mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-11-03 20:53:13 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			609 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			609 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* Machine-dependent ELF dynamic relocation functions.  PowerPC version.
 | 
						|
   Copyright (C) 1995-2017 Free Software Foundation, Inc.
 | 
						|
   This file is part of the GNU C Library.
 | 
						|
 | 
						|
   The GNU C Library is free software; you can redistribute it and/or
 | 
						|
   modify it under the terms of the GNU Lesser General Public
 | 
						|
   License as published by the Free Software Foundation; either
 | 
						|
   version 2.1 of the License, or (at your option) any later version.
 | 
						|
 | 
						|
   The GNU C Library is distributed in the hope that it will be useful,
 | 
						|
   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
   Lesser General Public License for more details.
 | 
						|
 | 
						|
   You should have received a copy of the GNU Lesser General Public
 | 
						|
   License along with the GNU C Library; if not, see
 | 
						|
   <http://www.gnu.org/licenses/>.  */
 | 
						|
 | 
						|
#include <unistd.h>
 | 
						|
#include <string.h>
 | 
						|
#include <sys/param.h>
 | 
						|
#include <link.h>
 | 
						|
#include <ldsodefs.h>
 | 
						|
#include <elf/dynamic-link.h>
 | 
						|
#include <dl-machine.h>
 | 
						|
#include <_itoa.h>
 | 
						|
 | 
						|
/* The value __cache_line_size is defined in dl-sysdep.c and is initialised
 | 
						|
   by _dl_sysdep_start via DL_PLATFORM_INIT.  */
 | 
						|
extern int __cache_line_size attribute_hidden;
 | 
						|
 | 
						|
 | 
						|
/* Stuff for the PLT.  */
 | 
						|
#define PLT_INITIAL_ENTRY_WORDS 18
 | 
						|
#define PLT_LONGBRANCH_ENTRY_WORDS 0
 | 
						|
#define PLT_TRAMPOLINE_ENTRY_WORDS 6
 | 
						|
#define PLT_DOUBLE_SIZE (1<<13)
 | 
						|
#define PLT_ENTRY_START_WORDS(entry_number) \
 | 
						|
  (PLT_INITIAL_ENTRY_WORDS + (entry_number)*2				\
 | 
						|
   + ((entry_number) > PLT_DOUBLE_SIZE					\
 | 
						|
      ? ((entry_number) - PLT_DOUBLE_SIZE)*2				\
 | 
						|
      : 0))
 | 
						|
#define PLT_DATA_START_WORDS(num_entries) PLT_ENTRY_START_WORDS(num_entries)
 | 
						|
 | 
						|
/* Macros to build PowerPC opcode words.  */
 | 
						|
#define OPCODE_ADDI(rd,ra,simm) \
 | 
						|
  (0x38000000 | (rd) << 21 | (ra) << 16 | ((simm) & 0xffff))
 | 
						|
#define OPCODE_ADDIS(rd,ra,simm) \
 | 
						|
  (0x3c000000 | (rd) << 21 | (ra) << 16 | ((simm) & 0xffff))
 | 
						|
#define OPCODE_ADD(rd,ra,rb) \
 | 
						|
  (0x7c000214 | (rd) << 21 | (ra) << 16 | (rb) << 11)
 | 
						|
#define OPCODE_B(target) (0x48000000 | ((target) & 0x03fffffc))
 | 
						|
#define OPCODE_BA(target) (0x48000002 | ((target) & 0x03fffffc))
 | 
						|
#define OPCODE_BCTR() 0x4e800420
 | 
						|
#define OPCODE_LWZ(rd,d,ra) \
 | 
						|
  (0x80000000 | (rd) << 21 | (ra) << 16 | ((d) & 0xffff))
 | 
						|
#define OPCODE_LWZU(rd,d,ra) \
 | 
						|
  (0x84000000 | (rd) << 21 | (ra) << 16 | ((d) & 0xffff))
 | 
						|
#define OPCODE_MTCTR(rd) (0x7C0903A6 | (rd) << 21)
 | 
						|
#define OPCODE_RLWINM(ra,rs,sh,mb,me) \
 | 
						|
  (0x54000000 | (rs) << 21 | (ra) << 16 | (sh) << 11 | (mb) << 6 | (me) << 1)
 | 
						|
 | 
						|
#define OPCODE_LI(rd,simm)    OPCODE_ADDI(rd,0,simm)
 | 
						|
#define OPCODE_ADDIS_HI(rd,ra,value) \
 | 
						|
  OPCODE_ADDIS(rd,ra,((value) + 0x8000) >> 16)
 | 
						|
#define OPCODE_LIS_HI(rd,value) OPCODE_ADDIS_HI(rd,0,value)
 | 
						|
#define OPCODE_SLWI(ra,rs,sh) OPCODE_RLWINM(ra,rs,sh,0,31-sh)
 | 
						|
 | 
						|
 | 
						|
#define PPC_DCBST(where) asm volatile ("dcbst 0,%0" : : "r"(where) : "memory")
 | 
						|
#define PPC_SYNC asm volatile ("sync" : : : "memory")
 | 
						|
#define PPC_ISYNC asm volatile ("sync; isync" : : : "memory")
 | 
						|
#define PPC_ICBI(where) asm volatile ("icbi 0,%0" : : "r"(where) : "memory")
 | 
						|
#define PPC_DIE asm volatile ("tweq 0,0")
 | 
						|
 | 
						|
/* Use this when you've modified some code, but it won't be in the
 | 
						|
   instruction fetch queue (or when it doesn't matter if it is). */
 | 
						|
#define MODIFIED_CODE_NOQUEUE(where) \
 | 
						|
     do { PPC_DCBST(where); PPC_SYNC; PPC_ICBI(where); } while (0)
 | 
						|
/* Use this when it might be in the instruction queue. */
 | 
						|
#define MODIFIED_CODE(where) \
 | 
						|
     do { PPC_DCBST(where); PPC_SYNC; PPC_ICBI(where); PPC_ISYNC; } while (0)
 | 
						|
 | 
						|
 | 
						|
/* The idea here is that to conform to the ABI, we are supposed to try
 | 
						|
   to load dynamic objects between 0x10000 (we actually use 0x40000 as
 | 
						|
   the lower bound, to increase the chance of a memory reference from
 | 
						|
   a null pointer giving a segfault) and the program's load address;
 | 
						|
   this may allow us to use a branch instruction in the PLT rather
 | 
						|
   than a computed jump.  The address is only used as a preference for
 | 
						|
   mmap, so if we get it wrong the worst that happens is that it gets
 | 
						|
   mapped somewhere else.  */
 | 
						|
 | 
						|
ElfW(Addr)
 | 
						|
__elf_preferred_address (struct link_map *loader, size_t maplength,
 | 
						|
			 ElfW(Addr) mapstartpref)
 | 
						|
{
 | 
						|
  ElfW(Addr) low, high;
 | 
						|
  struct link_map *l;
 | 
						|
  Lmid_t nsid;
 | 
						|
 | 
						|
  /* If the object has a preference, load it there!  */
 | 
						|
  if (mapstartpref != 0)
 | 
						|
    return mapstartpref;
 | 
						|
 | 
						|
  /* Otherwise, quickly look for a suitable gap between 0x3FFFF and
 | 
						|
     0x70000000.  0x3FFFF is so that references off NULL pointers will
 | 
						|
     cause a segfault, 0x70000000 is just paranoia (it should always
 | 
						|
     be superseded by the program's load address).  */
 | 
						|
  low =  0x0003FFFF;
 | 
						|
  high = 0x70000000;
 | 
						|
  for (nsid = 0; nsid < DL_NNS; ++nsid)
 | 
						|
    for (l = GL(dl_ns)[nsid]._ns_loaded; l; l = l->l_next)
 | 
						|
      {
 | 
						|
	ElfW(Addr) mapstart, mapend;
 | 
						|
	mapstart = l->l_map_start & ~(GLRO(dl_pagesize) - 1);
 | 
						|
	mapend = l->l_map_end | (GLRO(dl_pagesize) - 1);
 | 
						|
	assert (mapend > mapstart);
 | 
						|
 | 
						|
	/* Prefer gaps below the main executable, note that l ==
 | 
						|
	   _dl_loaded does not work for static binaries loading
 | 
						|
	   e.g. libnss_*.so.  */
 | 
						|
	if ((mapend >= high || l->l_type == lt_executable)
 | 
						|
	    && high >= mapstart)
 | 
						|
	  high = mapstart;
 | 
						|
	else if (mapend >= low && low >= mapstart)
 | 
						|
	  low = mapend;
 | 
						|
	else if (high >= mapend && mapstart >= low)
 | 
						|
	  {
 | 
						|
	    if (high - mapend >= mapstart - low)
 | 
						|
	      low = mapend;
 | 
						|
	    else
 | 
						|
	      high = mapstart;
 | 
						|
	  }
 | 
						|
      }
 | 
						|
 | 
						|
  high -= 0x10000; /* Allow some room between objects.  */
 | 
						|
  maplength = (maplength | (GLRO(dl_pagesize) - 1)) + 1;
 | 
						|
  if (high <= low || high - low < maplength )
 | 
						|
    return 0;
 | 
						|
  return high - maplength;  /* Both high and maplength are page-aligned.  */
 | 
						|
}
 | 
						|
 | 
						|
/* Set up the loaded object described by L so its unrelocated PLT
 | 
						|
   entries will jump to the on-demand fixup code in dl-runtime.c.
 | 
						|
   Also install a small trampoline to be used by entries that have
 | 
						|
   been relocated to an address too far away for a single branch.  */
 | 
						|
 | 
						|
/* There are many kinds of PLT entries:
 | 
						|
 | 
						|
   (1)	A direct jump to the actual routine, either a relative or
 | 
						|
	absolute branch.  These are set up in __elf_machine_fixup_plt.
 | 
						|
 | 
						|
   (2)	Short lazy entries.  These cover the first 8192 slots in
 | 
						|
        the PLT, and look like (where 'index' goes from 0 to 8191):
 | 
						|
 | 
						|
	li %r11, index*4
 | 
						|
	b  &plt[PLT_TRAMPOLINE_ENTRY_WORDS+1]
 | 
						|
 | 
						|
   (3)	Short indirect jumps.  These replace (2) when a direct jump
 | 
						|
	wouldn't reach.  They look the same except that the branch
 | 
						|
	is 'b &plt[PLT_LONGBRANCH_ENTRY_WORDS]'.
 | 
						|
 | 
						|
   (4)  Long lazy entries.  These cover the slots when a short entry
 | 
						|
	won't fit ('index*4' overflows its field), and look like:
 | 
						|
 | 
						|
	lis %r11, %hi(index*4 + &plt[PLT_DATA_START_WORDS])
 | 
						|
	lwzu %r12, %r11, %lo(index*4 + &plt[PLT_DATA_START_WORDS])
 | 
						|
	b  &plt[PLT_TRAMPOLINE_ENTRY_WORDS]
 | 
						|
	bctr
 | 
						|
 | 
						|
   (5)	Long indirect jumps.  These replace (4) when a direct jump
 | 
						|
	wouldn't reach.  They look like:
 | 
						|
 | 
						|
	lis %r11, %hi(index*4 + &plt[PLT_DATA_START_WORDS])
 | 
						|
	lwz %r12, %r11, %lo(index*4 + &plt[PLT_DATA_START_WORDS])
 | 
						|
	mtctr %r12
 | 
						|
	bctr
 | 
						|
 | 
						|
   (6) Long direct jumps.  These are used when thread-safety is not
 | 
						|
       required.  They look like:
 | 
						|
 | 
						|
       lis %r12, %hi(finaladdr)
 | 
						|
       addi %r12, %r12, %lo(finaladdr)
 | 
						|
       mtctr %r12
 | 
						|
       bctr
 | 
						|
 | 
						|
 | 
						|
   The lazy entries, (2) and (4), are set up here in
 | 
						|
   __elf_machine_runtime_setup.  (1), (3), and (5) are set up in
 | 
						|
   __elf_machine_fixup_plt.  (1), (3), and (6) can also be constructed
 | 
						|
   in __process_machine_rela.
 | 
						|
 | 
						|
   The reason for the somewhat strange construction of the long
 | 
						|
   entries, (4) and (5), is that we need to ensure thread-safety.  For
 | 
						|
   (1) and (3), this is obvious because only one instruction is
 | 
						|
   changed and the PPC architecture guarantees that aligned stores are
 | 
						|
   atomic.  For (5), this is more tricky.  When changing (4) to (5),
 | 
						|
   the `b' instruction is first changed to `mtctr'; this is safe
 | 
						|
   and is why the `lwzu' instruction is not just a simple `addi'.
 | 
						|
   Once this is done, and is visible to all processors, the `lwzu' can
 | 
						|
   safely be changed to a `lwz'.  */
 | 
						|
int
 | 
						|
__elf_machine_runtime_setup (struct link_map *map, int lazy, int profile)
 | 
						|
{
 | 
						|
  if (map->l_info[DT_JMPREL])
 | 
						|
    {
 | 
						|
      Elf32_Word i;
 | 
						|
      Elf32_Word *plt = (Elf32_Word *) D_PTR (map, l_info[DT_PLTGOT]);
 | 
						|
      Elf32_Word num_plt_entries = (map->l_info[DT_PLTRELSZ]->d_un.d_val
 | 
						|
				    / sizeof (Elf32_Rela));
 | 
						|
      Elf32_Word rel_offset_words = PLT_DATA_START_WORDS (num_plt_entries);
 | 
						|
      Elf32_Word data_words = (Elf32_Word) (plt + rel_offset_words);
 | 
						|
      Elf32_Word size_modified;
 | 
						|
 | 
						|
      extern void _dl_runtime_resolve (void);
 | 
						|
      extern void _dl_prof_resolve (void);
 | 
						|
 | 
						|
      /* Convert the index in r11 into an actual address, and get the
 | 
						|
	 word at that address.  */
 | 
						|
      plt[PLT_LONGBRANCH_ENTRY_WORDS] = OPCODE_ADDIS_HI (11, 11, data_words);
 | 
						|
      plt[PLT_LONGBRANCH_ENTRY_WORDS + 1] = OPCODE_LWZ (11, data_words, 11);
 | 
						|
 | 
						|
      /* Call the procedure at that address.  */
 | 
						|
      plt[PLT_LONGBRANCH_ENTRY_WORDS + 2] = OPCODE_MTCTR (11);
 | 
						|
      plt[PLT_LONGBRANCH_ENTRY_WORDS + 3] = OPCODE_BCTR ();
 | 
						|
 | 
						|
      if (lazy)
 | 
						|
	{
 | 
						|
	  Elf32_Word *tramp = plt + PLT_TRAMPOLINE_ENTRY_WORDS;
 | 
						|
	  Elf32_Word dlrr;
 | 
						|
	  Elf32_Word offset;
 | 
						|
 | 
						|
#ifndef PROF
 | 
						|
	  dlrr = (Elf32_Word) (profile
 | 
						|
			       ? _dl_prof_resolve
 | 
						|
			       : _dl_runtime_resolve);
 | 
						|
	  if (profile && GLRO(dl_profile) != NULL
 | 
						|
	      && _dl_name_match_p (GLRO(dl_profile), map))
 | 
						|
	    /* This is the object we are looking for.  Say that we really
 | 
						|
	       want profiling and the timers are started.  */
 | 
						|
	    GL(dl_profile_map) = map;
 | 
						|
#else
 | 
						|
	  dlrr = (Elf32_Word) _dl_runtime_resolve;
 | 
						|
#endif
 | 
						|
 | 
						|
	  /* For the long entries, subtract off data_words.  */
 | 
						|
	  tramp[0] = OPCODE_ADDIS_HI (11, 11, -data_words);
 | 
						|
	  tramp[1] = OPCODE_ADDI (11, 11, -data_words);
 | 
						|
 | 
						|
	  /* Multiply index of entry by 3 (in r11).  */
 | 
						|
	  tramp[2] = OPCODE_SLWI (12, 11, 1);
 | 
						|
	  tramp[3] = OPCODE_ADD (11, 12, 11);
 | 
						|
	  if (dlrr <= 0x01fffffc || dlrr >= 0xfe000000)
 | 
						|
	    {
 | 
						|
	      /* Load address of link map in r12.  */
 | 
						|
	      tramp[4] = OPCODE_LI (12, (Elf32_Word) map);
 | 
						|
	      tramp[5] = OPCODE_ADDIS_HI (12, 12, (Elf32_Word) map);
 | 
						|
 | 
						|
	      /* Call _dl_runtime_resolve.  */
 | 
						|
	      tramp[6] = OPCODE_BA (dlrr);
 | 
						|
	    }
 | 
						|
	  else
 | 
						|
	    {
 | 
						|
	      /* Get address of _dl_runtime_resolve in CTR.  */
 | 
						|
	      tramp[4] = OPCODE_LI (12, dlrr);
 | 
						|
	      tramp[5] = OPCODE_ADDIS_HI (12, 12, dlrr);
 | 
						|
	      tramp[6] = OPCODE_MTCTR (12);
 | 
						|
 | 
						|
	      /* Load address of link map in r12.  */
 | 
						|
	      tramp[7] = OPCODE_LI (12, (Elf32_Word) map);
 | 
						|
	      tramp[8] = OPCODE_ADDIS_HI (12, 12, (Elf32_Word) map);
 | 
						|
 | 
						|
	      /* Call _dl_runtime_resolve.  */
 | 
						|
	      tramp[9] = OPCODE_BCTR ();
 | 
						|
	    }
 | 
						|
 | 
						|
	  /* Set up the lazy PLT entries.  */
 | 
						|
	  offset = PLT_INITIAL_ENTRY_WORDS;
 | 
						|
	  i = 0;
 | 
						|
	  while (i < num_plt_entries && i < PLT_DOUBLE_SIZE)
 | 
						|
	    {
 | 
						|
	      plt[offset  ] = OPCODE_LI (11, i * 4);
 | 
						|
	      plt[offset+1] = OPCODE_B ((PLT_TRAMPOLINE_ENTRY_WORDS + 2
 | 
						|
					 - (offset+1))
 | 
						|
					* 4);
 | 
						|
	      i++;
 | 
						|
	      offset += 2;
 | 
						|
	    }
 | 
						|
	  while (i < num_plt_entries)
 | 
						|
	    {
 | 
						|
	      plt[offset  ] = OPCODE_LIS_HI (11, i * 4 + data_words);
 | 
						|
	      plt[offset+1] = OPCODE_LWZU (12, i * 4 + data_words, 11);
 | 
						|
	      plt[offset+2] = OPCODE_B ((PLT_TRAMPOLINE_ENTRY_WORDS
 | 
						|
					 - (offset+2))
 | 
						|
					* 4);
 | 
						|
	      plt[offset+3] = OPCODE_BCTR ();
 | 
						|
	      i++;
 | 
						|
	      offset += 4;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
      /* Now, we've modified code.  We need to write the changes from
 | 
						|
	 the data cache to a second-level unified cache, then make
 | 
						|
	 sure that stale data in the instruction cache is removed.
 | 
						|
	 (In a multiprocessor system, the effect is more complex.)
 | 
						|
	 Most of the PLT shouldn't be in the instruction cache, but
 | 
						|
	 there may be a little overlap at the start and the end.
 | 
						|
 | 
						|
	 Assumes that dcbst and icbi apply to lines of 16 bytes or
 | 
						|
	 more.  Current known line sizes are 16, 32, and 128 bytes.
 | 
						|
	 The following gets the __cache_line_size, when available.  */
 | 
						|
 | 
						|
      /* Default minimum 4 words per cache line.  */
 | 
						|
      int line_size_words = 4;
 | 
						|
 | 
						|
      if (lazy && __cache_line_size != 0)
 | 
						|
	/* Convert bytes to words.  */
 | 
						|
	line_size_words = __cache_line_size / 4;
 | 
						|
 | 
						|
      size_modified = lazy ? rel_offset_words : 6;
 | 
						|
      for (i = 0; i < size_modified; i += line_size_words)
 | 
						|
        PPC_DCBST (plt + i);
 | 
						|
      PPC_DCBST (plt + size_modified - 1);
 | 
						|
      PPC_SYNC;
 | 
						|
 | 
						|
      for (i = 0; i < size_modified; i += line_size_words)
 | 
						|
        PPC_ICBI (plt + i);
 | 
						|
      PPC_ICBI (plt + size_modified - 1);
 | 
						|
      PPC_ISYNC;
 | 
						|
    }
 | 
						|
 | 
						|
  return lazy;
 | 
						|
}
 | 
						|
 | 
						|
Elf32_Addr
 | 
						|
__elf_machine_fixup_plt (struct link_map *map,
 | 
						|
			 Elf32_Addr *reloc_addr, Elf32_Addr finaladdr)
 | 
						|
{
 | 
						|
  Elf32_Sword delta = finaladdr - (Elf32_Word) reloc_addr;
 | 
						|
  if (delta << 6 >> 6 == delta)
 | 
						|
    *reloc_addr = OPCODE_B (delta);
 | 
						|
  else if (finaladdr <= 0x01fffffc || finaladdr >= 0xfe000000)
 | 
						|
    *reloc_addr = OPCODE_BA (finaladdr);
 | 
						|
  else
 | 
						|
    {
 | 
						|
      Elf32_Word *plt, *data_words;
 | 
						|
      Elf32_Word index, offset, num_plt_entries;
 | 
						|
 | 
						|
      num_plt_entries = (map->l_info[DT_PLTRELSZ]->d_un.d_val
 | 
						|
			 / sizeof(Elf32_Rela));
 | 
						|
      plt = (Elf32_Word *) D_PTR (map, l_info[DT_PLTGOT]);
 | 
						|
      offset = reloc_addr - plt;
 | 
						|
      index = (offset - PLT_INITIAL_ENTRY_WORDS)/2;
 | 
						|
      data_words = plt + PLT_DATA_START_WORDS (num_plt_entries);
 | 
						|
 | 
						|
      reloc_addr += 1;
 | 
						|
 | 
						|
      if (index < PLT_DOUBLE_SIZE)
 | 
						|
	{
 | 
						|
	  data_words[index] = finaladdr;
 | 
						|
	  PPC_SYNC;
 | 
						|
	  *reloc_addr = OPCODE_B ((PLT_LONGBRANCH_ENTRY_WORDS - (offset+1))
 | 
						|
				  * 4);
 | 
						|
	}
 | 
						|
      else
 | 
						|
	{
 | 
						|
	  index -= (index - PLT_DOUBLE_SIZE)/2;
 | 
						|
 | 
						|
	  data_words[index] = finaladdr;
 | 
						|
	  PPC_SYNC;
 | 
						|
 | 
						|
	  reloc_addr[1] = OPCODE_MTCTR (12);
 | 
						|
	  MODIFIED_CODE_NOQUEUE (reloc_addr + 1);
 | 
						|
	  PPC_SYNC;
 | 
						|
 | 
						|
	  reloc_addr[0] = OPCODE_LWZ (12,
 | 
						|
				      (Elf32_Word) (data_words + index), 11);
 | 
						|
	}
 | 
						|
    }
 | 
						|
  MODIFIED_CODE (reloc_addr);
 | 
						|
  return finaladdr;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
_dl_reloc_overflow (struct link_map *map,
 | 
						|
		    const char *name,
 | 
						|
		    Elf32_Addr *const reloc_addr,
 | 
						|
		    const Elf32_Sym *refsym)
 | 
						|
{
 | 
						|
  char buffer[128];
 | 
						|
  char *t;
 | 
						|
  t = stpcpy (buffer, name);
 | 
						|
  t = stpcpy (t, " relocation at 0x00000000");
 | 
						|
  _itoa_word ((unsigned) reloc_addr, t, 16, 0);
 | 
						|
  if (refsym)
 | 
						|
    {
 | 
						|
      const char *strtab;
 | 
						|
 | 
						|
      strtab = (const void *) D_PTR (map, l_info[DT_STRTAB]);
 | 
						|
      t = stpcpy (t, " for symbol `");
 | 
						|
      t = stpcpy (t, strtab + refsym->st_name);
 | 
						|
      t = stpcpy (t, "'");
 | 
						|
    }
 | 
						|
  t = stpcpy (t, " out of range");
 | 
						|
  _dl_signal_error (0, map->l_name, NULL, buffer);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
__process_machine_rela (struct link_map *map,
 | 
						|
			const Elf32_Rela *reloc,
 | 
						|
			struct link_map *sym_map,
 | 
						|
			const Elf32_Sym *sym,
 | 
						|
			const Elf32_Sym *refsym,
 | 
						|
			Elf32_Addr *const reloc_addr,
 | 
						|
			Elf32_Addr const finaladdr,
 | 
						|
			int rinfo)
 | 
						|
{
 | 
						|
  union unaligned
 | 
						|
    {
 | 
						|
      uint16_t u2;
 | 
						|
      uint32_t u4;
 | 
						|
    } __attribute__((__packed__));
 | 
						|
 | 
						|
  switch (rinfo)
 | 
						|
    {
 | 
						|
    case R_PPC_NONE:
 | 
						|
      return;
 | 
						|
 | 
						|
    case R_PPC_ADDR32:
 | 
						|
    case R_PPC_GLOB_DAT:
 | 
						|
    case R_PPC_RELATIVE:
 | 
						|
      *reloc_addr = finaladdr;
 | 
						|
      return;
 | 
						|
 | 
						|
    case R_PPC_IRELATIVE:
 | 
						|
      *reloc_addr = ((Elf32_Addr (*) (void)) finaladdr) ();
 | 
						|
      return;
 | 
						|
 | 
						|
    case R_PPC_UADDR32:
 | 
						|
      ((union unaligned *) reloc_addr)->u4 = finaladdr;
 | 
						|
      break;
 | 
						|
 | 
						|
    case R_PPC_ADDR24:
 | 
						|
      if (__glibc_unlikely (finaladdr > 0x01fffffc && finaladdr < 0xfe000000))
 | 
						|
	_dl_reloc_overflow (map,  "R_PPC_ADDR24", reloc_addr, refsym);
 | 
						|
      *reloc_addr = (*reloc_addr & 0xfc000003) | (finaladdr & 0x3fffffc);
 | 
						|
      break;
 | 
						|
 | 
						|
    case R_PPC_ADDR16:
 | 
						|
      if (__glibc_unlikely (finaladdr > 0x7fff && finaladdr < 0xffff8000))
 | 
						|
	_dl_reloc_overflow (map,  "R_PPC_ADDR16", reloc_addr, refsym);
 | 
						|
      *(Elf32_Half*) reloc_addr = finaladdr;
 | 
						|
      break;
 | 
						|
 | 
						|
    case R_PPC_UADDR16:
 | 
						|
      if (__glibc_unlikely (finaladdr > 0x7fff && finaladdr < 0xffff8000))
 | 
						|
	_dl_reloc_overflow (map,  "R_PPC_UADDR16", reloc_addr, refsym);
 | 
						|
      ((union unaligned *) reloc_addr)->u2 = finaladdr;
 | 
						|
      break;
 | 
						|
 | 
						|
    case R_PPC_ADDR16_LO:
 | 
						|
      *(Elf32_Half*) reloc_addr = finaladdr;
 | 
						|
      break;
 | 
						|
 | 
						|
    case R_PPC_ADDR16_HI:
 | 
						|
      *(Elf32_Half*) reloc_addr = finaladdr >> 16;
 | 
						|
      break;
 | 
						|
 | 
						|
    case R_PPC_ADDR16_HA:
 | 
						|
      *(Elf32_Half*) reloc_addr = (finaladdr + 0x8000) >> 16;
 | 
						|
      break;
 | 
						|
 | 
						|
    case R_PPC_ADDR14:
 | 
						|
    case R_PPC_ADDR14_BRTAKEN:
 | 
						|
    case R_PPC_ADDR14_BRNTAKEN:
 | 
						|
      if (__glibc_unlikely (finaladdr > 0x7fff && finaladdr < 0xffff8000))
 | 
						|
	_dl_reloc_overflow (map,  "R_PPC_ADDR14", reloc_addr, refsym);
 | 
						|
      *reloc_addr = (*reloc_addr & 0xffff0003) | (finaladdr & 0xfffc);
 | 
						|
      if (rinfo != R_PPC_ADDR14)
 | 
						|
	*reloc_addr = ((*reloc_addr & 0xffdfffff)
 | 
						|
		       | ((rinfo == R_PPC_ADDR14_BRTAKEN)
 | 
						|
			  ^ (finaladdr >> 31)) << 21);
 | 
						|
      break;
 | 
						|
 | 
						|
    case R_PPC_REL24:
 | 
						|
      {
 | 
						|
	Elf32_Sword delta = finaladdr - (Elf32_Word) reloc_addr;
 | 
						|
	if (delta << 6 >> 6 != delta)
 | 
						|
	  _dl_reloc_overflow (map,  "R_PPC_REL24", reloc_addr, refsym);
 | 
						|
	*reloc_addr = (*reloc_addr & 0xfc000003) | (delta & 0x3fffffc);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
 | 
						|
    case R_PPC_COPY:
 | 
						|
      if (sym == NULL)
 | 
						|
	/* This can happen in trace mode when an object could not be
 | 
						|
	   found.  */
 | 
						|
	return;
 | 
						|
      if (sym->st_size > refsym->st_size
 | 
						|
	  || (GLRO(dl_verbose) && sym->st_size < refsym->st_size))
 | 
						|
	{
 | 
						|
	  const char *strtab;
 | 
						|
 | 
						|
	  strtab = (const void *) D_PTR (map, l_info[DT_STRTAB]);
 | 
						|
	  _dl_error_printf ("\
 | 
						|
%s: Symbol `%s' has different size in shared object, consider re-linking\n",
 | 
						|
			    RTLD_PROGNAME, strtab + refsym->st_name);
 | 
						|
	}
 | 
						|
      memcpy (reloc_addr, (char *) finaladdr, MIN (sym->st_size,
 | 
						|
						   refsym->st_size));
 | 
						|
      return;
 | 
						|
 | 
						|
    case R_PPC_REL32:
 | 
						|
      *reloc_addr = finaladdr - (Elf32_Word) reloc_addr;
 | 
						|
      return;
 | 
						|
 | 
						|
    case R_PPC_JMP_SLOT:
 | 
						|
      /* It used to be that elf_machine_fixup_plt was used here,
 | 
						|
	 but that doesn't work when ld.so relocates itself
 | 
						|
	 for the second time.  On the bright side, there's
 | 
						|
         no need to worry about thread-safety here.  */
 | 
						|
      {
 | 
						|
	Elf32_Sword delta = finaladdr - (Elf32_Word) reloc_addr;
 | 
						|
	if (delta << 6 >> 6 == delta)
 | 
						|
	  *reloc_addr = OPCODE_B (delta);
 | 
						|
	else if (finaladdr <= 0x01fffffc || finaladdr >= 0xfe000000)
 | 
						|
	  *reloc_addr = OPCODE_BA (finaladdr);
 | 
						|
	else
 | 
						|
	  {
 | 
						|
	    Elf32_Word *plt, *data_words;
 | 
						|
	    Elf32_Word index, offset, num_plt_entries;
 | 
						|
 | 
						|
	    plt = (Elf32_Word *) D_PTR (map, l_info[DT_PLTGOT]);
 | 
						|
	    offset = reloc_addr - plt;
 | 
						|
 | 
						|
	    if (offset < PLT_DOUBLE_SIZE*2 + PLT_INITIAL_ENTRY_WORDS)
 | 
						|
	      {
 | 
						|
		index = (offset - PLT_INITIAL_ENTRY_WORDS)/2;
 | 
						|
		num_plt_entries = (map->l_info[DT_PLTRELSZ]->d_un.d_val
 | 
						|
				   / sizeof(Elf32_Rela));
 | 
						|
		data_words = plt + PLT_DATA_START_WORDS (num_plt_entries);
 | 
						|
		data_words[index] = finaladdr;
 | 
						|
		reloc_addr[0] = OPCODE_LI (11, index * 4);
 | 
						|
		reloc_addr[1] = OPCODE_B ((PLT_LONGBRANCH_ENTRY_WORDS
 | 
						|
					   - (offset+1))
 | 
						|
					  * 4);
 | 
						|
		MODIFIED_CODE_NOQUEUE (reloc_addr + 1);
 | 
						|
	      }
 | 
						|
	    else
 | 
						|
	      {
 | 
						|
		reloc_addr[0] = OPCODE_LIS_HI (12, finaladdr);
 | 
						|
		reloc_addr[1] = OPCODE_ADDI (12, 12, finaladdr);
 | 
						|
		reloc_addr[2] = OPCODE_MTCTR (12);
 | 
						|
		reloc_addr[3] = OPCODE_BCTR ();
 | 
						|
		MODIFIED_CODE_NOQUEUE (reloc_addr + 3);
 | 
						|
	      }
 | 
						|
	  }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
 | 
						|
#define DO_TLS_RELOC(suffix)						      \
 | 
						|
    case R_PPC_DTPREL##suffix:						      \
 | 
						|
      /* During relocation all TLS symbols are defined and used.	      \
 | 
						|
	 Therefore the offset is already correct.  */			      \
 | 
						|
      if (sym_map != NULL)						      \
 | 
						|
	do_reloc##suffix ("R_PPC_DTPREL"#suffix,			      \
 | 
						|
			  TLS_DTPREL_VALUE (sym, reloc));		      \
 | 
						|
      break;								      \
 | 
						|
    case R_PPC_TPREL##suffix:						      \
 | 
						|
      if (sym_map != NULL)						      \
 | 
						|
	{								      \
 | 
						|
	  CHECK_STATIC_TLS (map, sym_map);				      \
 | 
						|
	  do_reloc##suffix ("R_PPC_TPREL"#suffix,			      \
 | 
						|
			    TLS_TPREL_VALUE (sym_map, sym, reloc));	      \
 | 
						|
	}								      \
 | 
						|
      break;
 | 
						|
 | 
						|
    inline void do_reloc16 (const char *r_name, Elf32_Addr value)
 | 
						|
      {
 | 
						|
	if (__glibc_unlikely (value > 0x7fff && value < 0xffff8000))
 | 
						|
	  _dl_reloc_overflow (map, r_name, reloc_addr, refsym);
 | 
						|
	*(Elf32_Half *) reloc_addr = value;
 | 
						|
      }
 | 
						|
    inline void do_reloc16_LO (const char *r_name, Elf32_Addr value)
 | 
						|
      {
 | 
						|
	*(Elf32_Half *) reloc_addr = value;
 | 
						|
      }
 | 
						|
    inline void do_reloc16_HI (const char *r_name, Elf32_Addr value)
 | 
						|
      {
 | 
						|
	*(Elf32_Half *) reloc_addr = value >> 16;
 | 
						|
      }
 | 
						|
    inline void do_reloc16_HA (const char *r_name, Elf32_Addr value)
 | 
						|
      {
 | 
						|
	*(Elf32_Half *) reloc_addr = (value + 0x8000) >> 16;
 | 
						|
      }
 | 
						|
    DO_TLS_RELOC (16)
 | 
						|
    DO_TLS_RELOC (16_LO)
 | 
						|
    DO_TLS_RELOC (16_HI)
 | 
						|
    DO_TLS_RELOC (16_HA)
 | 
						|
 | 
						|
    default:
 | 
						|
      _dl_reloc_bad_type (map, rinfo, 0);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
  MODIFIED_CODE_NOQUEUE (reloc_addr);
 | 
						|
}
 |