mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-11-03 20:53:13 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			274 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			274 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* k_rem_pio2f.c -- float version of e_rem_pio2.c
 | 
						|
   Copyright (C) 2011-2017 Free Software Foundation, Inc.
 | 
						|
   This file is part of the GNU C Library.
 | 
						|
   Contributed by Adhemerval Zanella <azanella@br.ibm.com>, 2011
 | 
						|
 | 
						|
   The GNU C Library is free software; you can redistribute it and/or
 | 
						|
   modify it under the terms of the GNU Library General Public License as
 | 
						|
   published by the Free Software Foundation; either version 2 of the
 | 
						|
   License, or (at your option) any later version.
 | 
						|
 | 
						|
   The GNU C Library is distributed in the hope that it will be useful,
 | 
						|
   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
   Library General Public License for more details.
 | 
						|
 | 
						|
   You should have received a copy of the GNU Library General Public
 | 
						|
   License along with the GNU C Library; see the file COPYING.LIB.  If
 | 
						|
   not, see <http://www.gnu.org/licenses/>.  */
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
 | 
						|
#include <math_private.h>
 | 
						|
#include "s_float_bitwise.h"
 | 
						|
 | 
						|
 | 
						|
static const float two_over_pi[] = {
 | 
						|
  1.62000000e+02, 2.49000000e+02, 1.31000000e+02, 1.10000000e+02,
 | 
						|
  7.80000000e+01, 6.80000000e+01, 2.10000000e+01, 4.10000000e+01,
 | 
						|
  2.52000000e+02, 3.90000000e+01, 8.70000000e+01, 2.09000000e+02,
 | 
						|
  2.45000000e+02, 5.20000000e+01, 2.21000000e+02, 1.92000000e+02,
 | 
						|
  2.19000000e+02, 9.80000000e+01, 1.49000000e+02, 1.53000000e+02,
 | 
						|
  6.00000000e+01, 6.70000000e+01, 1.44000000e+02, 6.50000000e+01,
 | 
						|
  2.54000000e+02, 8.10000000e+01, 9.90000000e+01, 1.71000000e+02,
 | 
						|
  2.22000000e+02, 1.87000000e+02, 1.97000000e+02, 9.70000000e+01,
 | 
						|
  1.83000000e+02, 3.60000000e+01, 1.10000000e+02, 5.80000000e+01,
 | 
						|
  6.60000000e+01, 7.70000000e+01, 2.10000000e+02, 2.24000000e+02,
 | 
						|
  6.00000000e+00, 7.30000000e+01, 4.60000000e+01, 2.34000000e+02,
 | 
						|
  9.00000000e+00, 2.09000000e+02, 1.46000000e+02, 2.80000000e+01,
 | 
						|
  2.54000000e+02, 2.90000000e+01, 2.35000000e+02, 2.80000000e+01,
 | 
						|
  1.77000000e+02, 4.10000000e+01, 1.67000000e+02, 6.20000000e+01,
 | 
						|
  2.32000000e+02, 1.30000000e+02, 5.30000000e+01, 2.45000000e+02,
 | 
						|
  4.60000000e+01, 1.87000000e+02, 6.80000000e+01, 1.32000000e+02,
 | 
						|
  2.33000000e+02, 1.56000000e+02, 1.12000000e+02, 3.80000000e+01,
 | 
						|
  1.80000000e+02, 9.50000000e+01, 1.26000000e+02, 6.50000000e+01,
 | 
						|
  5.70000000e+01, 1.45000000e+02, 2.14000000e+02, 5.70000000e+01,
 | 
						|
  1.31000000e+02, 8.30000000e+01, 5.70000000e+01, 2.44000000e+02,
 | 
						|
  1.56000000e+02, 1.32000000e+02, 9.50000000e+01, 1.39000000e+02,
 | 
						|
  1.89000000e+02, 2.49000000e+02, 4.00000000e+01, 5.90000000e+01,
 | 
						|
  3.10000000e+01, 2.48000000e+02, 1.51000000e+02, 2.55000000e+02,
 | 
						|
  2.22000000e+02, 5.00000000e+00, 1.52000000e+02, 1.50000000e+01,
 | 
						|
  2.39000000e+02, 4.70000000e+01, 1.70000000e+01, 1.39000000e+02,
 | 
						|
  9.00000000e+01, 1.00000000e+01, 1.09000000e+02, 3.10000000e+01,
 | 
						|
  1.09000000e+02, 5.40000000e+01, 1.26000000e+02, 2.07000000e+02,
 | 
						|
  3.90000000e+01, 2.03000000e+02, 9.00000000e+00, 1.83000000e+02,
 | 
						|
  7.90000000e+01, 7.00000000e+01, 6.30000000e+01, 1.02000000e+02,
 | 
						|
  1.58000000e+02, 9.50000000e+01, 2.34000000e+02, 4.50000000e+01,
 | 
						|
  1.17000000e+02, 3.90000000e+01, 1.86000000e+02, 1.99000000e+02,
 | 
						|
  2.35000000e+02, 2.29000000e+02, 2.41000000e+02, 1.23000000e+02,
 | 
						|
  6.10000000e+01, 7.00000000e+00, 5.70000000e+01, 2.47000000e+02,
 | 
						|
  1.38000000e+02, 8.20000000e+01, 1.46000000e+02, 2.34000000e+02,
 | 
						|
  1.07000000e+02, 2.51000000e+02, 9.50000000e+01, 1.77000000e+02,
 | 
						|
  3.10000000e+01, 1.41000000e+02, 9.30000000e+01, 8.00000000e+00,
 | 
						|
  8.60000000e+01, 3.00000000e+00, 4.80000000e+01, 7.00000000e+01,
 | 
						|
  2.52000000e+02, 1.23000000e+02, 1.07000000e+02, 1.71000000e+02,
 | 
						|
  2.40000000e+02, 2.07000000e+02, 1.88000000e+02, 3.20000000e+01,
 | 
						|
  1.54000000e+02, 2.44000000e+02, 5.40000000e+01, 2.90000000e+01,
 | 
						|
  1.69000000e+02, 2.27000000e+02, 1.45000000e+02, 9.70000000e+01,
 | 
						|
  9.40000000e+01, 2.30000000e+02, 2.70000000e+01, 8.00000000e+00,
 | 
						|
  1.01000000e+02, 1.53000000e+02, 1.33000000e+02, 9.50000000e+01,
 | 
						|
  2.00000000e+01, 1.60000000e+02, 1.04000000e+02, 6.40000000e+01,
 | 
						|
  1.41000000e+02, 2.55000000e+02, 2.16000000e+02, 1.28000000e+02,
 | 
						|
  7.70000000e+01, 1.15000000e+02, 3.90000000e+01, 4.90000000e+01,
 | 
						|
  6.00000000e+00, 6.00000000e+00, 2.10000000e+01, 8.60000000e+01,
 | 
						|
  2.02000000e+02, 1.15000000e+02, 1.68000000e+02, 2.01000000e+02,
 | 
						|
  9.60000000e+01, 2.26000000e+02, 1.23000000e+02, 1.92000000e+02,
 | 
						|
  1.40000000e+02, 1.07000000e+02
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
static const float PIo2[] = {
 | 
						|
  1.5703125000e+00,		/* 0x3fc90000 */
 | 
						|
  4.5776367188e-04,		/* 0x39f00000 */
 | 
						|
  2.5987625122e-05,		/* 0x37da0000 */
 | 
						|
  7.5437128544e-08,		/* 0x33a20000 */
 | 
						|
  6.0026650317e-11,		/* 0x2e840000 */
 | 
						|
  7.3896444519e-13,		/* 0x2b500000 */
 | 
						|
  5.3845816694e-15,		/* 0x27c20000 */
 | 
						|
  5.6378512969e-18,		/* 0x22d00000 */
 | 
						|
  8.3009228831e-20,		/* 0x1fc40000 */
 | 
						|
  3.2756352257e-22,		/* 0x1bc60000 */
 | 
						|
  6.3331015649e-25,		/* 0x17440000 */
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
static const float zero  = 0.0000000000e+00;
 | 
						|
static const float one   = 1.0000000000;
 | 
						|
static const float twon8 = 3.9062500000e-03;
 | 
						|
static const float two8  = 2.5600000000e+02;
 | 
						|
 | 
						|
 | 
						|
int32_t
 | 
						|
__fp_kernel_rem_pio2f (float *x, float *y, float e0, int32_t nx)
 | 
						|
{
 | 
						|
  int32_t jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih, exp;
 | 
						|
  float z, fw, f[20], fq[20], q[20];
 | 
						|
 | 
						|
  /* initialize jk */
 | 
						|
  jp = jk = 9;
 | 
						|
 | 
						|
  /* determine jx,jv,q0, note that 3>q0 */
 | 
						|
  jx = nx - 1;
 | 
						|
  exp = __float_get_exp (e0) - 127;
 | 
						|
  jv = (exp - 3) / 8;
 | 
						|
  if (jv < 0)
 | 
						|
    jv = 0;
 | 
						|
  q0 = exp - 8 * (jv + 1);
 | 
						|
 | 
						|
  /* set up f[0] to f[jx+jk] where f[jx+jk] = two_over_pi[jv+jk] */
 | 
						|
  j = jv - jx;
 | 
						|
  m = jx + jk;
 | 
						|
  for (i = 0; i <= m; i++, j++)
 | 
						|
    f[i] = (j < 0) ? zero : two_over_pi[j];
 | 
						|
 | 
						|
  /* compute q[0],q[1],...q[jk] */
 | 
						|
  for (i = 0; i <= jk; i++)
 | 
						|
    {
 | 
						|
      for (j = 0, fw = 0.0; j <= jx; j++)
 | 
						|
	fw += x[j] * f[jx + i - j];
 | 
						|
      q[i] = fw;
 | 
						|
    }
 | 
						|
 | 
						|
  jz = jk;
 | 
						|
recompute:
 | 
						|
  /* distill q[] into iq[] reversingly */
 | 
						|
  for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--)
 | 
						|
    {
 | 
						|
      fw = __truncf (twon8 * z);
 | 
						|
      iq[i] = (int32_t) (z - two8 * fw);
 | 
						|
      z = q[j - 1] + fw;
 | 
						|
    }
 | 
						|
 | 
						|
  /* compute n */
 | 
						|
  z = __scalbnf (z, q0);	/* actual value of z */
 | 
						|
  z -= 8.0 * __floorf (z * 0.125);	/* trim off integer >= 8 */
 | 
						|
  n = (int32_t) z;
 | 
						|
  z -= __truncf (z);
 | 
						|
  ih = 0;
 | 
						|
  if (q0 > 0)
 | 
						|
    {				/* need iq[jz-1] to determine n */
 | 
						|
      i = (iq[jz - 1] >> (8 - q0));
 | 
						|
      n += i;
 | 
						|
      iq[jz - 1] -= i << (8 - q0);
 | 
						|
      ih = iq[jz - 1] >> (7 - q0);
 | 
						|
    }
 | 
						|
  else if (q0 == 0)
 | 
						|
    ih = iq[jz - 1] >> 7;
 | 
						|
  else if (z >= 0.5)
 | 
						|
    ih = 2;
 | 
						|
 | 
						|
  if (ih > 0)
 | 
						|
    {				/* q > 0.5 */
 | 
						|
      n += 1;
 | 
						|
      carry = 0;
 | 
						|
      for (i = 0; i < jz; i++)
 | 
						|
	{			/* compute 1-q */
 | 
						|
	  j = iq[i];
 | 
						|
	  if (carry == 0)
 | 
						|
	    {
 | 
						|
	      if (j != 0)
 | 
						|
		{
 | 
						|
		  carry = 1;
 | 
						|
		  iq[i] = 0x100 - j;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	  else
 | 
						|
	    iq[i] = 0xff - j;
 | 
						|
	}
 | 
						|
      if (q0 > 0)
 | 
						|
	{			/* rare case: chance is 1 in 12 */
 | 
						|
	  switch (q0)
 | 
						|
	    {
 | 
						|
	    case 1:
 | 
						|
	      iq[jz - 1] &= 0x7f;
 | 
						|
	      break;
 | 
						|
	    case 2:
 | 
						|
	      iq[jz - 1] &= 0x3f;
 | 
						|
	      break;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
      if (ih == 2)
 | 
						|
	{
 | 
						|
	  z = one - z;
 | 
						|
	  if (carry != 0)
 | 
						|
	    z -= __scalbnf (one, q0);
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
  /* check if recomputation is needed */
 | 
						|
  if (z == zero)
 | 
						|
    {
 | 
						|
      j = 0;
 | 
						|
      for (i = jz - 1; i >= jk; i--)
 | 
						|
	j |= iq[i];
 | 
						|
      if (j == 0)
 | 
						|
	{			/* need recomputation */
 | 
						|
	  for (k = 1; iq[jk - k] == 0; k++);	/* k = no. of terms needed */
 | 
						|
 | 
						|
	  for (i = jz + 1; i <= jz + k; i++)
 | 
						|
	    {			/* add q[jz+1] to q[jz+k] */
 | 
						|
	      f[jx + i] = two_over_pi[jv + i];
 | 
						|
	      for (j = 0, fw = 0.0; j <= jx; j++)
 | 
						|
		fw += x[j] * f[jx + i - j];
 | 
						|
	      q[i] = fw;
 | 
						|
	    }
 | 
						|
	  jz += k;
 | 
						|
	  goto recompute;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
  /* chop off zero terms */
 | 
						|
  if (z == 0.0)
 | 
						|
    {
 | 
						|
      jz -= 1;
 | 
						|
      q0 -= 8;
 | 
						|
      while (iq[jz] == 0)
 | 
						|
	{
 | 
						|
	  jz--;
 | 
						|
	  q0 -= 8;
 | 
						|
	}
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {				/* break z into 8-bit if necessary */
 | 
						|
      z = __scalbnf (z, -q0);
 | 
						|
      if (z >= two8)
 | 
						|
	{
 | 
						|
	  fw = __truncf (twon8 * z);
 | 
						|
	  iq[jz] = (int32_t) (z - two8 * fw);
 | 
						|
	  jz += 1;
 | 
						|
	  q0 += 8;
 | 
						|
	  iq[jz] = (int32_t) fw;
 | 
						|
	}
 | 
						|
      else
 | 
						|
	iq[jz] = (int32_t) z;
 | 
						|
    }
 | 
						|
 | 
						|
  /* convert integer "bit" chunk to floating-point value */
 | 
						|
  fw = __scalbnf (one, q0);
 | 
						|
  for (i = jz; i >= 0; i--)
 | 
						|
    {
 | 
						|
      q[i] = fw * (float) iq[i];
 | 
						|
      fw *= twon8;
 | 
						|
    }
 | 
						|
 | 
						|
  /* compute PIo2[0,...,jp]*q[jz,...,0] */
 | 
						|
  for (i = jz; i >= 0; i--)
 | 
						|
    {
 | 
						|
      for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++)
 | 
						|
	fw += PIo2[k] * q[i + k];
 | 
						|
      fq[jz - i] = fw;
 | 
						|
    }
 | 
						|
 | 
						|
  /* compress fq[] into y[] */
 | 
						|
  fw = 0.0;
 | 
						|
  for (i = jz; i >= 0; i--)
 | 
						|
    fw += fq[i];
 | 
						|
  y[0] = (ih == 0) ? fw : -fw;
 | 
						|
  fw = fq[0] - fw;
 | 
						|
  for (i = 1; i <= jz; i++)
 | 
						|
    fw += fq[i];
 | 
						|
  y[1] = (ih == 0) ? fw : -fw;
 | 
						|
 | 
						|
  return n & 7;
 | 
						|
}
 |