mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-30 10:45:40 +03:00 
			
		
		
		
	When _Float128 is ABI-equivalent to long double, there is no need for tgmath.h to have any special _Float128 handling: it's always OK to call the long double versions of functions for _Float128 arguments in that case, and the logic to determine return types is generic. Thus, this patch changes the use of __HAVE_FLOAT128 to __HAVE_DISTINCT_FLOAT128, as a minor optimization to reduce the size of the macro expansions in the ABI-equivalent case. Tested for x86_64. * math/tgmath.h [__HAVE_FLOAT128]: Change conditional to [__HAVE_DISTINCT_FLOAT128].
		
			
				
	
	
		
			648 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			648 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Copyright (C) 1997-2017 Free Software Foundation, Inc.
 | |
|    This file is part of the GNU C Library.
 | |
| 
 | |
|    The GNU C Library is free software; you can redistribute it and/or
 | |
|    modify it under the terms of the GNU Lesser General Public
 | |
|    License as published by the Free Software Foundation; either
 | |
|    version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|    The GNU C Library is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    Lesser General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Lesser General Public
 | |
|    License along with the GNU C Library; if not, see
 | |
|    <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| /*
 | |
|  *	ISO C99 Standard: 7.22 Type-generic math	<tgmath.h>
 | |
|  */
 | |
| 
 | |
| #ifndef _TGMATH_H
 | |
| #define _TGMATH_H	1
 | |
| 
 | |
| #define __GLIBC_INTERNAL_STARTING_HEADER_IMPLEMENTATION
 | |
| #include <bits/libc-header-start.h>
 | |
| 
 | |
| /* Include the needed headers.  */
 | |
| #include <bits/floatn.h>
 | |
| #include <math.h>
 | |
| #include <complex.h>
 | |
| 
 | |
| 
 | |
| /* Since `complex' is currently not really implemented in most C compilers
 | |
|    and if it is implemented, the implementations differ.  This makes it
 | |
|    quite difficult to write a generic implementation of this header.  We
 | |
|    do not try this for now and instead concentrate only on GNU CC.  Once
 | |
|    we have more information support for other compilers might follow.  */
 | |
| 
 | |
| #if __GNUC_PREREQ (2, 7)
 | |
| 
 | |
| # ifdef __NO_LONG_DOUBLE_MATH
 | |
| #  define __tgml(fct) fct
 | |
| # else
 | |
| #  define __tgml(fct) fct ## l
 | |
| # endif
 | |
| 
 | |
| /* This is ugly but unless gcc gets appropriate builtins we have to do
 | |
|    something like this.  Don't ask how it works.  */
 | |
| 
 | |
| /* __floating_type expands to 1 if TYPE is a floating type (including
 | |
|    complex floating types), 0 if TYPE is an integer type (including
 | |
|    complex integer types).  __real_integer_type expands to 1 if TYPE
 | |
|    is a real integer type.  __complex_integer_type expands to 1 if
 | |
|    TYPE is a complex integer type.  All these macros expand to integer
 | |
|    constant expressions.  All these macros can assume their argument
 | |
|    has an arithmetic type (not vector, decimal floating-point or
 | |
|    fixed-point), valid to pass to tgmath.h macros.  */
 | |
| # if __GNUC_PREREQ (3, 1)
 | |
| /* __builtin_classify_type expands to an integer constant expression
 | |
|    in GCC 3.1 and later.  Default conversions applied to the argument
 | |
|    of __builtin_classify_type mean it always returns 1 for real
 | |
|    integer types rather than ever returning different values for
 | |
|    character, boolean or enumerated types.  */
 | |
| #  define __floating_type(type)				\
 | |
|   (__builtin_classify_type (__real__ ((type) 0)) == 8)
 | |
| #  define __real_integer_type(type)		\
 | |
|   (__builtin_classify_type ((type) 0) == 1)
 | |
| #  define __complex_integer_type(type)				\
 | |
|   (__builtin_classify_type ((type) 0) == 9			\
 | |
|    && __builtin_classify_type (__real__ ((type) 0)) == 1)
 | |
| # else
 | |
| /* GCC versions predating __builtin_classify_type are also looser on
 | |
|    what counts as an integer constant expression.  */
 | |
| #  define __floating_type(type) (((type) 1.25) != 1)
 | |
| #  define __real_integer_type(type) (((type) (1.25 + _Complex_I)) == 1)
 | |
| #  define __complex_integer_type(type)			\
 | |
|   (((type) (1.25 + _Complex_I)) == (1 + _Complex_I))
 | |
| # endif
 | |
| 
 | |
| /* Whether an expression (of arithmetic type) has a real type.  */
 | |
| # define __expr_is_real(E) (__builtin_classify_type (E) != 9)
 | |
| 
 | |
| /* The tgmath real type for T, where E is 0 if T is an integer type
 | |
|    and 1 for a floating type.  If T has a complex type, it is
 | |
|    unspecified whether the return type is real or complex (but it has
 | |
|    the correct corresponding real type).  */
 | |
| # define __tgmath_real_type_sub(T, E) \
 | |
|   __typeof__ (*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0	      \
 | |
| 		  : (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0))
 | |
| 
 | |
| /* The tgmath real type of EXPR.  */
 | |
| # define __tgmath_real_type(expr) \
 | |
|   __tgmath_real_type_sub (__typeof__ ((__typeof__ (+(expr))) 0),	      \
 | |
| 			  __floating_type (__typeof__ (+(expr))))
 | |
| 
 | |
| /* The tgmath complex type for T, where E1 is 1 if T has a floating
 | |
|    type and 0 otherwise, E2 is 1 if T has a real integer type and 0
 | |
|    otherwise, and E3 is 1 if T has a complex type and 0 otherwise.  */
 | |
| # define __tgmath_complex_type_sub(T, E1, E2, E3)			\
 | |
|   __typeof__ (*(0							\
 | |
| 		? (__typeof__ (0 ? (T *) 0 : (void *) (!(E1)))) 0	\
 | |
| 		: (__typeof__ (0					\
 | |
| 			       ? (__typeof__ (0				\
 | |
| 					      ? (double *) 0		\
 | |
| 					      : (void *) (!(E2)))) 0	\
 | |
| 			       : (__typeof__ (0				\
 | |
| 					      ? (_Complex double *) 0	\
 | |
| 					      : (void *) (!(E3)))) 0)) 0))
 | |
| 
 | |
| /* The tgmath complex type of EXPR.  */
 | |
| # define __tgmath_complex_type(expr)					\
 | |
|   __tgmath_complex_type_sub (__typeof__ ((__typeof__ (+(expr))) 0),	\
 | |
| 			     __floating_type (__typeof__ (+(expr))),	\
 | |
| 			     __real_integer_type (__typeof__ (+(expr))), \
 | |
| 			     __complex_integer_type (__typeof__ (+(expr))))
 | |
| 
 | |
| /* Expand to text that checks if ARG_COMB has type _Float128, and if
 | |
|    so calls the appropriately suffixed FCT (which may include a cast),
 | |
|    or FCT and CFCT for complex functions, with arguments ARG_CALL.  */
 | |
| # if __HAVE_DISTINCT_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT)
 | |
| #  define __TGMATH_F128(arg_comb, fct, arg_call) \
 | |
|   __builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128)	\
 | |
|   ? fct ## f128 arg_call :
 | |
| #  define __TGMATH_CF128(arg_comb, fct, cfct, arg_call)			\
 | |
|   __builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), _Float128) \
 | |
|   ? (__expr_is_real (arg_comb)						\
 | |
|      ? fct ## f128 arg_call						\
 | |
|      : cfct ## f128 arg_call) :
 | |
| # else
 | |
| #  define __TGMATH_F128(arg_comb, fct, arg_call) /* Nothing.  */
 | |
| #  define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) /* Nothing.  */
 | |
| # endif
 | |
| 
 | |
| 
 | |
| /* We have two kinds of generic macros: to support functions which are
 | |
|    only defined on real valued parameters and those which are defined
 | |
|    for complex functions as well.  */
 | |
| # define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \
 | |
|   (__extension__ ((sizeof (+(Val)) == sizeof (double)			      \
 | |
| 		      || __builtin_classify_type (Val) != 8)		      \
 | |
| 		     ? (__tgmath_real_type (Val)) Fct (Val)		      \
 | |
| 		     : (sizeof (+(Val)) == sizeof (float))		      \
 | |
| 		     ? (__tgmath_real_type (Val)) Fct##f (Val)		      \
 | |
| 		     : __TGMATH_F128 ((Val), (__tgmath_real_type (Val)) Fct,  \
 | |
| 				      (Val))				      \
 | |
| 		     (__tgmath_real_type (Val)) __tgml(Fct) (Val)))
 | |
| 
 | |
| # define __TGMATH_UNARY_REAL_RET_ONLY(Val, Fct) \
 | |
|      (__extension__ ((sizeof (+(Val)) == sizeof (double)		      \
 | |
| 		      || __builtin_classify_type (Val) != 8)		      \
 | |
| 		     ? Fct (Val)					      \
 | |
| 		     : (sizeof (+(Val)) == sizeof (float))		      \
 | |
| 		     ? Fct##f (Val)					      \
 | |
| 		     : __TGMATH_F128 ((Val), Fct, (Val))		      \
 | |
| 		     __tgml(Fct) (Val)))
 | |
| 
 | |
| # define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
 | |
|      (__extension__ ((sizeof (+(Val1)) == sizeof (double)		      \
 | |
| 		      || __builtin_classify_type (Val1) != 8)		      \
 | |
| 		     ? (__tgmath_real_type (Val1)) Fct (Val1, Val2)	      \
 | |
| 		     : (sizeof (+(Val1)) == sizeof (float))		      \
 | |
| 		     ? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2)	      \
 | |
| 		     : __TGMATH_F128 ((Val1), (__tgmath_real_type (Val1)) Fct, \
 | |
| 				    (Val1, Val2))			      \
 | |
| 		     (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2)))
 | |
| 
 | |
| # define __TGMATH_BINARY_FIRST_REAL_STD_ONLY(Val1, Val2, Fct) \
 | |
|      (__extension__ ((sizeof (+(Val1)) == sizeof (double)		      \
 | |
| 		      || __builtin_classify_type (Val1) != 8)		      \
 | |
| 		     ? (__tgmath_real_type (Val1)) Fct (Val1, Val2)	      \
 | |
| 		     : (sizeof (+(Val1)) == sizeof (float))		      \
 | |
| 		     ? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2)	      \
 | |
| 		     : (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2)))
 | |
| 
 | |
| # define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
 | |
|      (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double)	      \
 | |
| 		      && __builtin_classify_type ((Val1) + (Val2)) == 8)      \
 | |
| 		     ? __TGMATH_F128 ((Val1) + (Val2),			      \
 | |
| 				      (__typeof				      \
 | |
| 				       ((__tgmath_real_type (Val1)) 0	      \
 | |
| 					+ (__tgmath_real_type (Val2)) 0)) Fct, \
 | |
| 				      (Val1, Val2))			      \
 | |
| 		     (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | |
| 				+ (__tgmath_real_type (Val2)) 0))	      \
 | |
| 		     __tgml(Fct) (Val1, Val2)				      \
 | |
| 		     : (sizeof (+(Val1)) == sizeof (double)		      \
 | |
| 			|| sizeof (+(Val2)) == sizeof (double)		      \
 | |
| 			|| __builtin_classify_type (Val1) != 8		      \
 | |
| 			|| __builtin_classify_type (Val2) != 8)		      \
 | |
| 		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0))	      \
 | |
| 		       Fct (Val1, Val2)					      \
 | |
| 		     : (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0))	      \
 | |
| 		       Fct##f (Val1, Val2)))
 | |
| 
 | |
| # define __TGMATH_BINARY_REAL_STD_ONLY(Val1, Val2, Fct) \
 | |
|      (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double)	      \
 | |
| 		      && __builtin_classify_type ((Val1) + (Val2)) == 8)      \
 | |
| 		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | |
| 				  + (__tgmath_real_type (Val2)) 0))	      \
 | |
| 		       __tgml(Fct) (Val1, Val2)				      \
 | |
| 		     : (sizeof (+(Val1)) == sizeof (double)		      \
 | |
| 			|| sizeof (+(Val2)) == sizeof (double)		      \
 | |
| 			|| __builtin_classify_type (Val1) != 8		      \
 | |
| 			|| __builtin_classify_type (Val2) != 8)		      \
 | |
| 		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0))	      \
 | |
| 		       Fct (Val1, Val2)					      \
 | |
| 		     : (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0))	      \
 | |
| 		       Fct##f (Val1, Val2)))
 | |
| 
 | |
| # define __TGMATH_BINARY_REAL_RET_ONLY(Val1, Val2, Fct) \
 | |
|      (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double)	      \
 | |
| 		      && __builtin_classify_type ((Val1) + (Val2)) == 8)      \
 | |
| 		     ? __TGMATH_F128 ((Val1) + (Val2), Fct, (Val1, Val2))     \
 | |
| 		     __tgml(Fct) (Val1, Val2)				      \
 | |
| 		     : (sizeof (+(Val1)) == sizeof (double)		      \
 | |
| 			|| sizeof (+(Val2)) == sizeof (double)		      \
 | |
| 			|| __builtin_classify_type (Val1) != 8		      \
 | |
| 			|| __builtin_classify_type (Val2) != 8)		      \
 | |
| 		     ? Fct (Val1, Val2)					      \
 | |
| 		     : Fct##f (Val1, Val2)))
 | |
| 
 | |
| # define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
 | |
|      (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double)	      \
 | |
| 		      && __builtin_classify_type ((Val1) + (Val2)) == 8)      \
 | |
| 		     ? __TGMATH_F128 ((Val1) + (Val2),			      \
 | |
| 				      (__typeof				      \
 | |
| 				       ((__tgmath_real_type (Val1)) 0	      \
 | |
| 					+ (__tgmath_real_type (Val2)) 0)) Fct, \
 | |
| 				      (Val1, Val2, Val3))		      \
 | |
| 		     (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | |
| 				+ (__tgmath_real_type (Val2)) 0))	      \
 | |
| 		     __tgml(Fct) (Val1, Val2, Val3)			      \
 | |
| 		     : (sizeof (+(Val1)) == sizeof (double)		      \
 | |
| 			|| sizeof (+(Val2)) == sizeof (double)		      \
 | |
| 			|| __builtin_classify_type (Val1) != 8		      \
 | |
| 			|| __builtin_classify_type (Val2) != 8)		      \
 | |
| 		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0))	      \
 | |
| 		       Fct (Val1, Val2, Val3)				      \
 | |
| 		     : (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0))	      \
 | |
| 		       Fct##f (Val1, Val2, Val3)))
 | |
| 
 | |
| # define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
 | |
|      (__extension__ ((sizeof ((Val1) + (Val2) + (Val3)) > sizeof (double)     \
 | |
| 		      && __builtin_classify_type ((Val1) + (Val2) + (Val3))   \
 | |
| 			 == 8)						      \
 | |
| 		     ? __TGMATH_F128 ((Val1) + (Val2) + (Val3),		      \
 | |
| 				      (__typeof				      \
 | |
| 				       ((__tgmath_real_type (Val1)) 0	      \
 | |
| 					+ (__tgmath_real_type (Val2)) 0	      \
 | |
| 					+ (__tgmath_real_type (Val3)) 0)) Fct, \
 | |
| 				      (Val1, Val2, Val3))		      \
 | |
| 		     (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | |
| 				+ (__tgmath_real_type (Val2)) 0		      \
 | |
| 				+ (__tgmath_real_type (Val3)) 0))	      \
 | |
| 		       __tgml(Fct) (Val1, Val2, Val3)			      \
 | |
| 		     : (sizeof (+(Val1)) == sizeof (double)		      \
 | |
| 			|| sizeof (+(Val2)) == sizeof (double)		      \
 | |
| 			|| sizeof (+(Val3)) == sizeof (double)		      \
 | |
| 			|| __builtin_classify_type (Val1) != 8		      \
 | |
| 			|| __builtin_classify_type (Val2) != 8		      \
 | |
| 			|| __builtin_classify_type (Val3) != 8)		      \
 | |
| 		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0	      \
 | |
| 				   + (__tgmath_real_type (Val3)) 0))	      \
 | |
| 		       Fct (Val1, Val2, Val3)				      \
 | |
| 		     : (__typeof ((__tgmath_real_type (Val1)) 0		      \
 | |
| 				   + (__tgmath_real_type (Val2)) 0	      \
 | |
| 				   + (__tgmath_real_type (Val3)) 0))	      \
 | |
| 		       Fct##f (Val1, Val2, Val3)))
 | |
| 
 | |
| # define __TGMATH_TERNARY_FIRST_REAL_RET_ONLY(Val1, Val2, Val3, Fct) \
 | |
|      (__extension__ ((sizeof (+(Val1)) == sizeof (double)		\
 | |
| 		      || __builtin_classify_type (Val1) != 8)		\
 | |
| 		     ? Fct (Val1, Val2, Val3)				\
 | |
| 		     : (sizeof (+(Val1)) == sizeof (float))		\
 | |
| 		     ? Fct##f (Val1, Val2, Val3)			\
 | |
| 		     : __TGMATH_F128 ((Val1), Fct, (Val1, Val2, Val3))	\
 | |
| 		     __tgml(Fct) (Val1, Val2, Val3)))
 | |
| 
 | |
| /* XXX This definition has to be changed as soon as the compiler understands
 | |
|    the imaginary keyword.  */
 | |
| # define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
 | |
|      (__extension__ ((sizeof (+__real__ (Val)) == sizeof (double)	      \
 | |
| 		      || __builtin_classify_type (__real__ (Val)) != 8)	      \
 | |
| 		     ? (__expr_is_real (Val)				      \
 | |
| 			? (__tgmath_complex_type (Val)) Fct (Val)	      \
 | |
| 			: (__tgmath_complex_type (Val)) Cfct (Val))	      \
 | |
| 		     : (sizeof (+__real__ (Val)) == sizeof (float))	      \
 | |
| 		     ? (__expr_is_real (Val)				      \
 | |
| 			? (__tgmath_complex_type (Val)) Fct##f (Val)	      \
 | |
| 			: (__tgmath_complex_type (Val)) Cfct##f (Val))	      \
 | |
| 		     : __TGMATH_CF128 ((Val),				      \
 | |
| 				       (__tgmath_complex_type (Val)) Fct,     \
 | |
| 				       (__tgmath_complex_type (Val)) Cfct,    \
 | |
| 				       (Val))				      \
 | |
| 		     (__expr_is_real (Val)				      \
 | |
| 		      ? (__tgmath_complex_type (Val)) __tgml(Fct) (Val)	      \
 | |
| 		      : (__tgmath_complex_type (Val)) __tgml(Cfct) (Val))))
 | |
| 
 | |
| # define __TGMATH_UNARY_IMAG(Val, Cfct) \
 | |
|      (__extension__ ((sizeof (+__real__ (Val)) == sizeof (double)	      \
 | |
| 		      || __builtin_classify_type (__real__ (Val)) != 8)	      \
 | |
| 		     ? (__typeof__ ((__tgmath_real_type (Val)) 0	      \
 | |
| 				    + _Complex_I)) Cfct (Val)		      \
 | |
| 		     : (sizeof (+__real__ (Val)) == sizeof (float))	      \
 | |
| 		     ? (__typeof__ ((__tgmath_real_type (Val)) 0	      \
 | |
| 				    + _Complex_I)) Cfct##f (Val)	      \
 | |
| 		     : __TGMATH_F128 (__real__ (Val),			      \
 | |
| 				      (__typeof__			      \
 | |
| 				       ((__tgmath_real_type (Val)) 0	      \
 | |
| 					+ _Complex_I)) Cfct, (Val))	      \
 | |
| 		     (__typeof__ ((__tgmath_real_type (Val)) 0		      \
 | |
| 				  + _Complex_I)) __tgml(Cfct) (Val)))
 | |
| 
 | |
| /* XXX This definition has to be changed as soon as the compiler understands
 | |
|    the imaginary keyword.  */
 | |
| # define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \
 | |
|      (__extension__ ((sizeof (+__real__ (Val)) == sizeof (double)	      \
 | |
| 		      || __builtin_classify_type (__real__ (Val)) != 8)	      \
 | |
| 		     ? (__expr_is_real (Val)				      \
 | |
| 			? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
 | |
| 			  Fct (Val)					      \
 | |
| 			: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
 | |
| 			  Cfct (Val))					      \
 | |
| 		     : (sizeof (+__real__ (Val)) == sizeof (float))	      \
 | |
| 		     ? (__expr_is_real (Val)				      \
 | |
| 			? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
 | |
| 			  Fct##f (Val)					      \
 | |
| 			: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
 | |
| 			  Cfct##f (Val))				      \
 | |
| 		     : __TGMATH_CF128 ((Val), \
 | |
| 				       (__typeof__			      \
 | |
| 					(__real__			      \
 | |
| 					 (__tgmath_real_type (Val)) 0)) Fct,  \
 | |
| 				       (__typeof__			      \
 | |
| 					(__real__			      \
 | |
| 					 (__tgmath_real_type (Val)) 0)) Cfct, \
 | |
| 				       (Val))				      \
 | |
| 		     (__expr_is_real (Val)				      \
 | |
| 		      ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))  \
 | |
| 		      __tgml(Fct) (Val)					      \
 | |
| 		      : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))  \
 | |
| 		      __tgml(Cfct) (Val))))
 | |
| 
 | |
| /* XXX This definition has to be changed as soon as the compiler understands
 | |
|    the imaginary keyword.  */
 | |
| # define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
 | |
|      (__extension__ ((sizeof (__real__ (Val1)				      \
 | |
| 			      + __real__ (Val2)) > sizeof (double)	      \
 | |
| 		      && __builtin_classify_type (__real__ (Val1)	      \
 | |
| 						  + __real__ (Val2)) == 8)    \
 | |
| 		     ? __TGMATH_CF128 ((Val1) + (Val2),			      \
 | |
| 				       (__typeof			      \
 | |
| 					((__tgmath_complex_type (Val1)) 0     \
 | |
| 					 + (__tgmath_complex_type (Val2)) 0)) \
 | |
| 				       Fct,				      \
 | |
| 				       (__typeof			      \
 | |
| 					((__tgmath_complex_type (Val1)) 0     \
 | |
| 					 + (__tgmath_complex_type (Val2)) 0)) \
 | |
| 				       Cfct,				      \
 | |
| 				       (Val1, Val2))			      \
 | |
| 		     (__expr_is_real ((Val1) + (Val2))			      \
 | |
| 		      ? (__typeof ((__tgmath_complex_type (Val1)) 0	      \
 | |
| 				   + (__tgmath_complex_type (Val2)) 0))	      \
 | |
| 		      __tgml(Fct) (Val1, Val2)				      \
 | |
| 		      : (__typeof ((__tgmath_complex_type (Val1)) 0	      \
 | |
| 				   + (__tgmath_complex_type (Val2)) 0))	      \
 | |
| 		      __tgml(Cfct) (Val1, Val2))			      \
 | |
| 		     : (sizeof (+__real__ (Val1)) == sizeof (double)	      \
 | |
| 			|| sizeof (+__real__ (Val2)) == sizeof (double)	      \
 | |
| 			|| __builtin_classify_type (__real__ (Val1)) != 8     \
 | |
| 			|| __builtin_classify_type (__real__ (Val2)) != 8)    \
 | |
| 		     ? (__expr_is_real ((Val1) + (Val2))		      \
 | |
| 			? (__typeof ((__tgmath_complex_type (Val1)) 0	      \
 | |
| 				   + (__tgmath_complex_type (Val2)) 0))	      \
 | |
| 			  Fct (Val1, Val2)				      \
 | |
| 			: (__typeof ((__tgmath_complex_type (Val1)) 0	      \
 | |
| 				   + (__tgmath_complex_type (Val2)) 0))	      \
 | |
| 			  Cfct (Val1, Val2))				      \
 | |
| 		     : (__expr_is_real ((Val1) + (Val2))		      \
 | |
| 			? (__typeof ((__tgmath_complex_type (Val1)) 0	      \
 | |
| 				   + (__tgmath_complex_type (Val2)) 0))	      \
 | |
| 			  Fct##f (Val1, Val2)				      \
 | |
| 			: (__typeof ((__tgmath_complex_type (Val1)) 0	      \
 | |
| 				   + (__tgmath_complex_type (Val2)) 0))	      \
 | |
| 			  Cfct##f (Val1, Val2))))
 | |
| #else
 | |
| # error "Unsupported compiler; you cannot use <tgmath.h>"
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Unary functions defined for real and complex values.  */
 | |
| 
 | |
| 
 | |
| /* Trigonometric functions.  */
 | |
| 
 | |
| /* Arc cosine of X.  */
 | |
| #define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos)
 | |
| /* Arc sine of X.  */
 | |
| #define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin)
 | |
| /* Arc tangent of X.  */
 | |
| #define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan)
 | |
| /* Arc tangent of Y/X.  */
 | |
| #define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2)
 | |
| 
 | |
| /* Cosine of X.  */
 | |
| #define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos)
 | |
| /* Sine of X.  */
 | |
| #define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin)
 | |
| /* Tangent of X.  */
 | |
| #define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)
 | |
| 
 | |
| 
 | |
| /* Hyperbolic functions.  */
 | |
| 
 | |
| /* Hyperbolic arc cosine of X.  */
 | |
| #define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh)
 | |
| /* Hyperbolic arc sine of X.  */
 | |
| #define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh)
 | |
| /* Hyperbolic arc tangent of X.  */
 | |
| #define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)
 | |
| 
 | |
| /* Hyperbolic cosine of X.  */
 | |
| #define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh)
 | |
| /* Hyperbolic sine of X.  */
 | |
| #define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh)
 | |
| /* Hyperbolic tangent of X.  */
 | |
| #define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)
 | |
| 
 | |
| 
 | |
| /* Exponential and logarithmic functions.  */
 | |
| 
 | |
| /* Exponential function of X.  */
 | |
| #define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)
 | |
| 
 | |
| /* Break VALUE into a normalized fraction and an integral power of 2.  */
 | |
| #define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)
 | |
| 
 | |
| /* X times (two to the EXP power).  */
 | |
| #define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)
 | |
| 
 | |
| /* Natural logarithm of X.  */
 | |
| #define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)
 | |
| 
 | |
| /* Base-ten logarithm of X.  */
 | |
| #ifdef __USE_GNU
 | |
| # define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, clog10)
 | |
| #else
 | |
| # define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10)
 | |
| #endif
 | |
| 
 | |
| /* Return exp(X) - 1.  */
 | |
| #define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)
 | |
| 
 | |
| /* Return log(1 + X).  */
 | |
| #define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)
 | |
| 
 | |
| /* Return the base 2 signed integral exponent of X.  */
 | |
| #define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)
 | |
| 
 | |
| /* Compute base-2 exponential of X.  */
 | |
| #define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)
 | |
| 
 | |
| /* Compute base-2 logarithm of X.  */
 | |
| #define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)
 | |
| 
 | |
| 
 | |
| /* Power functions.  */
 | |
| 
 | |
| /* Return X to the Y power.  */
 | |
| #define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)
 | |
| 
 | |
| /* Return the square root of X.  */
 | |
| #define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)
 | |
| 
 | |
| /* Return `sqrt(X*X + Y*Y)'.  */
 | |
| #define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)
 | |
| 
 | |
| /* Return the cube root of X.  */
 | |
| #define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)
 | |
| 
 | |
| 
 | |
| /* Nearest integer, absolute value, and remainder functions.  */
 | |
| 
 | |
| /* Smallest integral value not less than X.  */
 | |
| #define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)
 | |
| 
 | |
| /* Absolute value of X.  */
 | |
| #define fabs(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, fabs, cabs)
 | |
| 
 | |
| /* Largest integer not greater than X.  */
 | |
| #define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)
 | |
| 
 | |
| /* Floating-point modulo remainder of X/Y.  */
 | |
| #define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)
 | |
| 
 | |
| /* Round X to integral valuein floating-point format using current
 | |
|    rounding direction, but do not raise inexact exception.  */
 | |
| #define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)
 | |
| 
 | |
| /* Round X to nearest integral value, rounding halfway cases away from
 | |
|    zero.  */
 | |
| #define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)
 | |
| 
 | |
| /* Round X to the integral value in floating-point format nearest but
 | |
|    not larger in magnitude.  */
 | |
| #define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)
 | |
| 
 | |
| /* Compute remainder of X and Y and put in *QUO a value with sign of x/y
 | |
|    and magnitude congruent `mod 2^n' to the magnitude of the integral
 | |
|    quotient x/y, with n >= 3.  */
 | |
| #define remquo(Val1, Val2, Val3) \
 | |
|      __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)
 | |
| 
 | |
| /* Round X to nearest integral value according to current rounding
 | |
|    direction.  */
 | |
| #define lrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, lrint)
 | |
| #define llrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llrint)
 | |
| 
 | |
| /* Round X to nearest integral value, rounding halfway cases away from
 | |
|    zero.  */
 | |
| #define lround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, lround)
 | |
| #define llround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llround)
 | |
| 
 | |
| 
 | |
| /* Return X with its signed changed to Y's.  */
 | |
| #define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)
 | |
| 
 | |
| /* Error and gamma functions.  */
 | |
| #define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf)
 | |
| #define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc)
 | |
| #define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma)
 | |
| #define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)
 | |
| 
 | |
| 
 | |
| /* Return the integer nearest X in the direction of the
 | |
|    prevailing rounding mode.  */
 | |
| #define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)
 | |
| 
 | |
| #if __GLIBC_USE (IEC_60559_BFP_EXT)
 | |
| /* Return X - epsilon.  */
 | |
| # define nextdown(Val) __TGMATH_UNARY_REAL_ONLY (Val, nextdown)
 | |
| /* Return X + epsilon.  */
 | |
| # define nextup(Val) __TGMATH_UNARY_REAL_ONLY (Val, nextup)
 | |
| #endif
 | |
| 
 | |
| /* Return X + epsilon if X < Y, X - epsilon if X > Y.  */
 | |
| #define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter)
 | |
| #define nexttoward(Val1, Val2) \
 | |
|      __TGMATH_BINARY_FIRST_REAL_STD_ONLY (Val1, Val2, nexttoward)
 | |
| 
 | |
| /* Return the remainder of integer divison X / Y with infinite precision.  */
 | |
| #define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)
 | |
| 
 | |
| /* Return X times (2 to the Nth power).  */
 | |
| #ifdef __USE_MISC
 | |
| # define scalb(Val1, Val2) __TGMATH_BINARY_REAL_STD_ONLY (Val1, Val2, scalb)
 | |
| #endif
 | |
| 
 | |
| /* Return X times (2 to the Nth power).  */
 | |
| #define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)
 | |
| 
 | |
| /* Return X times (2 to the Nth power).  */
 | |
| #define scalbln(Val1, Val2) \
 | |
|      __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)
 | |
| 
 | |
| /* Return the binary exponent of X, which must be nonzero.  */
 | |
| #define ilogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, ilogb)
 | |
| 
 | |
| 
 | |
| /* Return positive difference between X and Y.  */
 | |
| #define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)
 | |
| 
 | |
| /* Return maximum numeric value from X and Y.  */
 | |
| #define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)
 | |
| 
 | |
| /* Return minimum numeric value from X and Y.  */
 | |
| #define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)
 | |
| 
 | |
| 
 | |
| /* Multiply-add function computed as a ternary operation.  */
 | |
| #define fma(Val1, Val2, Val3) \
 | |
|      __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)
 | |
| 
 | |
| #if __GLIBC_USE (IEC_60559_BFP_EXT)
 | |
| /* Round X to nearest integer value, rounding halfway cases to even.  */
 | |
| # define roundeven(Val) __TGMATH_UNARY_REAL_ONLY (Val, roundeven)
 | |
| 
 | |
| # define fromfp(Val1, Val2, Val3)					\
 | |
|   __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, fromfp)
 | |
| 
 | |
| # define ufromfp(Val1, Val2, Val3)					\
 | |
|   __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, ufromfp)
 | |
| 
 | |
| # define fromfpx(Val1, Val2, Val3)					\
 | |
|   __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, fromfpx)
 | |
| 
 | |
| # define ufromfpx(Val1, Val2, Val3)					\
 | |
|   __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, ufromfpx)
 | |
| 
 | |
| /* Like ilogb, but returning long int.  */
 | |
| # define llogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llogb)
 | |
| 
 | |
| /* Return value with maximum magnitude.  */
 | |
| # define fmaxmag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaxmag)
 | |
| 
 | |
| /* Return value with minimum magnitude.  */
 | |
| # define fminmag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminmag)
 | |
| 
 | |
| /* Total order operation.  */
 | |
| # define totalorder(Val1, Val2)					\
 | |
|   __TGMATH_BINARY_REAL_RET_ONLY (Val1, Val2, totalorder)
 | |
| 
 | |
| /* Total order operation on absolute values.  */
 | |
| # define totalordermag(Val1, Val2)				\
 | |
|   __TGMATH_BINARY_REAL_RET_ONLY (Val1, Val2, totalordermag)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Absolute value, conjugates, and projection.  */
 | |
| 
 | |
| /* Argument value of Z.  */
 | |
| #define carg(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, carg, carg)
 | |
| 
 | |
| /* Complex conjugate of Z.  */
 | |
| #define conj(Val) __TGMATH_UNARY_IMAG (Val, conj)
 | |
| 
 | |
| /* Projection of Z onto the Riemann sphere.  */
 | |
| #define cproj(Val) __TGMATH_UNARY_IMAG (Val, cproj)
 | |
| 
 | |
| 
 | |
| /* Decomposing complex values.  */
 | |
| 
 | |
| /* Imaginary part of Z.  */
 | |
| #define cimag(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, cimag, cimag)
 | |
| 
 | |
| /* Real part of Z.  */
 | |
| #define creal(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, creal, creal)
 | |
| 
 | |
| #endif /* tgmath.h */
 |