2 asin(sqrt((1-|x|)/2))
 | 
						|
 *
 | 
						|
 * Special cases:
 | 
						|
 *      if x is NaN, return x itself;
 | 
						|
 *      if |x|>1, return NaN with invalid signal.
 | 
						|
 *
 | 
						|
 * Functions needed: sqrtl.
 | 
						|
 */
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
#include <math_private.h>
 | 
						|
 | 
						|
static const long double
 | 
						|
  one = 1.0L,
 | 
						|
  pio2_hi = 1.5707963267948966192313216916397514420986L,
 | 
						|
  pio2_lo = 4.3359050650618905123985220130216759843812E-35L,
 | 
						|
 | 
						|
  /* acos(0.5625 + x) = acos(0.5625) + x rS(x) / sS(x)
 | 
						|
     -0.0625 <= x <= 0.0625
 | 
						|
     peak relative error 3.3e-35  */
 | 
						|
 | 
						|
  rS0 =  5.619049346208901520945464704848780243887E0L,
 | 
						|
  rS1 = -4.460504162777731472539175700169871920352E1L,
 | 
						|
  rS2 =  1.317669505315409261479577040530751477488E2L,
 | 
						|
  rS3 = -1.626532582423661989632442410808596009227E2L,
 | 
						|
  rS4 =  3.144806644195158614904369445440583873264E1L,
 | 
						|
  rS5 =  9.806674443470740708765165604769099559553E1L,
 | 
						|
  rS6 = -5.708468492052010816555762842394927806920E1L,
 | 
						|
  rS7 = -1.396540499232262112248553357962639431922E1L,
 | 
						|
  rS8 =  1.126243289311910363001762058295832610344E1L,
 | 
						|
  rS9 =  4.956179821329901954211277873774472383512E-1L,
 | 
						|
  rS10 = -3.313227657082367169241333738391762525780E-1L,
 | 
						|
 | 
						|
  sS0 = -4.645814742084009935700221277307007679325E0L,
 | 
						|
  sS1 =  3.879074822457694323970438316317961918430E1L,
 | 
						|
  sS2 = -1.221986588013474694623973554726201001066E2L,
 | 
						|
  sS3 =  1.658821150347718105012079876756201905822E2L,
 | 
						|
  sS4 = -4.804379630977558197953176474426239748977E1L,
 | 
						|
  sS5 = -1.004296417397316948114344573811562952793E2L,
 | 
						|
  sS6 =  7.530281592861320234941101403870010111138E1L,
 | 
						|
  sS7 =  1.270735595411673647119592092304357226607E1L,
 | 
						|
  sS8 = -1.815144839646376500705105967064792930282E1L,
 | 
						|
  sS9 = -7.821597334910963922204235247786840828217E-2L,
 | 
						|
  /* 1.000000000000000000000000000000000000000E0 */
 | 
						|
 | 
						|
  acosr5625 = 9.7338991014954640492751132535550279812151E-1L,
 | 
						|
  pimacosr5625 = 2.1682027434402468335351320579240000860757E0L,
 | 
						|
 | 
						|
  /* acos(0.4375 + x) = acos(0.4375) + x rS(x) / sS(x)
 | 
						|
     -0.0625 <= x <= 0.0625
 | 
						|
     peak relative error 2.1e-35  */
 | 
						|
 | 
						|
  P0 =  2.177690192235413635229046633751390484892E0L,
 | 
						|
  P1 = -2.848698225706605746657192566166142909573E1L,
 | 
						|
  P2 =  1.040076477655245590871244795403659880304E2L,
 | 
						|
  P3 = -1.400087608918906358323551402881238180553E2L,
 | 
						|
  P4 =  2.221047917671449176051896400503615543757E1L,
 | 
						|
  P5 =  9.643714856395587663736110523917499638702E1L,
 | 
						|
  P6 = -5.158406639829833829027457284942389079196E1L,
 | 
						|
  P7 = -1.578651828337585944715290382181219741813E1L,
 | 
						|
  P8 =  1.093632715903802870546857764647931045906E1L,
 | 
						|
  P9 =  5.448925479898460003048760932274085300103E-1L,
 | 
						|
  P10 = -3.315886001095605268470690485170092986337E-1L,
 | 
						|
  Q0 = -1.958219113487162405143608843774587557016E0L,
 | 
						|
  Q1 =  2.614577866876185080678907676023269360520E1L,
 | 
						|
  Q2 = -9.990858606464150981009763389881793660938E1L,
 | 
						|
  Q3 =  1.443958741356995763628660823395334281596E2L,
 | 
						|
  Q4 = -3.206441012484232867657763518369723873129E1L,
 | 
						|
  Q5 = -1.048560885341833443564920145642588991492E2L,
 | 
						|
  Q6 =  6.745883931909770880159915641984874746358E1L,
 | 
						|
  Q7 =  1.806809656342804436118449982647641392951E1L,
 | 
						|
  Q8 = -1.770150690652438294290020775359580915464E1L,
 | 
						|
  Q9 = -5.659156469628629327045433069052560211164E-1L,
 | 
						|
  /* 1.000000000000000000000000000000000000000E0 */
 | 
						|
 | 
						|
  acosr4375 = 1.1179797320499710475919903296900511518755E0L,
 | 
						|
  pimacosr4375 = 2.0236129215398221908706530535894517323217E0L,
 | 
						|
 | 
						|
  /* asin(x) = x + x^3 pS(x^2) / qS(x^2)
 | 
						|
     0 <= x <= 0.5
 | 
						|
     peak relative error 1.9e-35  */
 | 
						|
  pS0 = -8.358099012470680544198472400254596543711E2L,
 | 
						|
  pS1 =  3.674973957689619490312782828051860366493E3L,
 | 
						|
  pS2 = -6.730729094812979665807581609853656623219E3L,
 | 
						|
  pS3 =  6.643843795209060298375552684423454077633E3L,
 | 
						|
  pS4 = -3.817341990928606692235481812252049415993E3L,
 | 
						|
  pS5 =  1.284635388402653715636722822195716476156E3L,
 | 
						|
  pS6 = -2.410736125231549204856567737329112037867E2L,
 | 
						|
  pS7 =  2.219191969382402856557594215833622156220E1L,
 | 
						|
  pS8 = -7.249056260830627156600112195061001036533E-1L,
 | 
						|
  pS9 =  1.055923570937755300061509030361395604448E-3L,
 | 
						|
 | 
						|
  qS0 = -5.014859407482408326519083440151745519205E3L,
 | 
						|
  qS1 =  2.430653047950480068881028451580393430537E4L,
 | 
						|
  qS2 = -4.997904737193653607449250593976069726962E4L,
 | 
						|
  qS3 =  5.675712336110456923807959930107347511086E4L,
 | 
						|
  qS4 = -3.881523118339661268482937768522572588022E4L,
 | 
						|
  qS5 =  1.634202194895541569749717032234510811216E4L,
 | 
						|
  qS6 = -4.151452662440709301601820849901296953752E3L,
 | 
						|
  qS7 =  5.956050864057192019085175976175695342168E2L,
 | 
						|
  qS8 = -4.175375777334867025769346564600396877176E1L;
 | 
						|
  /* 1.000000000000000000000000000000000000000E0 */
 | 
						|
 | 
						|
long double
 | 
						|
__ieee754_acosl (long double x)
 | 
						|
{
 | 
						|
  long double a, z, r, w, p, q, s, t, f2;
 | 
						|
 | 
						|
  if (__glibc_unlikely (isnan (x)))
 | 
						|
    return x + x;
 | 
						|
  a = __builtin_fabsl (x);
 | 
						|
  if (a == 1.0L)
 | 
						|
    {
 | 
						|
      if (x > 0.0L)
 | 
						|
	return 0.0;		/* acos(1) = 0  */
 | 
						|
      else
 | 
						|
	return (2.0 * pio2_hi) + (2.0 * pio2_lo);	/* acos(-1)= pi */
 | 
						|
    }
 | 
						|
  else if (a > 1.0L)
 | 
						|
    {
 | 
						|
      return (x - x) / (x - x);	/* acos(|x| > 1) is NaN */
 | 
						|
    }
 | 
						|
  if (a < 0.5L)
 | 
						|
    {
 | 
						|
      if (a < 0x1p-106L)
 | 
						|
	return pio2_hi + pio2_lo;
 | 
						|
      if (a < 0.4375L)
 | 
						|
	{
 | 
						|
	  /* Arcsine of x.  */
 | 
						|
	  z = x * x;
 | 
						|
	  p = (((((((((pS9 * z
 | 
						|
		       + pS8) * z
 | 
						|
		      + pS7) * z
 | 
						|
		     + pS6) * z
 | 
						|
		    + pS5) * z
 | 
						|
		   + pS4) * z
 | 
						|
		  + pS3) * z
 | 
						|
		 + pS2) * z
 | 
						|
		+ pS1) * z
 | 
						|
	       + pS0) * z;
 | 
						|
	  q = (((((((( z
 | 
						|
		       + qS8) * z
 | 
						|
		     + qS7) * z
 | 
						|
		    + qS6) * z
 | 
						|
		   + qS5) * z
 | 
						|
		  + qS4) * z
 | 
						|
		 + qS3) * z
 | 
						|
		+ qS2) * z
 | 
						|
	       + qS1) * z
 | 
						|
	    + qS0;
 | 
						|
	  r = x + x * p / q;
 | 
						|
	  z = pio2_hi - (r - pio2_lo);
 | 
						|
	  return z;
 | 
						|
	}
 | 
						|
      /* .4375 <= |x| < .5 */
 | 
						|
      t = a - 0.4375L;
 | 
						|
      p = ((((((((((P10 * t
 | 
						|
		    + P9) * t
 | 
						|
		   + P8) * t
 | 
						|
		  + P7) * t
 | 
						|
		 + P6) * t
 | 
						|
		+ P5) * t
 | 
						|
	       + P4) * t
 | 
						|
	      + P3) * t
 | 
						|
	     + P2) * t
 | 
						|
	    + P1) * t
 | 
						|
	   + P0) * t;
 | 
						|
 | 
						|
      q = (((((((((t
 | 
						|
		   + Q9) * t
 | 
						|
		  + Q8) * t
 | 
						|
		 + Q7) * t
 | 
						|
		+ Q6) * t
 | 
						|
	       + Q5) * t
 | 
						|
	      + Q4) * t
 | 
						|
	     + Q3) * t
 | 
						|
	    + Q2) * t
 | 
						|
	   + Q1) * t
 | 
						|
	+ Q0;
 | 
						|
      r = p / q;
 | 
						|
      if (x < 0.0L)
 | 
						|
	r = pimacosr4375 - r;
 | 
						|
      else
 | 
						|
	r = acosr4375 + r;
 | 
						|
      return r;
 | 
						|
    }
 | 
						|
  else if (a < 0.625L)
 | 
						|
    {
 | 
						|
      t = a - 0.5625L;
 | 
						|
      p = ((((((((((rS10 * t
 | 
						|
		    + rS9) * t
 | 
						|
		   + rS8) * t
 | 
						|
		  + rS7) * t
 | 
						|
		 + rS6) * t
 | 
						|
		+ rS5) * t
 | 
						|
	       + rS4) * t
 | 
						|
	      + rS3) * t
 | 
						|
	     + rS2) * t
 | 
						|
	    + rS1) * t
 | 
						|
	   + rS0) * t;
 | 
						|
 | 
						|
      q = (((((((((t
 | 
						|
		   + sS9) * t
 | 
						|
		  + sS8) * t
 | 
						|
		 + sS7) * t
 | 
						|
		+ sS6) * t
 | 
						|
	       + sS5) * t
 | 
						|
	      + sS4) * t
 | 
						|
	     + sS3) * t
 | 
						|
	    + sS2) * t
 | 
						|
	   + sS1) * t
 | 
						|
	+ sS0;
 | 
						|
      if (x < 0.0L)
 | 
						|
	r = pimacosr5625 - p / q;
 | 
						|
      else
 | 
						|
	r = acosr5625 + p / q;
 | 
						|
      return r;
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {				/* |x| >= .625 */
 | 
						|
      double shi, slo;
 | 
						|
 | 
						|
      z = (one - a) * 0.5;
 | 
						|
      s = sqrtl (z);
 | 
						|
      /* Compute an extended precision square root from
 | 
						|
	 the Newton iteration  s -> 0.5 * (s + z / s).
 | 
						|
	 The change w from s to the improved value is
 | 
						|
	    w = 0.5 * (s + z / s) - s  = (s^2 + z)/2s - s = (z - s^2)/2s.
 | 
						|
	  Express s = f1 + f2 where f1 * f1 is exactly representable.
 | 
						|
	  w = (z - s^2)/2s = (z - f1^2 - 2 f1 f2 - f2^2)/2s .
 | 
						|
	  s + w has extended precision.  */
 | 
						|
      ldbl_unpack (s, &shi, &slo);
 | 
						|
      a = shi;
 | 
						|
      f2 = slo;
 | 
						|
      w = z - a * a;
 | 
						|
      w = w - 2.0 * a * f2;
 | 
						|
      w = w - f2 * f2;
 | 
						|
      w = w / (2.0 * s);
 | 
						|
      /* Arcsine of s.  */
 | 
						|
      p = (((((((((pS9 * z
 | 
						|
		   + pS8) * z
 | 
						|
		  + pS7) * z
 | 
						|
		 + pS6) * z
 | 
						|
		+ pS5) * z
 | 
						|
	       + pS4) * z
 | 
						|
	      + pS3) * z
 | 
						|
	     + pS2) * z
 | 
						|
	    + pS1) * z
 | 
						|
	   + pS0) * z;
 | 
						|
      q = (((((((( z
 | 
						|
		   + qS8) * z
 | 
						|
		 + qS7) * z
 | 
						|
		+ qS6) * z
 | 
						|
	       + qS5) * z
 | 
						|
	      + qS4) * z
 | 
						|
	     + qS3) * z
 | 
						|
	    + qS2) * z
 | 
						|
	   + qS1) * z
 | 
						|
	+ qS0;
 | 
						|
      r = s + (w + s * p / q);
 | 
						|
 | 
						|
      if (x < 0.0L)
 | 
						|
	w = pio2_hi + (pio2_lo - r);
 | 
						|
      else
 | 
						|
	w = r;
 | 
						|
      return 2.0 * w;
 | 
						|
    }
 | 
						|
}
 | 
						|
strong_alias (__ieee754_acosl, __acosl_finite)
 |