mirror of
				https://sourceware.org/git/glibc.git
				synced 2025-10-30 10:45:40 +03:00 
			
		
		
		
	(_ufc_setup_salt_r): Return bool. * crypt/crypt-entry.c: Include errno.h. (__crypt_r): Return NULL with EINVAL for bad salt. * crypt/crypt_util.c (bad_for_salt): New. (_ufc_setup_salt_r): Check that salt is long enough and within the specified alphabet. * crypt/badsalttest.c: New file. * crypt/Makefile (tests): Add it. ($(objpfx)badsalttest): New.
		
			
				
	
	
		
			960 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			960 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * UFC-crypt: ultra fast crypt(3) implementation
 | |
|  *
 | |
|  * Copyright (C) 1991-1993,1996-1998,2000,2010,2011,2012
 | |
|  * Free Software Foundation, Inc.
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; see the file COPYING.LIB.  If not,
 | |
|  * see <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  * @(#)crypt_util.c	2.56 12/20/96
 | |
|  *
 | |
|  * Support routines
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #ifdef DEBUG
 | |
| #include <stdio.h>
 | |
| #endif
 | |
| #include <atomic.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #ifndef STATIC
 | |
| #define STATIC static
 | |
| #endif
 | |
| 
 | |
| #ifndef DOS
 | |
| #include "ufc-crypt.h"
 | |
| #else
 | |
| /*
 | |
|  * Thanks to greg%wind@plains.NoDak.edu (Greg W. Wettstein)
 | |
|  * for DOS patches
 | |
|  */
 | |
| #include "pl.h"
 | |
| #include "ufc.h"
 | |
| #endif
 | |
| #include "crypt.h"
 | |
| #include "crypt-private.h"
 | |
| 
 | |
| /* Prototypes for local functions.  */
 | |
| #ifndef __GNU_LIBRARY__
 | |
| void _ufc_clearmem (char *start, int cnt);
 | |
| void _ufc_copymem (char *from, char *to, int cnt);
 | |
| #endif
 | |
| #ifdef _UFC_32_
 | |
| STATIC void shuffle_sb (long32 *k, ufc_long saltbits);
 | |
| #else
 | |
| STATIC void shuffle_sb (long64 *k, ufc_long saltbits);
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Permutation done once on the 56 bit
 | |
|  *  key derived from the original 8 byte ASCII key.
 | |
|  */
 | |
| static const int pc1[56] = {
 | |
|   57, 49, 41, 33, 25, 17,  9,  1, 58, 50, 42, 34, 26, 18,
 | |
|   10,  2, 59, 51, 43, 35, 27, 19, 11,  3, 60, 52, 44, 36,
 | |
|   63, 55, 47, 39, 31, 23, 15,  7, 62, 54, 46, 38, 30, 22,
 | |
|   14,  6, 61, 53, 45, 37, 29, 21, 13,  5, 28, 20, 12,  4
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * How much to rotate each 28 bit half of the pc1 permutated
 | |
|  *  56 bit key before using pc2 to give the i' key
 | |
|  */
 | |
| static const int rots[16] = {
 | |
|   1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Permutation giving the key
 | |
|  * of the i' DES round
 | |
|  */
 | |
| static const int pc2[48] = {
 | |
|   14, 17, 11, 24,  1,  5,  3, 28, 15,  6, 21, 10,
 | |
|   23, 19, 12,  4, 26,  8, 16,  7, 27, 20, 13,  2,
 | |
|   41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
 | |
|   44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The E expansion table which selects
 | |
|  * bits from the 32 bit intermediate result.
 | |
|  */
 | |
| static const int esel[48] = {
 | |
|   32,  1,  2,  3,  4,  5,  4,  5,  6,  7,  8,  9,
 | |
|    8,  9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
 | |
|   16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
 | |
|   24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32,  1
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Permutation done on the
 | |
|  * result of sbox lookups
 | |
|  */
 | |
| static const int perm32[32] = {
 | |
|   16,  7, 20, 21, 29, 12, 28, 17,  1, 15, 23, 26,  5, 18, 31, 10,
 | |
|   2,   8, 24, 14, 32, 27,  3,  9, 19, 13, 30,  6, 22, 11,  4, 25
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The sboxes
 | |
|  */
 | |
| static const int sbox[8][4][16]= {
 | |
| 	{ { 14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7 },
 | |
| 	  {  0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8 },
 | |
| 	  {  4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0 },
 | |
| 	  { 15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 }
 | |
| 	},
 | |
| 
 | |
| 	{ { 15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10 },
 | |
| 	  {  3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5 },
 | |
| 	  {  0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15 },
 | |
| 	  { 13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 }
 | |
| 	},
 | |
| 
 | |
| 	{ { 10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8 },
 | |
| 	  { 13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1 },
 | |
| 	  { 13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7 },
 | |
| 	  {  1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 }
 | |
| 	},
 | |
| 
 | |
| 	{ {  7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15 },
 | |
| 	  { 13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9 },
 | |
| 	  { 10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4 },
 | |
| 	  {  3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 }
 | |
| 	},
 | |
| 
 | |
| 	{ {  2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9 },
 | |
| 	  { 14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6 },
 | |
| 	  {  4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14 },
 | |
| 	  { 11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 }
 | |
| 	},
 | |
| 
 | |
| 	{ { 12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11 },
 | |
| 	  { 10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8 },
 | |
| 	  {  9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6 },
 | |
| 	  {  4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 }
 | |
| 	},
 | |
| 
 | |
| 	{ {  4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1 },
 | |
| 	  { 13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6 },
 | |
| 	  {  1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2 },
 | |
| 	  {  6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 }
 | |
| 	},
 | |
| 
 | |
| 	{ { 13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7 },
 | |
| 	  {  1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2 },
 | |
| 	  {  7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8 },
 | |
| 	  {  2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 }
 | |
| 	}
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * This is the initial
 | |
|  * permutation matrix
 | |
|  */
 | |
| static const int initial_perm[64] = {
 | |
|   58, 50, 42, 34, 26, 18, 10,  2, 60, 52, 44, 36, 28, 20, 12, 4,
 | |
|   62, 54, 46, 38, 30, 22, 14,  6, 64, 56, 48, 40, 32, 24, 16, 8,
 | |
|   57, 49, 41, 33, 25, 17,  9,  1, 59, 51, 43, 35, 27, 19, 11, 3,
 | |
|   61, 53, 45, 37, 29, 21, 13,  5, 63, 55, 47, 39, 31, 23, 15, 7
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * This is the final
 | |
|  * permutation matrix
 | |
|  */
 | |
| static const int final_perm[64] = {
 | |
|   40,  8, 48, 16, 56, 24, 64, 32, 39,  7, 47, 15, 55, 23, 63, 31,
 | |
|   38,  6, 46, 14, 54, 22, 62, 30, 37,  5, 45, 13, 53, 21, 61, 29,
 | |
|   36,  4, 44, 12, 52, 20, 60, 28, 35,  3, 43, 11, 51, 19, 59, 27,
 | |
|   34,  2, 42, 10, 50, 18, 58, 26, 33,  1, 41,  9, 49, 17, 57, 25
 | |
| };
 | |
| 
 | |
| #define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.')
 | |
| #define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.')
 | |
| 
 | |
| static const ufc_long BITMASK[24] = {
 | |
|   0x40000000, 0x20000000, 0x10000000, 0x08000000, 0x04000000, 0x02000000,
 | |
|   0x01000000, 0x00800000, 0x00400000, 0x00200000, 0x00100000, 0x00080000,
 | |
|   0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200,
 | |
|   0x00000100, 0x00000080, 0x00000040, 0x00000020, 0x00000010, 0x00000008
 | |
| };
 | |
| 
 | |
| static const unsigned char bytemask[8]  = {
 | |
|   0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
 | |
| };
 | |
| 
 | |
| static const ufc_long longmask[32] = {
 | |
|   0x80000000, 0x40000000, 0x20000000, 0x10000000,
 | |
|   0x08000000, 0x04000000, 0x02000000, 0x01000000,
 | |
|   0x00800000, 0x00400000, 0x00200000, 0x00100000,
 | |
|   0x00080000, 0x00040000, 0x00020000, 0x00010000,
 | |
|   0x00008000, 0x00004000, 0x00002000, 0x00001000,
 | |
|   0x00000800, 0x00000400, 0x00000200, 0x00000100,
 | |
|   0x00000080, 0x00000040, 0x00000020, 0x00000010,
 | |
|   0x00000008, 0x00000004, 0x00000002, 0x00000001
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * do_pc1: permform pc1 permutation in the key schedule generation.
 | |
|  *
 | |
|  * The first   index is the byte number in the 8 byte ASCII key
 | |
|  *  -  second    -      -    the two 28 bits halfs of the result
 | |
|  *  -  third     -   selects the 7 bits actually used of each byte
 | |
|  *
 | |
|  * The result is kept with 28 bit per 32 bit with the 4 most significant
 | |
|  * bits zero.
 | |
|  */
 | |
| static ufc_long do_pc1[8][2][128];
 | |
| 
 | |
| /*
 | |
|  * do_pc2: permform pc2 permutation in the key schedule generation.
 | |
|  *
 | |
|  * The first   index is the septet number in the two 28 bit intermediate values
 | |
|  *  -  second    -    -  -  septet values
 | |
|  *
 | |
|  * Knowledge of the structure of the pc2 permutation is used.
 | |
|  *
 | |
|  * The result is kept with 28 bit per 32 bit with the 4 most significant
 | |
|  * bits zero.
 | |
|  */
 | |
| static ufc_long do_pc2[8][128];
 | |
| 
 | |
| /*
 | |
|  * eperm32tab: do 32 bit permutation and E selection
 | |
|  *
 | |
|  * The first index is the byte number in the 32 bit value to be permuted
 | |
|  *  -  second  -   is the value of this byte
 | |
|  *  -  third   -   selects the two 32 bit values
 | |
|  *
 | |
|  * The table is used and generated internally in init_des to speed it up
 | |
|  */
 | |
| static ufc_long eperm32tab[4][256][2];
 | |
| 
 | |
| /*
 | |
|  * efp: undo an extra e selection and do final
 | |
|  *      permutation giving the DES result.
 | |
|  *
 | |
|  *      Invoked 6 bit a time on two 48 bit values
 | |
|  *      giving two 32 bit longs.
 | |
|  */
 | |
| static ufc_long efp[16][64][2];
 | |
| 
 | |
| /*
 | |
|  * For use by the old, non-reentrant routines
 | |
|  * (crypt/encrypt/setkey)
 | |
|  */
 | |
| struct crypt_data _ufc_foobar;
 | |
| 
 | |
| #ifdef __GNU_LIBRARY__
 | |
| #include <bits/libc-lock.h>
 | |
| 
 | |
| __libc_lock_define_initialized (static, _ufc_tables_lock)
 | |
| #endif
 | |
| 
 | |
| #ifdef DEBUG
 | |
| 
 | |
| void
 | |
| _ufc_prbits(a, n)
 | |
|      ufc_long *a;
 | |
|      int n;
 | |
| {
 | |
|   ufc_long i, j, t, tmp;
 | |
|   n /= 8;
 | |
|   for(i = 0; i < n; i++) {
 | |
|     tmp=0;
 | |
|     for(j = 0; j < 8; j++) {
 | |
|       t=8*i+j;
 | |
|       tmp|=(a[t/24] & BITMASK[t % 24])?bytemask[j]:0;
 | |
|     }
 | |
|     (void)printf("%02x ",tmp);
 | |
|   }
 | |
|   printf(" ");
 | |
| }
 | |
| 
 | |
| static void
 | |
| _ufc_set_bits(v, b)
 | |
|      ufc_long v;
 | |
|      ufc_long *b;
 | |
| {
 | |
|   ufc_long i;
 | |
|   *b = 0;
 | |
|   for(i = 0; i < 24; i++) {
 | |
|     if(v & longmask[8 + i])
 | |
|       *b |= BITMASK[i];
 | |
|   }
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifndef __GNU_LIBRARY__
 | |
| /*
 | |
|  * Silly rewrites of 'bzero'/'memset'. I do so
 | |
|  * because some machines don't have
 | |
|  * bzero and some don't have memset.
 | |
|  */
 | |
| 
 | |
| void
 | |
| _ufc_clearmem(start, cnt)
 | |
|      char *start;
 | |
|      int cnt;
 | |
| {
 | |
|   while(cnt--)
 | |
|     *start++ = '\0';
 | |
| }
 | |
| 
 | |
| void
 | |
| _ufc_copymem(from, to, cnt)
 | |
|      char *from, *to;
 | |
|      int cnt;
 | |
| {
 | |
|   while(cnt--)
 | |
|     *to++ = *from++;
 | |
| }
 | |
| #else
 | |
| #define _ufc_clearmem(start, cnt)   memset(start, 0, cnt)
 | |
| #define _ufc_copymem(from, to, cnt) memcpy(to, from, cnt)
 | |
| #endif
 | |
| 
 | |
| /* lookup a 6 bit value in sbox */
 | |
| 
 | |
| #define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf];
 | |
| 
 | |
| /*
 | |
|  * Initialize unit - may be invoked directly
 | |
|  * by fcrypt users.
 | |
|  */
 | |
| 
 | |
| void
 | |
| __init_des_r(__data)
 | |
|      struct crypt_data * __restrict __data;
 | |
| {
 | |
|   int comes_from_bit;
 | |
|   int bit, sg;
 | |
|   ufc_long j;
 | |
|   ufc_long mask1, mask2;
 | |
|   int e_inverse[64];
 | |
|   static volatile int small_tables_initialized = 0;
 | |
| 
 | |
| #ifdef _UFC_32_
 | |
|   long32 *sb[4];
 | |
|   sb[0] = (long32*)__data->sb0; sb[1] = (long32*)__data->sb1;
 | |
|   sb[2] = (long32*)__data->sb2; sb[3] = (long32*)__data->sb3;
 | |
| #endif
 | |
| #ifdef _UFC_64_
 | |
|   long64 *sb[4];
 | |
|   sb[0] = (long64*)__data->sb0; sb[1] = (long64*)__data->sb1;
 | |
|   sb[2] = (long64*)__data->sb2; sb[3] = (long64*)__data->sb3;
 | |
| #endif
 | |
| 
 | |
|   if(small_tables_initialized == 0) {
 | |
| #ifdef __GNU_LIBRARY__
 | |
|     __libc_lock_lock (_ufc_tables_lock);
 | |
|     if(small_tables_initialized)
 | |
|       goto small_tables_done;
 | |
| #endif
 | |
| 
 | |
|     /*
 | |
|      * Create the do_pc1 table used
 | |
|      * to affect pc1 permutation
 | |
|      * when generating keys
 | |
|      */
 | |
|     _ufc_clearmem((char*)do_pc1, (int)sizeof(do_pc1));
 | |
|     for(bit = 0; bit < 56; bit++) {
 | |
|       comes_from_bit  = pc1[bit] - 1;
 | |
|       mask1 = bytemask[comes_from_bit % 8 + 1];
 | |
|       mask2 = longmask[bit % 28 + 4];
 | |
|       for(j = 0; j < 128; j++) {
 | |
| 	if(j & mask1)
 | |
| 	  do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Create the do_pc2 table used
 | |
|      * to affect pc2 permutation when
 | |
|      * generating keys
 | |
|      */
 | |
|     _ufc_clearmem((char*)do_pc2, (int)sizeof(do_pc2));
 | |
|     for(bit = 0; bit < 48; bit++) {
 | |
|       comes_from_bit  = pc2[bit] - 1;
 | |
|       mask1 = bytemask[comes_from_bit % 7 + 1];
 | |
|       mask2 = BITMASK[bit % 24];
 | |
|       for(j = 0; j < 128; j++) {
 | |
| 	if(j & mask1)
 | |
| 	  do_pc2[comes_from_bit / 7][j] |= mask2;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Now generate the table used to do combined
 | |
|      * 32 bit permutation and e expansion
 | |
|      *
 | |
|      * We use it because we have to permute 16384 32 bit
 | |
|      * longs into 48 bit in order to initialize sb.
 | |
|      *
 | |
|      * Looping 48 rounds per permutation becomes
 | |
|      * just too slow...
 | |
|      *
 | |
|      */
 | |
| 
 | |
|     _ufc_clearmem((char*)eperm32tab, (int)sizeof(eperm32tab));
 | |
|     for(bit = 0; bit < 48; bit++) {
 | |
|       ufc_long mask1,comes_from;
 | |
|       comes_from = perm32[esel[bit]-1]-1;
 | |
|       mask1      = bytemask[comes_from % 8];
 | |
|       for(j = 256; j--;) {
 | |
| 	if(j & mask1)
 | |
| 	  eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK[bit % 24];
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Create an inverse matrix for esel telling
 | |
|      * where to plug out bits if undoing it
 | |
|      */
 | |
|     for(bit=48; bit--;) {
 | |
|       e_inverse[esel[bit] - 1     ] = bit;
 | |
|       e_inverse[esel[bit] - 1 + 32] = bit + 48;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * create efp: the matrix used to
 | |
|      * undo the E expansion and effect final permutation
 | |
|      */
 | |
|     _ufc_clearmem((char*)efp, (int)sizeof efp);
 | |
|     for(bit = 0; bit < 64; bit++) {
 | |
|       int o_bit, o_long;
 | |
|       ufc_long word_value, mask1, mask2;
 | |
|       int comes_from_f_bit, comes_from_e_bit;
 | |
|       int comes_from_word, bit_within_word;
 | |
| 
 | |
|       /* See where bit i belongs in the two 32 bit long's */
 | |
|       o_long = bit / 32; /* 0..1  */
 | |
|       o_bit  = bit % 32; /* 0..31 */
 | |
| 
 | |
|       /*
 | |
|        * And find a bit in the e permutated value setting this bit.
 | |
|        *
 | |
|        * Note: the e selection may have selected the same bit several
 | |
|        * times. By the initialization of e_inverse, we only look
 | |
|        * for one specific instance.
 | |
|        */
 | |
|       comes_from_f_bit = final_perm[bit] - 1;         /* 0..63 */
 | |
|       comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */
 | |
|       comes_from_word  = comes_from_e_bit / 6;        /* 0..15 */
 | |
|       bit_within_word  = comes_from_e_bit % 6;        /* 0..5  */
 | |
| 
 | |
|       mask1 = longmask[bit_within_word + 26];
 | |
|       mask2 = longmask[o_bit];
 | |
| 
 | |
|       for(word_value = 64; word_value--;) {
 | |
| 	if(word_value & mask1)
 | |
| 	  efp[comes_from_word][word_value][o_long] |= mask2;
 | |
|       }
 | |
|     }
 | |
|     atomic_write_barrier ();
 | |
|     small_tables_initialized = 1;
 | |
| #ifdef __GNU_LIBRARY__
 | |
| small_tables_done:
 | |
|     __libc_lock_unlock(_ufc_tables_lock);
 | |
| #endif
 | |
|   } else
 | |
|     atomic_read_barrier ();
 | |
| 
 | |
|   /*
 | |
|    * Create the sb tables:
 | |
|    *
 | |
|    * For each 12 bit segment of an 48 bit intermediate
 | |
|    * result, the sb table precomputes the two 4 bit
 | |
|    * values of the sbox lookups done with the two 6
 | |
|    * bit halves, shifts them to their proper place,
 | |
|    * sends them through perm32 and finally E expands
 | |
|    * them so that they are ready for the next
 | |
|    * DES round.
 | |
|    *
 | |
|    */
 | |
| 
 | |
|   if (__data->sb0 + sizeof (__data->sb0) == __data->sb1
 | |
|       && __data->sb1 + sizeof (__data->sb1) == __data->sb2
 | |
|       && __data->sb2 + sizeof (__data->sb2) == __data->sb3)
 | |
|     _ufc_clearmem(__data->sb0,
 | |
| 		  (int)sizeof(__data->sb0)
 | |
| 		  + (int)sizeof(__data->sb1)
 | |
| 		  + (int)sizeof(__data->sb2)
 | |
| 		  + (int)sizeof(__data->sb3));
 | |
|   else {
 | |
|     _ufc_clearmem(__data->sb0, (int)sizeof(__data->sb0));
 | |
|     _ufc_clearmem(__data->sb1, (int)sizeof(__data->sb1));
 | |
|     _ufc_clearmem(__data->sb2, (int)sizeof(__data->sb2));
 | |
|     _ufc_clearmem(__data->sb3, (int)sizeof(__data->sb3));
 | |
|   }
 | |
| 
 | |
|   for(sg = 0; sg < 4; sg++) {
 | |
|     int j1, j2;
 | |
|     int s1, s2;
 | |
| 
 | |
|     for(j1 = 0; j1 < 64; j1++) {
 | |
|       s1 = s_lookup(2 * sg, j1);
 | |
|       for(j2 = 0; j2 < 64; j2++) {
 | |
| 	ufc_long to_permute, inx;
 | |
| 
 | |
| 	s2         = s_lookup(2 * sg + 1, j2);
 | |
| 	to_permute = (((ufc_long)s1 << 4)  |
 | |
| 		      (ufc_long)s2) << (24 - 8 * (ufc_long)sg);
 | |
| 
 | |
| #ifdef _UFC_32_
 | |
| 	inx = ((j1 << 6)  | j2) << 1;
 | |
| 	sb[sg][inx  ]  = eperm32tab[0][(to_permute >> 24) & 0xff][0];
 | |
| 	sb[sg][inx+1]  = eperm32tab[0][(to_permute >> 24) & 0xff][1];
 | |
| 	sb[sg][inx  ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0];
 | |
| 	sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1];
 | |
| 	sb[sg][inx  ] |= eperm32tab[2][(to_permute >>  8) & 0xff][0];
 | |
| 	sb[sg][inx+1] |= eperm32tab[2][(to_permute >>  8) & 0xff][1];
 | |
| 	sb[sg][inx  ] |= eperm32tab[3][(to_permute)       & 0xff][0];
 | |
| 	sb[sg][inx+1] |= eperm32tab[3][(to_permute)       & 0xff][1];
 | |
| #endif
 | |
| #ifdef _UFC_64_
 | |
| 	inx = ((j1 << 6)  | j2);
 | |
| 	sb[sg][inx]  =
 | |
| 	  ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) |
 | |
| 	   (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1];
 | |
| 	sb[sg][inx] |=
 | |
| 	  ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) |
 | |
| 	   (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1];
 | |
| 	sb[sg][inx] |=
 | |
| 	  ((long64)eperm32tab[2][(to_permute >>  8) & 0xff][0] << 32) |
 | |
| 	   (long64)eperm32tab[2][(to_permute >>  8) & 0xff][1];
 | |
| 	sb[sg][inx] |=
 | |
| 	  ((long64)eperm32tab[3][(to_permute)       & 0xff][0] << 32) |
 | |
| 	   (long64)eperm32tab[3][(to_permute)       & 0xff][1];
 | |
| #endif
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   __data->current_saltbits = 0;
 | |
|   __data->current_salt[0] = 0;
 | |
|   __data->current_salt[1] = 0;
 | |
|   __data->initialized++;
 | |
| }
 | |
| 
 | |
| void
 | |
| __init_des()
 | |
| {
 | |
|   __init_des_r(&_ufc_foobar);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process the elements of the sb table permuting the
 | |
|  * bits swapped in the expansion by the current salt.
 | |
|  */
 | |
| 
 | |
| #ifdef _UFC_32_
 | |
| STATIC void
 | |
| shuffle_sb(k, saltbits)
 | |
|      long32 *k;
 | |
|      ufc_long saltbits;
 | |
| {
 | |
|   ufc_long j;
 | |
|   long32 x;
 | |
|   for(j=4096; j--;) {
 | |
|     x = (k[0] ^ k[1]) & (long32)saltbits;
 | |
|     *k++ ^= x;
 | |
|     *k++ ^= x;
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef _UFC_64_
 | |
| STATIC void
 | |
| shuffle_sb(k, saltbits)
 | |
|      long64 *k;
 | |
|      ufc_long saltbits;
 | |
| {
 | |
|   ufc_long j;
 | |
|   long64 x;
 | |
|   for(j=4096; j--;) {
 | |
|     x = ((*k >> 32) ^ *k) & (long64)saltbits;
 | |
|     *k++ ^= (x << 32) | x;
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Return false iff C is in the specified alphabet for crypt salt.
 | |
|  */
 | |
| 
 | |
| static bool
 | |
| bad_for_salt (char c)
 | |
| {
 | |
|   switch (c)
 | |
|     {
 | |
|     case '0' ... '9':
 | |
|     case 'A' ... 'Z':
 | |
|     case 'a' ... 'z':
 | |
|     case '.': case '/':
 | |
|       return false;
 | |
| 
 | |
|     default:
 | |
|       return true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Setup the unit for a new salt
 | |
|  * Hopefully we'll not see a new salt in each crypt call.
 | |
|  * Return false if an unexpected character was found in s[0] or s[1].
 | |
|  */
 | |
| 
 | |
| bool
 | |
| _ufc_setup_salt_r(s, __data)
 | |
|      const char *s;
 | |
|      struct crypt_data * __restrict __data;
 | |
| {
 | |
|   ufc_long i, j, saltbits;
 | |
|   char s0, s1;
 | |
| 
 | |
|   if(__data->initialized == 0)
 | |
|     __init_des_r(__data);
 | |
| 
 | |
|   s0 = s[0];
 | |
|   if(bad_for_salt (s0))
 | |
|     return false;
 | |
| 
 | |
|   s1 = s[1];
 | |
|   if(bad_for_salt (s1))
 | |
|     return false;
 | |
| 
 | |
|   if(s0 == __data->current_salt[0] && s1 == __data->current_salt[1])
 | |
|     return true;
 | |
| 
 | |
|   __data->current_salt[0] = s0;
 | |
|   __data->current_salt[1] = s1;
 | |
| 
 | |
|   /*
 | |
|    * This is the only crypt change to DES:
 | |
|    * entries are swapped in the expansion table
 | |
|    * according to the bits set in the salt.
 | |
|    */
 | |
|   saltbits = 0;
 | |
|   for(i = 0; i < 2; i++) {
 | |
|     long c=ascii_to_bin(s[i]);
 | |
|     for(j = 0; j < 6; j++) {
 | |
|       if((c >> j) & 0x1)
 | |
| 	saltbits |= BITMASK[6 * i + j];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|    * Permute the sb table values
 | |
|    * to reflect the changed e
 | |
|    * selection table
 | |
|    */
 | |
| #ifdef _UFC_32_
 | |
| #define LONGG long32*
 | |
| #endif
 | |
| #ifdef _UFC_64_
 | |
| #define LONGG long64*
 | |
| #endif
 | |
| 
 | |
|   shuffle_sb((LONGG)__data->sb0, __data->current_saltbits ^ saltbits);
 | |
|   shuffle_sb((LONGG)__data->sb1, __data->current_saltbits ^ saltbits);
 | |
|   shuffle_sb((LONGG)__data->sb2, __data->current_saltbits ^ saltbits);
 | |
|   shuffle_sb((LONGG)__data->sb3, __data->current_saltbits ^ saltbits);
 | |
| 
 | |
|   __data->current_saltbits = saltbits;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void
 | |
| _ufc_mk_keytab_r(key, __data)
 | |
|      const char *key;
 | |
|      struct crypt_data * __restrict __data;
 | |
| {
 | |
|   ufc_long v1, v2, *k1;
 | |
|   int i;
 | |
| #ifdef _UFC_32_
 | |
|   long32 v, *k2;
 | |
|   k2 = (long32*)__data->keysched;
 | |
| #endif
 | |
| #ifdef _UFC_64_
 | |
|   long64 v, *k2;
 | |
|   k2 = (long64*)__data->keysched;
 | |
| #endif
 | |
| 
 | |
|   v1 = v2 = 0; k1 = &do_pc1[0][0][0];
 | |
|   for(i = 8; i--;) {
 | |
|     v1 |= k1[*key   & 0x7f]; k1 += 128;
 | |
|     v2 |= k1[*key++ & 0x7f]; k1 += 128;
 | |
|   }
 | |
| 
 | |
|   for(i = 0; i < 16; i++) {
 | |
|     k1 = &do_pc2[0][0];
 | |
| 
 | |
|     v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i]));
 | |
|     v  = k1[(v1 >> 21) & 0x7f]; k1 += 128;
 | |
|     v |= k1[(v1 >> 14) & 0x7f]; k1 += 128;
 | |
|     v |= k1[(v1 >>  7) & 0x7f]; k1 += 128;
 | |
|     v |= k1[(v1      ) & 0x7f]; k1 += 128;
 | |
| 
 | |
| #ifdef _UFC_32_
 | |
|     *k2++ = (v | 0x00008000);
 | |
|     v = 0;
 | |
| #endif
 | |
| #ifdef _UFC_64_
 | |
|     v = (v << 32);
 | |
| #endif
 | |
| 
 | |
|     v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i]));
 | |
|     v |= k1[(v2 >> 21) & 0x7f]; k1 += 128;
 | |
|     v |= k1[(v2 >> 14) & 0x7f]; k1 += 128;
 | |
|     v |= k1[(v2 >>  7) & 0x7f]; k1 += 128;
 | |
|     v |= k1[(v2      ) & 0x7f];
 | |
| 
 | |
| #ifdef _UFC_32_
 | |
|     *k2++ = (v | 0x00008000);
 | |
| #endif
 | |
| #ifdef _UFC_64_
 | |
|     *k2++ = v | 0x0000800000008000l;
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   __data->direction = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Undo an extra E selection and do final permutations
 | |
|  */
 | |
| 
 | |
| void
 | |
| _ufc_dofinalperm_r(res, __data)
 | |
|      ufc_long *res;
 | |
|      struct crypt_data * __restrict __data;
 | |
| {
 | |
|   ufc_long v1, v2, x;
 | |
|   ufc_long l1,l2,r1,r2;
 | |
| 
 | |
|   l1 = res[0]; l2 = res[1];
 | |
|   r1 = res[2]; r2 = res[3];
 | |
| 
 | |
|   x = (l1 ^ l2) & __data->current_saltbits; l1 ^= x; l2 ^= x;
 | |
|   x = (r1 ^ r2) & __data->current_saltbits; r1 ^= x; r2 ^= x;
 | |
| 
 | |
|   v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3;
 | |
| 
 | |
|   v1 |= efp[15][ r2         & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1];
 | |
|   v1 |= efp[14][(r2 >>= 6)  & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1];
 | |
|   v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1];
 | |
|   v1 |= efp[12][(r2 >>= 6)  & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1];
 | |
| 
 | |
|   v1 |= efp[11][ r1         & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1];
 | |
|   v1 |= efp[10][(r1 >>= 6)  & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1];
 | |
|   v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1];
 | |
|   v1 |= efp[ 8][(r1 >>= 6)  & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1];
 | |
| 
 | |
|   v1 |= efp[ 7][ l2         & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1];
 | |
|   v1 |= efp[ 6][(l2 >>= 6)  & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1];
 | |
|   v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1];
 | |
|   v1 |= efp[ 4][(l2 >>= 6)  & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1];
 | |
| 
 | |
|   v1 |= efp[ 3][ l1         & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1];
 | |
|   v1 |= efp[ 2][(l1 >>= 6)  & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1];
 | |
|   v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1];
 | |
|   v1 |= efp[ 0][(l1 >>= 6)  & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1];
 | |
| 
 | |
|   res[0] = v1; res[1] = v2;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * crypt only: convert from 64 bit to 11 bit ASCII
 | |
|  * prefixing with the salt
 | |
|  */
 | |
| 
 | |
| void
 | |
| _ufc_output_conversion_r(v1, v2, salt, __data)
 | |
|      ufc_long v1, v2;
 | |
|      const char *salt;
 | |
|      struct crypt_data * __restrict __data;
 | |
| {
 | |
|   int i, s, shf;
 | |
| 
 | |
|   __data->crypt_3_buf[0] = salt[0];
 | |
|   __data->crypt_3_buf[1] = salt[1] ? salt[1] : salt[0];
 | |
| 
 | |
|   for(i = 0; i < 5; i++) {
 | |
|     shf = (26 - 6 * i); /* to cope with MSC compiler bug */
 | |
|     __data->crypt_3_buf[i + 2] = bin_to_ascii((v1 >> shf) & 0x3f);
 | |
|   }
 | |
| 
 | |
|   s  = (v2 & 0xf) << 2;
 | |
|   v2 = (v2 >> 2) | ((v1 & 0x3) << 30);
 | |
| 
 | |
|   for(i = 5; i < 10; i++) {
 | |
|     shf = (56 - 6 * i);
 | |
|     __data->crypt_3_buf[i + 2] = bin_to_ascii((v2 >> shf) & 0x3f);
 | |
|   }
 | |
| 
 | |
|   __data->crypt_3_buf[12] = bin_to_ascii(s);
 | |
|   __data->crypt_3_buf[13] = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * UNIX encrypt function. Takes a bitvector
 | |
|  * represented by one byte per bit and
 | |
|  * encrypt/decrypt according to edflag
 | |
|  */
 | |
| 
 | |
| void
 | |
| __encrypt_r(__block, __edflag, __data)
 | |
|      char *__block;
 | |
|      int __edflag;
 | |
|      struct crypt_data * __restrict __data;
 | |
| {
 | |
|   ufc_long l1, l2, r1, r2, res[4];
 | |
|   int i;
 | |
| #ifdef _UFC_32_
 | |
|   long32 *kt;
 | |
|   kt = (long32*)__data->keysched;
 | |
| #endif
 | |
| #ifdef _UFC_64_
 | |
|   long64 *kt;
 | |
|   kt = (long64*)__data->keysched;
 | |
| #endif
 | |
| 
 | |
|   /*
 | |
|    * Undo any salt changes to E expansion
 | |
|    */
 | |
|   _ufc_setup_salt_r("..", __data);
 | |
| 
 | |
|   /*
 | |
|    * Reverse key table if
 | |
|    * changing operation (encrypt/decrypt)
 | |
|    */
 | |
|   if((__edflag == 0) != (__data->direction == 0)) {
 | |
|     for(i = 0; i < 8; i++) {
 | |
| #ifdef _UFC_32_
 | |
|       long32 x;
 | |
|       x = kt[2 * (15-i)];
 | |
|       kt[2 * (15-i)] = kt[2 * i];
 | |
|       kt[2 * i] = x;
 | |
| 
 | |
|       x = kt[2 * (15-i) + 1];
 | |
|       kt[2 * (15-i) + 1] = kt[2 * i + 1];
 | |
|       kt[2 * i + 1] = x;
 | |
| #endif
 | |
| #ifdef _UFC_64_
 | |
|       long64 x;
 | |
|       x = kt[15-i];
 | |
|       kt[15-i] = kt[i];
 | |
|       kt[i] = x;
 | |
| #endif
 | |
|       }
 | |
|     __data->direction = __edflag;
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|    * Do initial permutation + E expansion
 | |
|    */
 | |
|   i = 0;
 | |
|   for(l1 = 0; i < 24; i++) {
 | |
|     if(__block[initial_perm[esel[i]-1]-1])
 | |
|       l1 |= BITMASK[i];
 | |
|   }
 | |
|   for(l2 = 0; i < 48; i++) {
 | |
|     if(__block[initial_perm[esel[i]-1]-1])
 | |
|       l2 |= BITMASK[i-24];
 | |
|   }
 | |
| 
 | |
|   i = 0;
 | |
|   for(r1 = 0; i < 24; i++) {
 | |
|     if(__block[initial_perm[esel[i]-1+32]-1])
 | |
|       r1 |= BITMASK[i];
 | |
|   }
 | |
|   for(r2 = 0; i < 48; i++) {
 | |
|     if(__block[initial_perm[esel[i]-1+32]-1])
 | |
|       r2 |= BITMASK[i-24];
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|    * Do DES inner loops + final conversion
 | |
|    */
 | |
|   res[0] = l1; res[1] = l2;
 | |
|   res[2] = r1; res[3] = r2;
 | |
|   _ufc_doit_r((ufc_long)1, __data, &res[0]);
 | |
| 
 | |
|   /*
 | |
|    * Do final permutations
 | |
|    */
 | |
|   _ufc_dofinalperm_r(res, __data);
 | |
| 
 | |
|   /*
 | |
|    * And convert to bit array
 | |
|    */
 | |
|   l1 = res[0]; r1 = res[1];
 | |
|   for(i = 0; i < 32; i++) {
 | |
|     *__block++ = (l1 & longmask[i]) != 0;
 | |
|   }
 | |
|   for(i = 0; i < 32; i++) {
 | |
|     *__block++ = (r1 & longmask[i]) != 0;
 | |
|   }
 | |
| }
 | |
| weak_alias (__encrypt_r, encrypt_r)
 | |
| 
 | |
| void
 | |
| encrypt(__block, __edflag)
 | |
|      char *__block;
 | |
|      int __edflag;
 | |
| {
 | |
|   __encrypt_r(__block, __edflag, &_ufc_foobar);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * UNIX setkey function. Take a 64 bit DES
 | |
|  * key and setup the machinery.
 | |
|  */
 | |
| 
 | |
| void
 | |
| __setkey_r(__key, __data)
 | |
|      const char *__key;
 | |
|      struct crypt_data * __restrict __data;
 | |
| {
 | |
|   int i,j;
 | |
|   unsigned char c;
 | |
|   unsigned char ktab[8];
 | |
| 
 | |
|   _ufc_setup_salt_r("..", __data); /* be sure we're initialized */
 | |
| 
 | |
|   for(i = 0; i < 8; i++) {
 | |
|     for(j = 0, c = 0; j < 8; j++)
 | |
|       c = c << 1 | *__key++;
 | |
|     ktab[i] = c >> 1;
 | |
|   }
 | |
|   _ufc_mk_keytab_r((char *) ktab, __data);
 | |
| }
 | |
| weak_alias (__setkey_r, setkey_r)
 | |
| 
 | |
| void
 | |
| setkey(__key)
 | |
|      const char *__key;
 | |
| {
 | |
|   __setkey_r(__key, &_ufc_foobar);
 | |
| }
 |